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Abstract— State-of-the-art advanced driver assistance sys-
tems (ADAS) typically focus on single tasks and therefore, have
clearly defined functionalities. Although said ADAS functions
(e.g. lane departure warning) show good performance, they lack
the general ability to extract spatial relations of the environ-
ment. These spatial relations are required for scene analysis on
a higher layer of abstraction, providing a new quality of scene
understanding, e.g. for inner-city crash prevention when trying
to detect a Stop sign violation in a complex situation. Otherwise,
it will be difficult for an ADAS to deal with complex scenes and
situations in a generic way. This contribution presents the novel
task dependent generation of spatial representations, allowing
task specific extraction of knowledge from the environment
based on our biologically motivated ADAS. Additionally, the
hierarchy of the approach provides advantages when dealing
with heterogeneous processing modules, a large number of tasks
and additional new input cues. First results show the reliability
of the approach.

Keywords: driver assistance, scene analysis, environment

representation

I. INTRODUCTION

From our point of view current research in the area of

Advanced Driver Assistance Systems (ADAS) is focused

mostly on single, independent, highly specialised tasks. To

this end, today’s Driver Assistance Systems are engineered

for supporting the driver in clearly defined traffic situations

like, e.g. keeping a specified distance to the vehicle in front.

Some may argue that the quality of an engineered system in

terms of isolated aspects (e.g. object detection or tracking)

is often sound, but the solutions lack necessary flexibility.

Small changes in the task and/or environment often lead to

the necessity of redesigning the whole system in order to

add new features and modules, as well as adapting how they

are linked.

Additionally, the combination of numerous dedicated al-

gorithms for virtually all existing tasks/objects/classes (each

focusing on a single aspect of an ADAS) is not feasible in

terms of processing power. From our point of view, a generic

vision-based scene decomposition is necessary to cope with

the limited amount of computational resources. Therefore,

biological vision systems turned out to be highly flexible

and also capable of adapting to severe changes in the task

and/or the environment. One of our design goals on our way
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to achieve such an ”all-situation” ADAS is to implement a

biologically motivated, cognitive vision system as perceptual

front-end of an ADAS, which can handle the wide variety

of situations typically encountered when driving a car. For

more information on this kind of vision system refer to [1].

Another important issue of system design is the proactive

nature of a system, meaning the capability of a system

to actively decide based on the current system state and

sensor input, which task to attend next. Otherwise, it will be

challenging to deal with all tasks at the same time. Therefore,

an in-depth understanding of the current scene is necessary

making scene analysis even more relevant. Details about

the proactive extension of our biologically motivated system

design can be found in [2].

The main intention of this contribution is to present a

generic way for representing and combining extracted spatial

knowledge of the environment. To this end, in the scientific

community the field of designing and researching spatial

representations has gained interest in the recent years. In

most of the related research some kind of evidence grid is

used to integrate information from sensors over time. Hence,

spatial information of occupied areas within the surrounding

can be provided (see [3] for one of the early approaches).

Also, numerous contributions have shown the extraction of

e.g. moving objects, cars, etc. from an occupancy grid (see

[4]). Nevertheless, in most cases the spatial representation

is only capable of storing and interpreting the low level

information of some kind of sensor like e.g. a laser scanner.

Therefore, it is difficult to easily integrate results of other

algorithms (like traffic sign recognition) in a generic way.

As opposed to that, our aim is to provide a generic method

for the combination of different processing results, exploiting

spatial relations on a higher level of abstraction.

This contribution focuses on a generic way to combine

the results of different processing modules in order to extract

task-specific knowledge of the environment based on spatial

representations. The goal is to develop a cognitive system

that is able to combine spatial knowledge of the environment

depending on the current task. The idea of using spatial rep-

resentations was inspired by C. Colby [5], who showed that

the human brain constructs multiple spatial representations,

because each eases a certain task. To our knowledge, there

is no approach that is able to integrate different types of

processing results in a generic way. With such an approach



the extraction of information on a higher level of abstraction

becomes possible. The proposed system is able to deal with

complex scenes and generate spatial expectations for the

current task. The realized system is tested on real-world data

and first results are shown.

II. RELATED WORK

The topic of researching intelligent cars is gaining in-

terest as documented by the DARPA Urban Challenge [6]

and the European Information Society 2010 Intelligent Car

Initiative [7] as well as several European Projects like, e.g.,

Safespot or PReVENT.

Publications that deal in general with spatial represen-

tations are quite numerous. Nevertheless, a lot of these

contributions use an evidence grid to integrate sensor data

over time (see e.g. [8]). An evidence grid also provides

a framework for a probability based approach, since the

occupancy of a cell is transformed to a likelihood. There-

fore, the main task is to provide the free driving space.

Other approaches focus on the fusion of two evidence grids

as e.g. [9]. Additionally, the authors propose an efficient

map data structure called Deferred Reference Count Octree

(DRCO), solving storage problems when using 3D evidence

grids. Also common is the extraction of knowledge from

an evidence grid, as e.g. done by [10], proposing a method

for distinguishing between static and dynamic objects when

building an environment map. To this end, the focus of

publications regarding evidence grids is mainly on sensor

fusion, temporal integration and knowledge extraction from

sensor data, in contrast to our work which allows a com-

bination of results from different heterogeneous processing

modules at later processing levels. Therefore, we extract

spatial relations from the combination of different processing

results, instead of directly interpreting sensor data as done

by other approaches. Nevertheless, the free area from an

evidence grid can also be used as an input result for our

task dependent representation generation.

In terms of complete vision systems, there have been a

number of publications concerning the topic, please refer to

[11] for a detailed comparison. One of the most prominent

examples is a system developed in the group of E. Dick-

manns [12]. It uses several active cameras mimicking the

active nature of gaze control in the human visual system.

But no tuneable attention system and no top-down aspects

are incorporated as existing in the human visual system.

A vision system approach in the vehicle domain that also

includes an attention system and that hence is somewhat

related to the here presented ADAS is described in [13].

The approach allows for a simple bottom-up attention-based

decomposition of road scenes but without incorporating

object or prior knowledge. Therefore, the system is not able

of an in-depth scene analysis using spatial relations as the

here proposed system.

To our knowledge, in the car domain no biologically mo-

tivated large scale systems exists that allows task dependent

evaluation based on spatial representations.

III. SYSTEM DESCRIPTION

The proposed overall architecture concept for a biolog-

ically motivated system design with task dependent scene

analysis is depicted in Fig. 1. It consists of four major

parts: the ”what” pathway, the ”where” pathway, a part

executing ”static domain specific tasks” and a part allowing

”environmental interaction”.

The distinction between ”what” and ”where” processing

path is somewhat similar to the human visual system where

the dorsal and ventral pathway are typically associated with

these two functions (see, e.g. [14]). Among other things, the

”where” pathway in the human brain is believed to perform

the localization and tracking of a small number of objects. In

contrast, the ”what” pathway considers the detailed analysis

of a single spot in the image (see theories of spatial attention,

e.g. spotlight theory [14]). Nevertheless, an ADAS also

requires context information in the form of the road, its

shape and the current global scene context (e.g. inner-city),

generated by the static domain specific part. Furthermore, for

assisting the driver, the system requires interfaces for allow-

ing environmental interaction (i.e., triggering actuators).

In order to allow an understanding of the proposed task

dependent representation generation a rough system descrip-

tion is given (for more details on these system modules refer

to [11]). In Section III-D, the task dependent representation

generation is explained in detail.

A. The ”what” pathway

Starting in the ”what” pathway the 400x300 pixel color

input image is analyzed by calculating the saliency map

Stotal. The saliency map Stotal results from a weighted linear

combination of N = 130 biologically inspired input feature

maps Fi. More specifically, we filter the image using among

others, Difference of Gaussian (DoG) and Gabor filter ker-

nels that model the characteristics of neural receptive fields,

measured in the mammal brain. Furthermore, we use the

RGBY color space [15] as attention feature that models the

processing of photoreceptors on the retina.

The top-down (TD) attention can be tuned (i.e., parameter-

ized) task-dependently to search for specific objects. This is

done by applying a TD weight set wTD
i that is computed and

adapted online (see Fig. 2 for a visualization). The weights

wTD
i dynamically boost feature maps that are important

for our current task or object class in focus and suppress

the rest. The bottom-up (BU) weights wBU
i are set object-

unspecifically in order to detect unexpected potentially dan-

gerous scene elements. The parameter λ ∈ [0, 1] determines

the relative importance of TD and BU search in the current

system state. For more details on the attention system please

refer to [1].

Now, we compute the maximum on the current saliency

map Stotal and get the focus of attention (FoA, i.e., the

currently most interesting image region) by generic region-

growing-based segmentation on Stotal. In the following, with

the FoA a restricted part of the image is classified using a

state-of-the-art object classifier that is based on neural nets

[16]. The class of traffic signs is treated separately with an
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Fig. 1. Biologically motivated system structure for task dependent scene analysis using spatial representations.

Region of interest
(RoI) for TD weight
set calculation

Background (rest)

Fig. 2. Object region (RoI) for w
TD

i
calculation against the background.

array of weak classifiers for classification as described in

[17]. This procedure (attention generation, FoA segmentation

and classification) models the saccadic eye movements of

mammals, where a complex scene is scanned and decom-

posed by sequential focusing of objects in the central 2-3◦

foveal retina area of the visual field.

Internal information fusion processes improve the perfor-

mance of system modules. For example, the detected road

(see Section III-B) is fused as context information into the

attention system. More specifically, the road is suppressed

in all feature maps Fi before fusing them in the overall

saliency Stotal. This procedure makes the saliency map Stotal

sparse and improves the TD weight quality. Additionally,

TD-links are used for the modulation of the attention based

on detected car-like openings in the found drivable road

segment. This car-like openings are detected by searching

for car-sized openings in the road segment (see [11] for

details). Additionally, the task dependent layer combination

can further focus the searched road area to e.g. the ego-lane

(see Section III-D).

Finally, the ”what” pathway contains a long term memory

(LTM) that stores the generic properties of object classes.

The LTM is filled offline with typical patches and cor-

responding aggregated feature map activations mRoI,i for

all supported object classes. Currently, we use cars, signal

boards and a number of traffic signs as LTM content,

although our system is not restricted to these object classes

(see [1]). It is important to note that multiple LTM object

classes are searched at the same time, which requires several

”what” pathways running in parallel (depicted on Fig. 1 as

multiple ”what” pathways). In the default case, a specific

”what” pathway searches for a generic LTM object class.

This is done by computing the geometric mean of all TD

weight sets of the LTM object class.

B. Static domain specific tasks

In the following part, the domain specific tasks are de-

scribed. These are on the one hand related to marked and

unmarked lane detection and on the other hand a reliable

scene classification. The marked lane detection is based on

a standard Hough transform whose input signal is generated

by our generic attention system. The TD attention weights

used here boost white and yellow structures on a darker

background (so called on-off contrast), to which the bio-

logical motivated DoG filter is selective. The yellow on-

off structures are weighted stronger than the white to allow

the handling of lane markings in construction sites. The

filtered result of the TD attention is transformed to the

bird’s eye view (i.e., the view from above, refer to [18] for

details) before applying the Hough transform. Therefore, a

clothoid model-based approach for detecting the markings

is used (see, e.g., [19], [20], [21] for related clothoid based

approaches). But with the knowledge of the current scene

context (see later in this section) a prior for the scene

specific lane width is set for the evaluation of the Hough

space (e.g. for highways a lane width of around 3.7m is

expected). To this end, the result of the marked lane detection

is directly in metric coordinates suitable for a task dependent

representation.

The state-of-the-art unmarked lane detection evaluates a

street training region in front of the car and two non-street



training regions at the side of the road. The features in the

street training region (stereo, edge density, color hue, color

saturation) are used to detect the drivable road based on

dynamic probability distributions for all cues. Additionally,

region growing that starts at the street training region assures

a crisp distinction between the road and the sidewalk. The

region growing uses dynamic self-adaptive thresholds that

are derived from the feature characteristics in the street

training as compared to the non-street training region. A

temporal integration procedure between the current and past

detected road segments based on the bird’s eye view is ap-

plied. The procedure is used to increase the completeness of

the detected road by decreasing the number of false negative

road pixels (refer to [22] for a comprehensive description

of the overall procedure). The result of the unmarked road

detection is also in metric coordinates.

The final part of the static domain specific tasks is the

state-of-the-art scene classification. For being able to run

different modes of operation the current scene context (e.g.

inner-city, country road, highway) has to be known. Other-

wise it is not possible to parameterise the processing modules

as well as the task dependent representation generation to

the global characteristics and driving rules of the scene. For

the computation of the scene classification only an image is

required as input, the processing is roughly the following:

After the preprocessing the resulting image is divided in

16 parts and each part is independently transformed to the

frequency domain. In the following, each transformed part

is sampled with an array of shifted and oriented Gaussian

filters, resulting in an average power spectrum for each of the

parts. Finally, the classification is done with the Hierarchical

Principal Component Classification, having learned during

a training phase a classification tree structure, based on the

average power spectra off all parts. For more information

please refer to [23].

C. Environmental interaction

The system can interact with the world via an actuator

control module. For example, for an emergency braking

depending on the distance and relative speed of a recognized

obstacle, the system can use a three phase danger handling

scheme as shown in earlier versions (see [1]).

D. The ”where” pathway

The central element for the task dependent representation

generation is the ”where” pathway, providing on the one hand

the basic spatial representations by the short term memory

(STM) with generic update and fusion procedures. And on

the other hand, the task dependent combination of different

representation layers. First the structure of the STM and

its procedures will be described and afterwards the concept

of task dependent combination of different representation

layers.

Starting with the former, the STM contains different layers

which are used to store different classes (see Fig. 1, STM

within the ”where” pathway), therefore the update/fusion

process is strongly simplified, if only having to cope with

elements of the same class. Furthermore, each layer has

the same size and is a metric representation of the current

environment (for one particular class) as seen from above.

Therefore, the height of elements will not be depicted, but

the different class layers reflect different height levels of the

world. The hierarchical order of the classes is the following,

starting with the unmarked road layer as the lowest layer and

finally, the highest layer is the object layer. At each time step

(on the basis of the image recording frequency) all elements

(on each layer) will be shifted and rotated according to the

ego movement of the car, based on a Kalman filter prediction.

The next step is the fusion between a newly detected object

Onew and the already known ones, depending on the class

of the newly detected object either the traffic sign layer or

the object layer is chosen. Based on the 3D position and

size of the newly detected object Onew, a radius in the

corresponding class layer of the STM is searched. If there is

no other object within the radius the layer is updated with

the newly detected object. Otherwise, the object Of found

within the radius is then compared to the new object Onew

by means of the distance measure δ(Of , Onew) that is based

on the Bhattacharya coefficient (a measure for determining

the similarity between two histograms) calculated on the

histograms of all N object feature maps H
Of

i and HOnew

i

(see Eq. (1)).

δ(Of , Onew) =

N
∑

i=1

√

1 − γ(H
Of

i ,HOnew

i ) (1)

γ(H
Of

i ,HOnew

i ) =
∑

∀x,y

√

H
Of

i (x, y)HOnew

i (x, y)

If the similarity exceeds a certain class specific threshold

the new position will be stored in the associated layer of

the short term memory (STM). The objects in the STM are

then suppressed in the current calculated saliency map to

enable the system to focus on new objects. The principle of

suppressing known objects was proved to exist in the human

vision system and is termed inhibition of return (IoR), refer

to [24] for details.

All known objects and traffic signs are tracked using a 2D

tracker that is based on normalized cross correlation (NCC).

The tracker gets its anchor (i.e., the 2D pixel position where

the correlation-based search for an object will be started in

the new image) from a Kalman filter based prediction on

the 3D representation taking the ego motion of the camera

vehicle and tracked object into account. This is a generic

process and therefore, can be applied to any newly added

class layer.

A comparison between the current Kalman fused 3D ob-

ject position and the predicted object position (derived from

the measured vehicle ego motion) allows the classification

of detected objects as static/dynamic (see [11] for details).

If the tracker has re-detected the object in the current

frame the 3D representation is updated. In case the tracker

looses the object, the system interrupts the processing in the

specific ”what” pathway and searches for the lost STM object

in the following frames. This is realized by calculating a



Fig. 3. Concept of task dependent representation generation.

TD weight set that is specific to the lost STM object. The

object Of found by the STM search is then compared to

the searched object Os by means of the distance measure

δ(Of , Os) based on the Bhattacharya coefficient as already

described (see Eq. (1)).

In the following, the concept of task dependent combina-

tion of different representation layers is explained. Therefore,

Fig. 3 shows the strongly simplified system structure with

the used hierarchy for the layer combination. The system

structure of Fig. 1 is visually simplified to four process-

ing modules providing the input for the STM on Fig. 3.

Nevertheless, the functionality remains as already described.

Therefore, the subsequent task dependent combination of

layers is shown in more detail.

The unmarked road layer (LUR) and marked road layer

(LMR) are always combined as 1st layer combination (Lcom
1

,

see Fig. 3, 1st layer), whereas the following combinations

(2nd/3rd) only depend on the current task, thus higher layers

can be left out. The marked road layer is so far shown as one

layer, actually it is divided in six sub-layers corresponding

to three lane markings to the left (ML
i ) and three to the

right (MR
i ) of the current ego position (with i = {1, 2, 3}).

Additionally, not only the position of the road marker for

each sub-layer MD
i is set to one in the sub-layer, but also

the area which satisfies the corresponding equation Eq. (2)

or Eq. (3), generating a mask for further processing.

∀z ≤ x with mL
i (x, y) = 1 is mL

i (z, y) = 1 (2)

∀z ≥ x with mR
i (x, y) = 1 is mR

i (z, y) = 1 (3)

Hence, the following lanes can be extracted: the ego lane

(Eq. (4)), the first (Eq. (5)) and second (Eq. (6)) lane to the

left and right. However, it is also possible to extract a number

of adjoining lanes at the same time, by changing MD
i to the

outmost left and right lane marker of the adjoining lanes in

Eq. (5).

Lcom
1

(Laneown) = LUR − ML
1
− MR

1
(4)

Lcom
1

(LaneD
1

) = (LUR · MD
1

) − MD
2

(5)

Lcom
1

(LaneD
2

) = (LUR · MD
2

) − MD
3

(6)

with D ∈ {L,R}

The attention system can also be modulated by the provided

information, e.g. we can restrict the search for car-like

openings in the road to certain lanes, a number of lanes and

also the overall road. This allows a specific focus on relevant

areas of the surrounding environment for the attention, e.g.

only the oncoming traffic lane can be focused, since there is

the highest probability for emerging new traffic participants.

So far, the driving direction of the lanes is inferred from the

scene context, assuming the same driving direction for all

lanes on highways and opposing driving direction on the left

lanes in inner city and rural roads.

Depending on the current task the combination of the i

layers Lcom
i is performed. To this end, an example task is

carried out illustrating the concept. As task the computation

of a possible stop position is given (also illustrated in Fig. 3).

The first layer combination Lcom
1

is already described above

and has the sub-task of extracting the ego-lane (Eq. (4)).

In the following stage, Lcom
1

has to be combined with the

traffic sign layer LTS . Hence, only the relevant traffic signs

(for this task Stop and Give Way) will be kept (L
Stop,GW
TS )

and their dimensions stretched from a single cell of the layer

to the complete width and 1m in depth, therewith providing

a limit line. The next step is the product computation of

Lcom
1

and L
Stop,GW
TS (see Eq. (7)), resulting in a stop position



within the ego lane based on the traffic sign position.

Lcom
2

= Lcom
1

· LStop,GW
TS (7)

So far no horizontal lane markings are processed, which

would deliver additional information about the stop line. But

this is planned for the future to extract the ”real” stop line

from the environment. Nevertheless, in the example stream

(see Fig. 5) it would anyway not be possible, due to the

occlusion from the car in front.

The final step is the incorporation of the object layer. This

is done similarly as Eq. (7), by substitution of L
Stop,GW
TS

with the object layer LO. The result L
ego
3

only contains (if

any exist) objects on the ego lane. For all remaining objects

on L
ego
3

the distance (based on our current trajectory) is

compared to the stop line (Lcom
2

) and if the object is closer,

the stop line is shifted to the position of the object. The

Result is a spatial representation Lcom
3

, that contains the

closed stop position on the ego lane.

Therefore, the task find possible stop position is solved,

nevertheless there are many other tasks possible, e.g. extract

objects on certain lanes (overtaking, lane change, turning

lane, etc.), find corresponding maximum speed of a lane

(Highway with different speeds for lanes), extract ego lane

for left/right turn, handle complex crossroads and so on. The

important thing is, that for many new tasks the information

already exists and only the layers have to be combined in

a different way. Some tasks require new STM layers with

new information, but even these can be easily incorporated.

To this end, the generic nature is not the variation of the

representations itself, but the simple change of the content

within the representations with each task.

IV. RESULTS

In Section IV-A we will evaluate different individual

system modules that play the most important role in our cog-

nitive ADAS architecture. In Section IV-B the overall system

properties of the task dependent representation generation

will be assessed. Based on a inner-city scenario results for

different tasks are shown.

A. Evaluation of system modules

The results presented in [1] support the generic nature of

the TD-tuneable attention subsystem during object search.

Following this concept, the task-specific tuneable attention

system can be used for scene decomposition and analysis,

as it is shown exemplarily on the inner-city scene in Fig. 4.

(a) (b) (c)

Fig. 4. Attention based scene decomposition: (a) Inner-city scene, (b) TD
attention tuned to cars, (c) TD attention tuned to traffic signs

Moreover, we see the attention system as a common

tuneable front-end for the various other system tasks, e.g.,

as lane marking detection (see Section III-B). For results of

the lane marking detection performance please refer to [2].

Because of limitations in space the extensive performance

evaluation of the unmarked road detection can be found in

[22]. Also, for details about the evaluation of the traffic sign

recognition with an array of weak classifiers please refer to

[17].

B. Evaluation of overall system performance

In order to qualitatively evaluate the presented task de-

pendent representation generation aspects, results in form of

4 consecutive sample frames of a test stream are presented

that show a complex real-world scenario (see Fig. 5). In order

to show the results of the different layer combinations the

four consecutive images depict the results for different layer

combinations. Starting with a clear image of the scenario in

Fig. 5a, the results of the systems processing modules are

shown in Fig. 5b (red: marked road, green: unmarked road,

blue: traffic signs). In the following the results for the differ-

ent layers are shown. Starting with the 1st layer combination

(Lcom
1

), with the task of ego-lane extraction. Therefore, the

spatial representation (Fig. 5d) shows in metric coordinates

the ego lane extracted by the combination of the unmarked

and marked road detection. Additionally, Fig. 5c shows the

back projection of the ego-lane to the image. Followed by the

2nd layer combination (Lcom
2

), having the task of limit line

extraction for the detected stop line. To this end, the spatial

representation (Fig. 5f) depicts the stop line taking the ego-

lane and the position of the Stop sign into account. The stop

line was back projected to the image with a height of 1m

acting as a virtual wall (see Fig. 5e). Finally, the 3rd layer

combination (Lcom
3

) is shown (see Fig. 5g-h) and therewith

the task of extracting the limit line under consideration of

other objects. Therefore, the detected car on our ego-lane

shifts the limit line, again depicted as a virtual wall of 1m

height.

V. SUMMARY AND OUTLOOK

In this contribution, we presented a novel way of scene

analysis based on spatial representations, which is able to

deal with heterogeneous processing results as input, is easyly

extendable with new input results and tasks can be simply

realised by a combination of the layers. Additionally, the

scene analysis is done task specifically, only extracting the

spatial information, which is currently required. In the future

we also plan a prediction for the next n timesteps, based on

a certain task. For example, the task of extracting objects to

lanes would not only show the current spatial relation, but

also the predicted movement. Therefore, a car on the right

lane with a left indicator light will be predicted on the ego

lane. The prediction allows a brake preparation, if the car

changes to our lane keeping a safe distance to the new car

in front.

Also an integrated, advanced driver assistance system

that relies on human-like cognitive processing principles is
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Fig. 5. Visualization of different results for the test stream: (a) Input
image, (b) Results of the different processing modules, (c) Result image for
L
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, (e) Result image for L

com

2
, (f)

Spatial representation for L
com

2
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com

3
.

shown. The system uses a biologically motivated attention

system as flexible and generic front-end for all visual pro-

cessing. Based on top-down links modulating the attention

task-dependently, a state-of-the-art object classifier, a road

recognition and a scene classification, we realized a highly

flexible and robust system architecture. We plan to port the

described extensions from Matlab to C in order to integrate

them in our existing online system [1] for evaluating them

on our prototype vehicle.

.
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