
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Unsupervised Self-Development in a Multi-
Reward Environment

Benjamin Dittes, Christian Goerick

2010

Preprint:

This is an accepted article published in Proceedings of the 10th International
Workshop on Epigenetic Robotics. The final authenticated version is available
online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Unsupervised Self-Development

in a Multi-Reward Environment

Benjamin Dittes Christian Goerick
Honda Research Institute Europe GmbH,

Carl-Legien-Straße 30,
63073 Offenbach / Main, Germany

benjamin.dittes@honda-ri.de

Abstract

Self-development is an important quality for
artificial agents, allowing skill development or
improvement. In this contribution we ana-
lyze this problem for a scenario with multi-
ple rewards, some easier to reach than others.
There is no provided sequence of tasks to en-
force self-development; rather, the agent must
have an intrinsic motivation to discover more
difficult reward sources even if a trivial one
is always at hand. Then, by removing simple
reward sources, the development performance
can be measured. We describe the scenario
and discuss as well as measure the applicabil-
ity of standard learning methods. Based on
this analysis we present two techniques to al-
low the desired self-development: a learning
rule for quick trajectory learning and a multi-
model learning for multiple reward sources.
Simulations show the validity of the presented
methods.

1. Introduction

Self-development is a popular line of research,
especially in the area of developmental robotics
(Lungarella et al., 2003). The ability of an ar-
tificial agent to develop new skills, optimize
existing ones or discover new solutions to tasks
is very desirable. Previous work deals with mo-
tivation systems (Konidaris and Barto, 2006),
exploration strategies (Oudeyer et al., 2007,
Mikhailova et al., 2006, Schmidhuber, 2006), action-
selection (Brock et al., 2005, Beaudry et al., 2005,
Chernova and Arkin, 2007) and self-development
frameworks (Bonarini et al., 2006). However, most
contributions, especially (Bonarini et al., 2006), see
self-development as a technique to ultimately solve
one task, or a series of increasingly difficult tasks.
This provides guidelines to the development process
and thus facilitates and directs this process.

In this work, we would like to address self-
development without these guides: in a world with

multiple reward sources, some sources of reward will
be easier to reach than others. Which intrinsic mo-
tivation, exploration and learning methods are nec-
essary to still discover all reward sources and exploit
this knowledge if some of them disappear?

To analyze these questions we first introduce a sce-
nario with the following properties: First, it provides
a set of reward sources which require increasingly
complex action sequences to reach. Second, it pro-
vides a sufficiently rich state, sensor and actor space
so that finding the more difficult reward sources is
not trivial. Third, during the simulation there is a
phase where both trivial and difficult reward sources
are present, followed by a phase where the trivial
reward sources are removed.

During the first phase the agent has the chance
to explore the environment in addition to receiv-
ing reward from the trivial source. During the sec-
ond phase the agent has to prove whether he devel-
oped the skills to reach more difficult reward sources.
This is not the same as presenting the agent with
a sequence of increasingly difficult tasks: the sec-
ond phase serves only to verify whether the self-
development in the first phase was successful.

Thus, agents without the ability for ‘unsupervised
self-development’ will either fail to explore the envi-
ronment in the presence of trivial reward (first phase)
or fail to apply the knowledge of other reward sources
when the trivial one is removed (second phase). In
both cases, this will lead to significantly less reward
during the second phase, which can be easily ob-
served.

We will present a concrete simulation environment
in Sec. 2. Sec. 3. will then attempt a straightforward
SARSA(Rummery and Niranjan, 1994) learning and
a simple exploration strategy to solve the problem,
followed by an analysis of the shortcomings of these
methods. We will then present two extensions which
together allow to achieve the desired level of self-
development: a transitive extension of SARSA in
Sec. 4. and an automatic generation of multiple re-
ward models in Sec. 5.



Movable 

Cubes

High walls

High walls

Height: 1

Height: 2

Height: 3

Start

Position

Figure 1: Simulated Maze – The figure shows the

three-dimensional maze in which all experiments are con-

ducted. The world is composed of unit cubes which can

be picked up and moved by the agent, black areas are of

height 0, dark gray and light gray areas are of heights 1

and 2, respectively. At several positions there are food

sources which are either attached to the ground (‘1’ and

‘2’) or floating above the ground in various heights (‘3’).

2. The scenario

The environment is a simulated three-dimensional
world of unit cubes which an agent can climb and
move, see Fig. 1. The agent has 11 possible ac-
tions: it can stay at the current position, move north,
south, east or west to an adjacent cube at the same
height, climb north, south, east or west to an ad-
jacent cube with height +/- 1, grab the cube it is
standing on (thus carrying up to one cube) and put
down the carried cube at the current position. Stay-
ing, walking and climbing are possible while carrying
a cube. At every timestep, the agent executes one
possible action (a fitness function inherent to each
action prevents execution of impossible actions, like
picking up a second cube or walking off the maze).

This ability for climbing and carrying cubes opens
the possibility of reward sources with different dif-
ficulties: the agent starts each episode in the top
left corner and is thus closest to food source 1 (‘F1’).
While F1 can be reached without climbing or moving
cubes, food source 2 (‘F2’) requires climbing actions
and is further from the start position. Finally, food
source 3 (‘F3’) is positioned above ground and can
be reached only by moving cubes to the right posi-
tions; there are three such ‘floating’ food sources, at
heights 1, 2 and 3 (see Fig. 1).

Sensor information is given to the agent in form
of it’s current three-dimensional position at every
timestep, a flag indicating whether a box is carried
or not is not given.

The agent receives a reward of 1.0 for every
timestep if it is at a position with food and 0.0 oth-

erwise. We monitor the agent’s performance in the
world by keeping track of a ‘hunger’ level, which de-
creases by 0.1 per timestep when receiving reward
and grows by 0.005 per timestep otherwise. Al-
though food sources of different difficulty are in dif-
ferent distances to the starting position, the ability
of the agent to ‘stay’ at each of these food positions
allows it to gather enough food to reduce hunger to
0 within one episode for all food sources.

All experiments are conducted with the same con-
ditions: one episode lasts 100 timesteps, resulting
in a complete reset of the world (only the agent’s
hunger level is kept). One complete run consists of
150 episodes, split into three phases of 50 episodes
each: In phase 1, all food sources are available. In
phase 2, after 50 episodes, F1 is removed. Finally,
in phase 3, after 100 episodes, F2 is removed, af-
ter which the simulation continues until the end of
episode 150. The last phase, from episode 101 to
150, shows whether the agent developed the nec-
essary skills to reach the more difficult source F3,
which can be observed by looking at the hunger level
of episodes 101 to 150.

We believe this scenario meets the criteria intro-
duced in Sec. 1. for allowing (episodes 1 to 100) and
measuring (episodes 101 to 150) the agent’s abil-
ity for unsupervised self-development. The goal, in
other words, is to find an agent which does not starve
in the last phase. To this end we will start by ap-
plying straightforward learning and exploration tech-
niques in the following section.

3. Standard approaches

3.1 Straightforward SARSA

The first and simple food model we will
use is the State-Action-Reward-State-Action
learning, short SARSA, as presented in
(Rummery and Niranjan, 1994). It is based on
the fact that by knowing the five quantities
(st, at, rt, st+1, at+1), where s represents a state
of the agent, a represents an action of the agent
and r represents a reward, the agent can learn the
predicted value Vst,at

, which is an approximate over
all future rewards expected from executing action at

in state st. Then, in a new state s∗, an agent can
look for the action a∗ = argmaxaVs∗,a. For a more
complete introduction to reinforcement learning,
please see (Kaelbling et al., 1996).

We employ a SARSA(0) with α = 0.5, γ = 0.99
combined with epsilon greedy exploration with ε =
0.1, i.e. in 10% of cases, choose a random action
instead of a∗. The update rule for the model thus
reads:

Vst,at
← Vst,at

+ α(rt + γVst+1,at+1 − Vst,at
) (1)

The parameter α is the learning rate, it mediates



0 2000 4000 6000 8000 10000 12000 14000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
R

e
su

lt
s

Food 1

Food 2

(Food 3)

Hunger

Phase 1 Phase 2 Phase 3

Simulation with one SARSA model

Figure 2: Simulation with epsilon greedy exploration – The figure shows the hunger level of the agent and the

amount of time spent at food sources F1, F2 and F3, averaged over 100 runs (see Appendix for details). During phase

1, the agents are content with visiting F1 (about 10% of agents visit F2), but do not perform any exploration towards

F3. In phase 3, most agents are unable to find F3 and the hunger level stays at almost 1.

between stored and new information, the parameter
γ is the discount factor, it mediates between short-
term and long-term expected reward.

The results of this approach are shown in Fig. 2,
as an average over 100 runs. Agents reliably find F1,
10% even find F2, but there is no exploration towards
F3 and when F1 and F2 are removed in phase 3 the
agents starve.

The obvious shortcoming of this approach is the
missing exploration towards alternative food sources
in phase 1. There is no motivation beyond reach-
ing (any) one food source, thus no effort towards
self-development can be observed. To compensate
this, an exploration strategy is necessary and al-
though many more elaborate have been presented,
e.g. (Oudeyer et al., 2007, Schmidhuber, 2006), we
will start with a very simple one in the next subsec-
tion and then discuss necessary extensions.

3.2 Novelty-based Exploration

To provide the agent with a second motivation in
addition to finding food, we extend the previous ap-
proach by a novelty-based exploration: A second
SARSA model (same parameters) learns in parallel
to the one responsible for food and is rewarded in-
ternally by the agent whenever it reaches a position
it has not visited before (up to 10 times for each po-
sition with a reward of 0.1 each time). This second
model will be called ‘exploration model’ as it learns
actions which lead to the agent being in novel states.

The agent can now switch between the two mod-
els for action selection based on the hunger level: if
the hunger is above 0.5, the food model is queried,
otherwise the exploration model is queried. Both

models learn about all timesteps (with different re-
ward sources) and the epsilon greedy exploration is
applied to both as well.

The results of this approach can be seen in Fig. 3,
again averaged over 100 runs. Now, the agents spend
a little time at F2 and F3 in phases 1 and 2. However,
when F2 is removed, the agents are unable to ex-
ploit this knowledge: although the exploration model
led to sporadic visits to alternative food sources, the
food model remained focused on F1.

We draw two conclusions: First, the very simple
novelty-based exploration method applied here was
sufficient to find alternative food sources – thus, a
more elaborate exploration strategy would probably
lead to quicker and more reliable results but would
still suffer from the model’s inability to store other
food sources and would therefore not benefit the
analysis of self-development. Second, the main ef-
fort to enable unsupervised self-development should
deal with the food model. We will analyze why the
simple food model used so far was unable to solve
the problem in the next subsection and present two
necessary extensions in Secs. 4. and 5.

3.3 Shortcomings of the Simple Approaches

Three factors contribute to the bad performance of
the simple food model despite the exploration of al-
ternative food sources.

The first problem is the dominance of actions to-
wards F1 in all states close to F1, including the start-
ing position in the top left of the maze (see Fig. 1).
Epsilon greedy exploration leads to small variations
of the trajectory around F1, thus creating a model
which is able to reach F1 from practically every po-



0 2000 4000 6000 8000 10000 12000 14000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
R

e
su

lt
s

Food 1
Food 2

(Food 3)

Hunger

Exploration

Phase 1 Phase 2 Phase 3

Simulation with SARSA model and novelty

Figure 3: Simulation with novelty-based exploration – The figure shows the hunger level of the agent, the

received novelty reward and the amount of time spent at food sources F1, F2 and F3, averaged over 100 runs (see

Appendix for details). Behavior of the agents is governed by a food-oriented model for hunger > 0.5 and by a novelty-

oriented model for hunger < 0.5. Although hard to observe, visitation rate to F2 in phase 2 is above the level seen in

Fig. 2, which accounts for the lower hunger level. Agents now explore the entire environment during phases 1 and 2,

which can be seen by the sporadic visits to F2 and F3 (both ‘Food 2’ and ‘Food 3’ curves are repeatedly above zero).

However, this does not lead to good performance in phase 3, see Sec. 3.3 for details.

sition in the top left quarter of the maze. The prob-
ability of ‘escaping’ this area to reach other reward
sources (using the food model) is therefore very low
during all phases.

The second problem is the fact that reaching F2
and F3 requires more complex combinations of ac-
tions, leading to fewer visits in general (which can be
seen in Fig. 3). This results in a slow propagation of
discounted reward from the food sources towards the
starting position, thus maintaining the dominance of
actions towards F1 in phase 1 of the simulation and
leading to slower stabilization of trajectories to F2
and F3 in phases 2 and 3, respectively.

The third problem is the value of expected dis-
counted reward of actions towards F1. When F1 is
removed in phase 2 and no reward is received at the
position of F1 any more, many updates of the food
model are required to slowly reduce this expected re-
ward. This leads to a high number of repetitive visits
to F1 in phases 2 and 3 until the information about
this lack of reward propagates through the model
(this effect can be seen in Fig. 3 only by the increase
of hunger level, visits to removed food sources are
not shown).

In the following sections, we will present two tech-
niques to address these three problems.

4. Transitive SARSA for Rapid
Learning

From the analysis of straightforward SARSA learn-
ing and simple exploration we now move to two tech-

niques which together allow the agent to show the
requested self-developmental qualities. We first ad-
dress problems two and three from the analysis in
Sec. 3.3: the SARSA learning of Eqn. 1 requires too
many learning episodes to propagate the knowledge
of other reward sources back to the starting posi-
tion (thus requiring too many visits to other reward
sources) and the knowledge of the missing F1 is not
applied to the surrounding states quickly enough.

We therefore propose a transitive extension of
SARSA learning (‘TransSARSA’): instead of updat-
ing the value function based on the given reward only
in the state preceding the reward – and waiting for
the value function to propagate further into the past
– we apply the properly discounted reward back to
the state/action history immediately.

Given a sequence {(st−H+1, at−H+1, rt−H+1),
(st−H+2, at−H+2, rt−H+2) , . . . , (st, at, rt)} with the
history of H timesteps leading up to a reward (thus
rt > 0, ri = 0,∀t−H<i<t), we apply for all steps
k = 1..H − 1

Vst−k,at−k
← Vst−k,at−k

+ αβγVst−k+1,at−k+1

+α(1− β)γkrt − αVst−k,at−k
(2)

Here, α and γ are standard SARSA parameters,
Vs,a is the learned discounted reward and β is a
new parameter which mediates between local up-
dates (β = 1 means standard SARSA learning) and
transitive updates (β = 0 means updates learn only
the discounted final reward).

The method is inherently an online method as it
performs updates every time a reward is received



0 2000 4000 6000 8000 10000 12000 14000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
R

e
su

lt
s

Food 1

Food 2
Food 3

Hunger

Exploration

Phase 1 Phase 2 Phase 3

Simulation with TransSARSA model and novelty

Figure 4: Simulation with novelty-based exploration and TransSARSA – The figure shows hunger level,

novelty reward and food performance averaged over 100 runs (see Appendix for details). Behavior of the agents is

governed by a food-oriented TransSARSA model for hunger > 0.5 and by a novelty-oriented TransSARSA model for

hunger < 0.5. Exploration behavior is similar to experiments without TransSARSA (see Fig. 3), but in phases 2 and 3

the learning is much faster, leading to a quick adaptation to the new food sources, once they are found. However, at

the beginning of phase 2 (around timestep 6000) and at the beginning of phase 3 (around timestep 11000), the current

food model proves useless since it focused strongly on one food source. Therefore the hunger level spikes at these times

until the agents are able to find and utilize new food sources.

for the H timesteps preceding the reward. In case
no reward is received for Hmax timesteps, learning
is performed according to Eqn. 2 with H = Hmax,
rt = 0. This is relevant to the rapid unlearning
required when one reward source disappears: the
zero-reward is immediately propagated to all Hmax

actions of the trajectory towards the missing food
source. The method can be applied as an offline
method, but then requires splitting of the offline data
into sequences leading to reward or integrating suc-
cessive rewards, but this was not implemented for
this contribution.

The results of a simulation with the simple ex-
ploration strategy from Sec. 3., combined with one
TransSARSA model (α = 0.5, β = 0.4, γ = 0.99,
Hmax = 20) can be seen in Fig. 4. There is no sig-
nificant difference in phase 1. In phase 2 and 3 the
learning progress is much faster, leading to a quick
adaptation of F2 and F3, respectively. However, this
is not a result of self-development in phase 1, as can
be seen by the spikes of hunger levels at the begin-
ning of phase 2 and 3. Rather, the food model used
during phase 1 proves useless at the beginning of
phase 2, thus the agent performs a random walk and,
having found F2, is able to quickly store this infor-
mation in the TransSARSA model and utilize it. We
therefore conclude that TransSARSA increases the
learning and unlearning speed, but it does not solve
the problem of exploiting the discovery of F2 and F3
in phases 2 and 3.

An additional note on the reinforcement proper-

ties of TransSARSA: The method is inherently on-
policy1, for the reasons that it is based on SARSA
and, in addition, that it updates the value function
based on one specific state-action-trajectory. This is
intended, but it leads to a non-convergent value func-
tion which is much better suited for quickly adapt-
ing to changing rewards than for learning an opti-
mal policy in static scenarios. The same ‘transitive-
update’ technique can also be applied to Q-learning,
but as this is an off-policy method it is not sur-
prising that the performance for rapid relearning
is much worse and we will not go into detail here.
Finally, although the experiments done in this pa-
per use a simple grid-world, the update function of
TransSARSA can also be applied to continuous sen-
sor spaces, given a continuous function approxima-
tion model, e.g. LWPR(Vijayakumar et al., 2005).

5. Multi-model Learning for Rapid
Switching

After improving the learning behavior itself with the
TransSARSA learning method, the question still re-
mains how to utilize the discovery of F2 and F3 dur-
ing phase 1 in later phases. So far, all learning mod-
els focused too much on F1 during phase 1 and thus

1Reinforcement learning strategies are often separated into
on-policy, i.e. the learning depends on the policy implicit to
Vst,at , and off-policy, i.e. the learning does not depend on
Vst,at . Off-policy methods are said to be more appropriate
for static problems where convergence is essential.



0 2000 4000 6000 8000 10000 12000 14000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
R

e
su

lt
s

Food 1

Food 2 Food 3

Hunger

Exploration

Phase 1 Phase 2 Phase 3

Simulation with multiple TransSARSA modelss

Figure 5: Simulation with novelty-based exploration and multi-model TransSARSA learning – The figure

shows hunger level, novelty reward and food performance averaged over 100 runs (see Appendix for details). The agent

performs TransSARSA learning, with separate models for each discovered food source, and chooses between exploration

for hunger < 0.5 and food search for hunger > 0.5. Exploration behavior is similar to previous experiments, but at

the beginnings of phases 2 and 3 agents are now able to quickly switch to pre-existing models to reach food sources F2

and F3, respectively, without a hunger spike as observed in Fig. 4. This demonstrates that they were able to construct

models for non-trivial food sources in phase 1 (showing the demanded unsupervised self-development) and utilize those

models when more simple food sources disappeared.

did not store the information of other food sources
sufficiently.

We solve this problem by dynamically generating
TransSARSA models every time a position with re-
ward is discovered. The agent starts with the explo-
ration model alone and moves through the environ-
ment. Once it receives food reward in a state s∗, a
TransSARSA model V s∗ is created and associated to
this specific world state. This model is now updated
online as described in Sec. 4. and receives food re-
ward from the environment, but only if the agent is
in the associated state s∗. Thus, a model is learned
which is designed to allow the agent to reach s∗.

The same is done for every other environment state
where the agent receives food reward: for every new
state where reward is received, a new food model is
created and then updated. During phase 1, this leads
to up to five different food models for the different
reward states (F3 has three states), each updated
online in parallel to the others.

To select an action, the agent now choses the ex-
ploration behavior for hunger < 0.5 and a random
food model for hunger > 0.5. In the latter case the
agent does not switch to another food model until
the hunger level drops below 0.5. This last constraint
leads to a slight reduction of quality in phases 2 and
3: although the agent may know very well how to
reach one food source, the selection mechanism may
force it to look for a previously seen more difficult
food source, thus reducing the average time spent
at a food source (please observe the slightly higher

hunger level in Fig. 5 as compared to Fig. 4) – on the
other hand, this leads to an improvement of alterna-
tive models, which is in the interest of unsupervised
self-development.

In phase 2 and 3 it may now happen that the agent
visits a state s∗ which has an associated food model
V s∗ but no reward is received from the environment.
In this case, the model V s∗ is deleted from the pool of
food models. In other words, once the agent realizes
a food source has disappeared it will never try to visit
it again. This is a very crisp heuristic which may be
extended to include food source confidences or dis-
abling instead of deleting food models, but it serves
the purpose of reacting to environment changes for
our problem.

The results of this approach, using the same
TransSARSA parameters as in Sec. 4., can be seen
in Fig. 5.

During the first 50 episodes, exploration goes along
the same lines as in Fig. 3, with the addition that F2
and F3 are visited slightly more often due to the ran-
dom fixation on one specific food model when hunger
goes above 0.5. At the beginning of phase 2, there
is no spike in hunger levels anymore as could be ob-
served using only one TransSARSA model. This is
because the agents could remove the food model for
F1 quickly and start using the food model for F2,
which contains all information necessary to reach F2.
The same can be observed for phase 3: the agents
‘switch’ to a food model for F3 fluently and without
a hunger spike and then slightly improve this model.



0 2000 4000 6000 8000 10000 12000 14000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

R
e
su

lt
s

Food 1

Food 2 Food 3

Hunger

Exploration

Phase 1 Phase 2 Phase 3

Simulation with multiple SARSA models

Figure 6: Simulation with novelty-based explo-

ration and multi-model SARSA learning – Same

setup as Fig. 5 but with traditional SARSA learning.

Due to slower convergence of the individual models the

performance is worse than with TransSARSA learning.

It is this ability to switch between models that
shows two things: First, the fact that the agents
where able to switch proves that they already con-
structed a model to reach F2 during phase 1. Second,
the fact that the agents hunger level does not spike
shows that these models were stored in a way that
allows application after an environment change. To-
gether this means that the innate properties of the
agent are now sufficient to reach unsupervised self-
development in this simulated environment.

The presented approach of multi-model learning
is related but not similar to options-based reinforce-
ment learning(Sutton et al., 1999) in that it does not
split models into different skills but into different re-
ward sources. Learning of options to achieve reward
sources, even sharing of such skills among different
reward sources, is possible but in our opinion not
crucial to the central point of self-development.

6. Discussion & Conclusion

This paper presents a scenario and a set of algo-
rithms which allow and measure unsupervised self-
development. We presented a simulated maze with
one important quality: it allows placing reward
sources with a variety of difficulties, from very triv-
ial to reach to more complex to reach. This enabled
us to define ‘unsupervised self-development’ as the
ability of an agent to discover more complex food
sources although simple ones are present and apply
this knowledge when the simpler ones are removed.

We analyzed the performance of standard learning
and exploration techniques to achieve this property
and formulated two aspects which required better
solutions: the speed with which models adapt to en-
vironment changes (i.e. the removal of a food source)
and the decoupling of stored trajectories towards dif-
ferent food sources.

We then presented two techniques able to over-
come these two problems. TransSARSA is a learning
method which extends SARSA by propagating re-
ward directly along the followed trajectory and thus
adapts very quickly to environment changes. Multi-

Model learning disentangles different reward sources
by dynamically creating and destroying reinforce-
ment models, each responsible for reaching exactly
one environment state where reward was received.

Both techniques, combined with the simple
novelty-based exploration strategy employed in the
initial experiment, are able to produce the desired
agent behavior: Despite the presence of a very sim-
ple food source, the exploration strategy drives the
agent towards other food sources which are quickly
stored in dynamically created TransSARSA models.
Once the agent realizes that food sources have disap-
peared, the associated models are removed and the
remaining models allow the agent to find the remain-
ing, more complex food sources.

It is not the aim of this work to present the
best possible solution for each algorithm and com-
bine them in a highly complex environment; the
presented scenario is limited and discrete, the ex-
ploration method is not optimized to the task, the
TransSARSA learning is quick but non-convergent
and the rules for creating and destroying food mod-
els in the multi-model learning are only just sophisti-
cated enough for this scenario. However, our focus is
the analysis of the interplay of standard algorithms
and extensions thereof to produce the desired prop-
erty of ‘unsupervised self-development’. The pre-
sented scenario and algorithms allow this analysis
and thus make a step towards understanding the nec-
essary innate properties needed to reach the desired
property in the simplest non-trivial system.

Future work will focus on the application of the de-
veloped methods to interactive robotics. Especially
during phases where the robot is left to explore its
environment without tutor interaction, unsupervised
self-development is very important. When the tutor
returns, he can enforce or weaken the robot’s devel-
oped skills to shape them towards solving one specific
task – which we expect will require much less tutor
input than would be required when incrementally de-
veloping all skills.

Appendix

Quantitative Details of Visual Results

The results shown in Figs. 2, 3, 4, 5 and 6 are
computed using 100 simulation runs each with the
specified simulation parameters. The visualization
is tuned to allow an intuitive visual perception of
the relation between food reward, hunger and explo-
ration.

Food levels for the three food sources F1, F2 and
F3 are shown separately as dark, medium and light
blue lines. The value for each agent is 1 if he was
at the position(s) associated with the food source in
the last 20 timesteps and 0 otherwise, this reflects
the 1-to-20 relation in hunger level increase and de-



crease (see Sec. 2.). Hunger level is shown as a green
dashed line. Novelty level is shown as a red dot-
ted line, with a value at each timestep equal to the
sum of exploration reward given over the 20 previous
timesteps, this reflects Hmax = 20 in the learning of
the exploration model (see Sec. 4.).

All figures show means of all values, which are
computed over the values of all 100 runs of each ex-
periment. Since food and exploration values may os-
cillate rapidly within each agent, the depicted stan-
dard deviations are not computed between the global
mean and individual agents but between the global
mean and the means of 30 random 10-out-of-100 sub-
sets, thus giving an impression of how the results of
small subsets vary around the result of all agents.

References

Beaudry, E., Brosseau, Y., Côté, C., Räıevsky, C.,
Létourneau, D., Kabanza, F., Michaud, F., et al.
(2005). Reactive planning in a motivated behav-
ioral architecture. In Proceedings of the National
Conference on Artificial Intelligence, volume 20,
page 1242. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999.

Bonarini, A., Lazaric, A., Restelli, M., and Vitali,
P. (2006). Self-development framework for rein-
forcement learning agents. In Proceedings of the
Fifth International Conference on Development
and Learning, Bloomington, IN, USA. Citeseer.

Brock, O., Fagg, A., Grupen, R., Platt, R., Rosen-
stein, M., and Sweeney, J. (2005). A frame-
work for learning and control in intelligent hu-
manoid robots. International Journal of Hu-
manoid Robotics, 2(3):301–336.

Chernova, S. and Arkin, R. (2007). From delibera-
tive to routine behaviors: a cognitively inspired
action-selection mechanism for routine behavior
capture. Adaptive Behavior, 15(2):199.

Kaelbling, L., Littman, M., and Moore, A. (1996).
Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285.

Konidaris, G. and Barto, A. G. (2006). An adap-
tive robot motivational system. Lecture Notes
in Computer Science, 4095:346–356.

Lungarella, M., Metta, G., Pfeifer, R., and Sandini,
G. (2003). Developmental robotics: a survey.
Connection Science, 15(4):151–190.

Mikhailova, I., von Seelen, W., and Goerick, C.
(2006). Usage of general developmental prin-
ciples for adaptation of reactive behavior. In
Proceedings of the 6th International Workshop
on Epigenetic Robotics, Paris, France.

Oudeyer, P., Kaplan, F., and Hafner, V. (2007). In-
trinsic motivation systems for autonomous men-
tal development. IEEE Transactions on Evolu-
tionary Computation, 11(2):265–286.

Rummery, G. and Niranjan, M. (1994). On-line q-
learning using connectionist systems. Technical
report, Cambridge University Engineering De-
partment.

Schmidhuber, J. (2006). Developmental robotics,
optimal artificial curiosity, creativity, music, and
the fine arts. Connection Science, 18(2):173–
187.

Sutton, R. S., Precup, D., and Singh, S. (1999).
Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning.
Artificial Intelligence, 112:181–211.

Vijayakumar, S., D’souza, A., and Schaal, S.
(2005). Incremental online learning in high di-
mensions. Neural Computation, 17(12):2602–
2634.


