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Abstract. 3D shape determines an object's physical properties to a
large degree. In this article, we introduce an autonomous learning system
for categorizing 3D shape of simulated objects from single views. The
system extends an unsupervised bottom-up learning architecture based
on the slowness principle with top-down information derived from the
physical behavior of objects. The unsupervised bottom-up learning leads
to pose invariant representations. Shape speci�city is then integrated as
top-down information from the movement trajectories of the objects. As
a result, the system can categorize 3D object shape from a single static
object view without supervised postprocessing.

1 Introduction

Invariant shape recognition is a hard problem because many three-dimensional
objects undergo extreme appearance variations when they rotate in-depth or
light conditions change. Slowness learning can be used to learn this invariance:
even if views of the same object are very di�erent, they more often occur in
close temporal relationship during object interaction than views of distinct ob-
jects [1,7,3]. Such models allow object identi�cation since di�erent views of the
same object form clusters in the learned feature space and views of visually
distinct objects typically cluster in distinct regions. However, objects of simi-
lar categories do not generally appear more often in close temporal relationship
than objects of di�erent categories. The relative distances of object clusters thus
remain undetermined after SFA learning, and minimal noise can cause object
clusters to permute their positions in di�erent simulations. Here, we extend a
model for invariant object recognition such that a small autonomously generated
additional input signal determines the relative positions of object clusters and
thus implements a meaningful shape similarity measure. Although in general the
problem of deriving 3D object shape from a single view is ill-de�ned, humans
can often already guess an object's shape from a single view and predict how it
would move when it is agitated. We demonstrate here a model of this behavior
for a limited object set.

2 Methods

Twelve objects of four distinct shapes (cone, cube, sphere, capsule) and three
colors (red, green, blue) were dropped into a box with tilted ground plane and



their behavior was simulated with a physics engine. In each time step, a bound-
ing box around the object was estimated from the visual data and a quadratic
section of 50× 50 RGB pixels containing the object was cut out. Thus, the vis-
ible transformations of the object consisted of in-depth and in-plane rotations,
scaling, small positional jitter, and change of lighting direction. After dropping
an object onto the surface, 400 video frames were recorded with a framerate of
10Hz, followed by an all-black image after which the process repeats with an-
other object dropping into the box. The process was repeated until a total of
100,000 views and 250 trajectories, corresponding to 2 3

4 hours, were generated.
Two properties of the moving objects were measured: the total time until they
come to a stop and the distance traveled downhill. From these 250 two-dimensional
trajectory descriptors 120 were randomly selected and classi�ed by k-means
(k = 4). The resulting trajectory clusters T coincide to a large degree with
object shape and thus the fact that the trajectories of two objects falls into
the same trajectory cluster can be used as a learning signal. Subsequently, each
training object trajectory was classi�ed as belonging to one of these clusters.
Proportionally to the co-occurrence of two objects (A,B) in T , additional ran-
domly selected view pairs (VA, VB) were presented to the system after the �rst
unsupervised learning phase. Thus, the system was additionally trained with
sequences of object pair views, which are likely to have similar shape. While all
views of the object movies were weighted equally during training, the learning
weight was increased by a factor of 10 for the additional shape training views.
The slowness objective was optimized using Slow Feature analysis (SFA) [9]. As
the image dimensionality of 7500 is too large to perform nonlinear SFA in a
single step, we employed a hierarchical network architecture as described in [3].
For analyzing learned representations, we performed unsupervised k-means clus-
tering. Afterwards, the feature representations of all training views are assigned
to the closest cluster center. Since k-means randomly permutes cluster identi-
ties in each run, we always identify the permutation of cluster names with the
highest overlap to ground truth shape categorization.

3 Results

First we analyze the learned representations after training the hierarchical net-
work with videos of objects dropped into the box with a tilted �oor without any
further shape-related training. For this purpose, we compute the average values
(i.e., the cluster centers) of each object in the slowest ten components in the
highest layer of the hierarchical network. The left panel of Fig. 1 shows the dis-
tance matrix between all pairs of clusters after normalizing the highest distance
to 1. As expected, most clusters are roughly equidistant (with the exception of
the cone clusters). These distances �uctuate for repeated simulations due to the
small amounts of noise injected into the hierarchy. In this representation, a view
of a green cube, for example, is on average as similar to a red cube as to a red
sphere. Except for the distances between cones, there is no evident clustering of
views from objects with same shape or color.



In a second step, we investigate how well the distance matrix of object view clus-
ters can be �programmed� explicitly when only correct pairs of views of objects
from the same shape category are shown. For this purpose, 100 views of each
shape training view pairs (i.e., {(red,green), (red, blue), (green,blue)}×{cone,
cube, sphere, capsule}) were presented to the system additionally to the videos
of the dropped objects. The central panel of Fig. 1 shows the resulting distance
matrix. Here, all clusters of views of objects with identical shape are very close to
each other, whereas all cross-shape cluster distances are roughly equal and close
to the maximum distance. As desired, in this representation, views of objects
of the same shape are categorized as similar and views of objects with distinct
shapes are considered distinct. This observation is quanti�ed by performing k-
means (k=4) clustering of the view feature representations and assigning each
view to the closest cluster center. On average over 20 trials, 99.5% of object
views were assigned to the correct shape cluster.
Finally, we characterize the full system with unsupervised top-down learning. As
before, all layers are trained with the movies of objects dropped into the box.
Again, the movement trajectories of all objects are measured and clustered us-
ing k-means (k=4). More than 90% of the trajectories cluster consistently with
a shape class. After training all layers of the network with the dropped object
movies, pairs of object views are presented with a likelihood proportional to the
frequencies of co-occurrance of objects in the trajectory clusters T . The right
panel of Fig. 1 shows the resulting distance matrix after the presentation of 400
such randomly selected pairs. Again, we perform k-means (k=4) clustering of the
view feature representations and assigning each view to the closest cluster cen-
ter. Similar to the results with the additional supervised training views above,
this autonomously learned representation categorizes views by object shape. On
average, 98.0% of all views are categorized as belonging to the same shape, and,
on average, less than 100 view pairs are su�cient to reach 90% shape categoriza-
tion performance. Note that this number is less than one view pair per object
pair (12x12 = 144) and that many presented view pairs show the same object
(i.e., same color and same shape).
For comparison, we quanti�ed the sizes of shape and color clusters in the pixel
space. The average cluster diameter of all views of objects with the same color
is 5.9 times smaller than the average size of clusters of all views of objects with
identical shape. Performing 100 times k-means clustering (k∈ {3, 4}) in the raw
pixel space never achieved a higher overlap than 82% with either shape or color
clusters in 100 trials but on average the overlap with the color clusters was 41%
larger.

4 Discussion

We have presented a system for unsupervised learning of a visual feature repre-
sentation that clusters views of objects with similar 3D shape. The system learns
invariance to pose variations of the objects and color variations of objects within
categories. The shape information is autonomously derived from the movement



Fig. 1. Cluster center distances. Representations of single object views cluster in
the learned feature space. Each subplot depicts normalized pairwise distances between
the cluster centers of any given object in the learned features space. Left: Without any
inter-object similarities learned (i.e., completely unsupervised), cluster center distances
are undetermined and change between simulations. Center: After additional supervised
presentation of 100 view pairs between objects of similar shape, features of objects with
similar shape cluster but keep a similar distance to unrelated shape clusters. Right:
Based on the similarity of their physical movement trajectories (�self-supervised�), most
features of objects with similar shape cluster as in the supervised case.

behavior of the objects when dropped onto a tilted surface. Thus, shape infor-
mation gets directly integrated into the learned visual feature representation.
We have shown that without additional self-derived training views, most object
representations cluster roughly equidistantly, i.e., they are distributed as local-
ized clusters on a hypersphere in the learned feature space. Although the SFA
optimization itself is deterministic and guaranteed to �nd the globally optimal
solution, the positions of the object clusters permute in di�erent simulations
under the addition of a small amount of noise. Theoretically, a single mini-
sequence consisting of one pair of views between two distinct objects A and B
already leads to a symmetry breaking such that the clusters of A and B have
a smaller distance to each other than any other cluster pair. This sensitivity to
small perturbations is an ideal basis for learning from few examples, either su-
pervised (as shown in the central subplot of Fig. 1) or autonomously (as shown
in the right panel of the same �gure). Practically, some intermediate visual cues
from the visual hierarchy will likely bias these cluster distances in simulations,
even when no temporal inter-object relationship has been experienced during
training (left panel of Fig. 1). However, as we have shown, object shape can not
trivially be clustered in the pixel space. Instead, object color is a more promi-
nent cue. Thus, there is a bias in the input space to cluster by color and not
by shape and the fact that the resulting representations become color-invariant
and shape-speci�c demonstrates that the input categorization bias is small and
can be �overwritten� even with few examples. Additionally, we have shown some
robustness to noise in the self-derived additional shape training views, since the
trajectory clustering does not perfectly coincide with the shape clusters.
This work is related to slowness-based invariant object recognition. While invari-



ant object recognition with much more complex objects has been shown earlier
[1,3], we restrict the object complexity here to four shapes and three colors for
the sake of simplicity. While it seems likely that our system can �nd invariant
representations for visually more complex objects, ground truth shape categories
are less evident and thus objective evaluation is harder. However, one shape rep-
resentation could be evaluated as better than another if it facilitates a given task.
Such an integrated approach is an interesting subject for further research. The
main di�erence to existing slowness-based invariant object recognition systems
of our approach is the systematic integration of top-down cross-object similar-
ity of discrete objects, speci�cally for learning 3D shape categories. A similar
hierarchical model architecture has earlier been shown to model most known
functional aspects of hippocampal spatial codes (i.e., place cells, head direction
cells, spatial view cells and grid cells [2]). As the hippocampus is crucial as a
memory hub and well-known for time-delayed replay of previous experiences [4],
we hypothesize that if replay sequences of objects with similar movement tra-
jectories occur more often than those of di�erent shape, i.e., out of experienced
temporal context but in new task-speci�c context, the hippocampus could im-
plement a mechanism similar to the one proposed here.
Additionally, this work is related to a�ordance learning approaches from the de-
velopmental robotics community [5,6,8]. These approaches also show autonomous
learning of a�ordances but use sophisticated robotic actuators, whereas we have
shown our approach only for simulations. However, these approaches tend to
employ much simpler visual features (e.g., nearest neighbor classi�cation in the
pixel space), whereas our approach focuses on the learning of visual feature rep-
resentations with invariances to strongly changing visual stimuli.
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