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An Adaptive Normalized Gaussian Network
and Its Application to Online Category Learning

Claudius Gläser and Frank Joublin

Abstract— In online applications, where training samples se-
quentially arise during execution, incremental learning schemes
have to be applied. In this paper we propose an adaptive
Normalized Gaussian Network model (NGnet) suitable for
incremental learning. Following a statistical account we present
a truly sequential training procedure. Key to the learning
algorithm are local unit manipulation mechanisms for network
growth and pruning which continuously adapt the network’s
complexity according to task demands. We evaluate our model
in artificial and real-world categorization tasks. Thereby, we
additionally introduce a framework for the categorization on
adaptive feature spaces. In the system, a simultaneous ex-
traction of class-discriminative features facilitates the NGnet’s
categorization of input patterns. We present simulation results
which demonstrate that the framework realizes a rapid learn-
ing from few examples, small-sized network models, and an
improved generalization ability. A comparison to incremental
support vector machine classification yields a favorable perfor-
mance of our model.

I. INTRODUCTION

Normalized Gaussian Networks (NGnets) are special types
of Radial Basis Function (RBF) networks which have been
successfully applied in the domains of function approxima-
tion [1] and classification [2], [3]. A RBF network is a feed-
forward model composed of three layers, where a radial
symmetric Gaussian function serves as activation function
for the hidden layer units. The specification of the network
complexity, i.e. the selection of the number of hidden units,
is a severe problem. Once the complexity has been deter-
mined, training is usually carried out in two stages: Firstly,
unsupervised clustering is used to position the hidden units
in the input space and, secondly, supervised learning trains
the output weights [4]. It has been further suggested to apply
evolutionary algorithms to simultaneously determine network
size and parameters [5], [6].

Nevertheless, such training schemes cannot be used for
online learning in applications where training samples se-
quentially arise. Consequently, there is a need for adaptive
algorithms capable of adjusting the network’s complexity as
well as its parameters online according to task demands.
Existing approaches to do so include Platt’s Resource Allo-
cating Network (RAN) [7] as well as its extension RANEKF
[8]. Both approaches allocate new hidden units based on the
novelty of data. However, RANEKF makes use of extended
Kalman filtering instead of the least mean squared algorithm
to update the network parameters. Minimum RAN (MRAN)
[9] further applies a pruning strategy for removing hidden
units whose contributions to the network output are small.
The GGAP-RBF network [10] introduces a measure for the
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significance of hidden units and uses it as a criterion for net-
work growth and pruning. Thereby, a neuron’s significance
quantifies the neuron’s contribution to the network output
taking all previously received input data into account.

In this paper we propose an adaptive network which
follows a thorough probabilistic interpretation of NGnets
[11]. Besides Expectation-Maximization (EM) training it
comprises local unit manipulation mechanisms for network
growth and pruning. This includes the allocation of new
units, the splitting and pruning of existing ones, and, most
importantly, the merging of similar units. Particularly the
merging of hidden units is seldom considered in existing
approaches, even though our experiments demonstrate its
significance for obtaining compact network models. We
evaluate the truly sequential training scheme for a benchmark
function approximation problem as well as artificial and real-
world categorization tasks.

We further propose a categorization framework which
additionally extracts class-discriminative features in an in-
cremental manner. These features facilitate categorization
by which faster training and smaller-sized networks can be
obtained. The feature extraction runs in parallel to the catego-
rization such that our network operates on a changing feature
space to which it continuously adapts. In our experiments
we highlight the advantage of this framework compared to
one which does not extract class-discriminative features and
particularly demonstrate the suitability of the network to
adapt to changing task demands.

The remainder is organized as follows. After introducing
NGnets as well as their probabilistic interpretation in Sec-
tion II we propose local unit manipulation mechanisms in
Section III. Next, Section IV introduces the categorization
framework. Simulation results are presented in Section V.
Finally, Section VI concludes the paper.

II. NORMALIZED GAUSSIAN NETWORK

A. Network Architecture

A Normalized Gaussian Network (NGnet) [4] can serve
as an universal function approximator. For the sake of
generality, in the following we consider the approximation
of mappings Ω : ℜN → ℜD from an N -dimensional input
space to a D-dimensional output space. Given an input y an
NGnet’s output c̃(y) is calculated according to

c̃(y) =
1∑M

j=1 φj(y)
·

M∑
i=1

αi · φi(y). (1)

Thereby, φi(y) denotes the response of the i-th hidden unit
to input y, M is the number of hidden units, and αi the
weight vector from unit i to the output neurons (see Fig. 1).
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Fig. 1. The architecture of an NGnet.

The response of a hidden unit i is described by a radial basis
function, i.e. a multivariate Gaussian of form

φi(y) = exp
(
−1

2
· (y − µi)TΣ−1

i (y − µi)
)

, (2)

where µi and Σi denote the center and covariance matrix
of the Gaussian. The hidden units consequently represent
local models (or local experts [12]) of the mapping to be
approximated. We will use these terms interchangeably.

In summary, an NGnet is similar to a standard RBF
network except for the normalization of the output by the
total hidden layer activity. The effect of this normalization
is twofold: Firstly, it results in a competition between the
units. This competition softly partitions the input space into
regions, such that each local model is responsible for inputs
stemming from its associated region. Secondly, as discussed
in [13], the normalization results in an improved inter- and
extrapolation ability compared to standard RBF networks.

B. Probabilistic Interpretation & Online Training

In [11] a stochastic interpretation of NGnets has been
proposed. Here, we will review the main aspects of this view,
since it constitutes the basis of our following analysis.

Consider a sample (y, c) to be a stochastic event for which
a single local model i is responsible. Furthermore, let each
local model be fully described by its probability density
functions (pdfs) over the input and output space [11].

p(y|i,Θ) = G(y,µi,Σi) (3)
p(c|y, i,Θ) = G(c,αi,Γi) (4)

Here, Θ = {{µi,Σi,αi,Γi}Mi=1} denotes the parameters of
the NGnet and G(x,m,S) the multivariate normal distri-
bution with mean m and covariance matrix S evaluated at
x ∈ ℜK :

G(x,m,S) =
1

(2π)K/2|S|1/2

· exp
(
−1

2
(x−m)TS−1(x−m)

)
. (5)

Under further assumptions on the competition between
local models [11], the probability that the local model i is
responsible for an input y turns out to be

p(i|y,Θ) =
φi(y)∑M

j=1 φj(y)
. (6)

Consequently, we obtain

p(c|y,Θ) =
M∑
i=1

φi(y)∑M
j=1 φj(y)

·G(c,αi,Γi) (7)

whose expectation matches the definition of an NGnet (see
(1)). Therefore, the parameters Θ of the NGnet can be esti-
mated by maximum likelihood learning on the log-likelihood
of the observed data ({y}, {c}). Online training, thus, can
be achieved by an iterative Expectation-Maximization (EM)
algorithm as proposed in [11].

III. LOCAL MODEL MANIPULATION MECHANISMS

One of the main problems when using an NGnet is the
specification of the network’s complexity, i.e. the selection
of the number of hidden units (local experts). Solving this
problem is usually done by incorporating domain knowledge.
Difficult mapping tasks will obviously necessitate more
hidden units than simple tasks. However, it is desirable to
build general purpose network models which are able to
autonomously adapt their complexity based on the problem at
hand. For an NGnet, this involves mechanisms for assigning
new local experts and removing, splitting, or merging exist-
ing ones. Furthermore, criteria for deciding when to execute
the model manipulation mechanisms have to be defined.

In previous work several methods for an incremental build-
up of an NGnet have been proposed [1], [9], [10], [14],
[15]. Some of them implement in part similar algorithms
to the ones we outline next. However, these methods usually
assume the complexity of the mapping task to be constant
over time. Consequently, they increase an NGnet’s complex-
ity until a sufficient approximation quality is achieved. In
contrast, we explicitly take into account a varying task com-
plexity and, thus, present mechanisms which continuously
adapt an NGnet’s complexity according to task demands. As
one example, we introduce the merging of experts which
turns out to be beneficial for obtaining small-sized networks
and improving generalization (see results in Section V).

A. Model Removal
Local experts with little or no contribution to an NGnet’s

approximation are redundant and should be removed. There-
fore, let p(i|yt, ct,Θ) denote the posterior probability of
assigning a sample (yt, ct) to the i-th local expert. It can
be calculated according to Bayes rule:

p(i|yt, ct,Θ) =
p(i|yt,Θ) · p(ct|yt, i,Θ)∑M

j=1 p(j|yt,Θ) · p(ct|yt, j,Θ)

=
φi(yt) ·G(ct,αi,Γi)∑M

j=1 φj(yt) ·G(ct,αj ,Γj)
. (8)

Furthermore, let ρi denote the running average over this
posterior, where η is a time constant:

ρi(t) = (1− η) · ρi(t− 1) + η · p(i|yt, ct,Θ). (9)
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It can be easily seen that ρi is proportional to the average
number of samples for which the local model i best describes
the mapping task. Consequently, ρi serves as an importance
weight for the i-th expert, such that ρi < θremove/M with
0 < θremove ≪ 1 constitutes a criterion for removing the
i-th local expert.

LetMi denote the i-th expert and M = {Mi}Mi=1 the set
of all local experts. When removing the i-th model, we also
adapt the ρj such that

∑
j ρj before and after the removal

remains unchanged, i.e.

M∗ = M\{Mi} (10)

ρ∗j =
|M|
|M∗| · ρj , ∀j with Mj ∈M∗. (11)

Here, |S| denotes the cardinality of the set S.

B. Model Assignment

A new local expert should be assigned, if a training sample
(yt, ct) is obtained which is either not sufficiently well
described by any of the existing local experts or for which
the NGnet’s approximation yields a large error. These criteria
can be expressed as follows

max
i

p(yt, ct|i,Θ) < θassign1 (12)

et > θassign2 (13)

where

p(yt, ct|i,Θ) = p(ct|yt, i,Θ) · p(yt|i,Θ)
= G(ct,αi,Γi) ∗G(yt,µi,Σi) (14)

et = [ct − c̃(yt)]
T [ct − c̃(yt)] (15)

as well as θassign1 and θassign2 being thresholds.
If any of these conditions is fulfilled, we create a new local

modelMnew, add it to the NGnet, and adapt the ρj such that∑
j ρj before and after the assignment remain unchanged:

M∗ = M ∪ {Mnew} (16)

ρ∗j =
|M|
|M∗| · ρj , ∀j with Mj ∈M. (17)

The new model can be initialized as proposed in [15]:

µnew = yt (18)
αnew = ct (19)

Σnew = min
i

(
[µi − µnew]T [µi − µnew]

N

)
· I (20)

Γnew = max
i

Γi (21)

ρnew =
1

|M|+ 1
(22)

Here, I denotes the identity matrix and N the input dimen-
sionality. In the special case of assigning the first local model,
Σnew and Γnew become initialized to some predefined Σinit

and Γinit, respectively, as well as ρnew = 1.

C. Model Splitting

If the i-th local model’s quality of approximating the
mapping task becomes insufficient, the input space region
corresponding to its receptive field should be refined and
covered by multiple experts. An insufficient approximation
quality reflects itself in a diffuse probability distribution
p(c|y, i,Θ) = G(c,αi,Γi) over the output space. Con-
sequently, the size of the Gaussian (for which |Γi| is an
indicator) is an appropriate criterion for splitting a model. In
summary, the i-th model becomes split if

|Γi| > θsplit, (23)

where θsplit is a threshold. If this criterion is met, Mi

becomes adjusted to M∗
i , a new model Mnew is created,

and finally added to the model pool.

M∗ = (M\Mi) ∪ {M∗
i ,Mnew} (24)

The splitting is done along the prominent dimension of the
receptive field, which is related to the method proposed
in [1]. Therefore, let ζn and κn denote the eigenvectors
and eigenvalues of Σi sorted in descending order of the
eigenvalues, i.e. κ1 ≥ κ2 ≥ . . . ≥ κN . The spin-off models
are initialized as

µ∗i , µnew = µi ± ξ1 · √κ1 · ζ1 (25)
α∗i , αnew = αi (26)

Σ∗
i , Σnew =

ξ2

κ1
· ζ1ζ

T
1 +

N∑
n=2

1
κn
· ζnζ

T
n (27)

Γ∗i , Γnew = 0.5 · Γi (28)
ρ∗i , ρnew = 0.5 · ρi, (29)

where ξ1 and ξ2 are constants controlling their overlap.

D. Model Merging

If multiple local models are sufficiently similar, they
can be merged to one local expert. Thereby, the similarity
depends on the overlap between the experts’ pdfs over the
input and output space, respectively. Let U(Mi,Mj) be a
function measuring the similarity between two local models
i and j with 0 ≤ U(Mi,Mj) ≤ 1, where a value of 1
corresponds to model identity and a value of 0 to total model
dissimilarity. Furthermore, let V(p(a), q(a)) be a function
measuring the overlap between two multivariate pdfs p(a)
and q(a) with 0 ≤ V(p(a), q(a)) ≤ 1. Then we define

U(Mi,Mj) = V(p(y|i,Θ), p(y|j,Θ))
·V(p(c|y, i,Θ), p(c|y, j,Θ))

= V(G(y,µi,Σi), G(y,µj ,Σj))
·V(G(c,αi,Γi), G(c,αj ,Γj)) (30)

Consequently, measuring the pair-wise similarity between
local experts reduces to calculating the overlap between
multivariate Gaussian pdfs. Fortunately, the Bhattacharyya
Coefficient (BC) provides an approximation for this. It is
defined as

BC(p, q) =
∫

a

√
p(a) · q(a)da (31)
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Fig. 2. The merging of two multivariate Gaussian distributions (dashed
lines) with importance weights ω1 = 0.75 and ω2 = 0.25 is illustrated
for the algorithms using (a) the Kullback-Leibler divergence and (b) the
Jenson-Shannon divergence.

for which a closed form solution exists in case of multivariate
Gaussians p(a) = G(a,µp,Σp) and q(a) = G(a,µq,Σq):

DB(p, q) =
1
8
· (µp − µq)

T ∗Σ−1 ∗ (µp − µq)

+
1
2
· log

|Σ|√|Σp| · |Σq|
(32)

BC(p, q) = exp(−DB(p, q)) (33)

Here, DB is called the Bhattacharyya distance with Σ =
(Σp + Σq)/2. In summary, we calculate the similarity
U(Mi,Mj) between two local models according to (30)
where we set V(p, q) = BC(p, q). If

U(Mi,Mj) > θmerge, (34)

we merge Mi and Mj to a new expert Mnew. Thereby,
θmerge is some predefined threshold denoting the maximum
overlap between local experts. The NGnet is finally adapted
such that

M∗ = (M\{Mi,Mj}) ∪ {Mnew}. (35)

The creation of the new model Mnew involves the
merging of multivariate Gaussian pdfs (G(y,µi,Σi) and
G(y,µj ,Σj) to G(y,µnew,Σnew) as well as G(c,αi,Γi)
and G(c,αj ,Γj) to G(c,αnew,Γnew)) and the determina-
tion of ρnew. The latter is set to ρnew = ρi + ρj , whereas
for the former problem multiple approaches exist.

In general, we would like to cluster K Gaussian pdfs
G(a,µi,Σi), i = 1, . . . , K (in our case K=2) and represent
the cluster by a Gaussian pdf G(a,m,S) such that

K∑
i=1

ωi ·D(G(a,µi,Σi)||G(a,m,S)) (36)

is minimal. Thereby, D denotes a measure for the divergence
between the pdfs and 0 ≤ ωi ≤ 1 weights with

∑
i ωi = 1.

In our scenario we set ωr = ρr/
∑

k∈{i,j} ρk with r ∈ {i, j}
such that important local experts dominate the merging over
unimportant ones.

Existing approaches for solving such a minimization
problem mainly differ in the used divergence measure
D. Here, two of them are of particular interest: Firstly,
Kullback-Leibler divergence-based clustering [16] and, sec-
ondly, Jenson-Shannon divergence-based clustering [17]. The
results of both approaches are exemplarily depicted in Fig. 2.

Algorithm 1 Merge Local Models
Calculate the similarity U(Mi,Mj), ∀{Mi,Mj}
{a, b} ← arg max{i,j} U(Mi,Mj)
while U(Ma,Mb) > θmerge do

Merge Ma and Mb to Mnew

M← (M\{Ma,Mb}) ∪ {Mnew}
Update the similarity U(Mi,Mj), ∀{Mi,Mj}
{a, b} ← arg max{i,j} U(Mi,Mj)

end while

As can be seen, the divergence measures result in different
clusters. More precisely, the Gaussian obtained via Kullback-
Leiber divergence-based clustering is larger than the one
obtained by Jenson-Shannon divergence-based clustering. It
is nearly the union of the individual Gaussian’s receptive
fields. Thus, Kullback-Leibler divergence-based clustering
seems to be the appropriate technique when the receptive
fields of Gaussians should be joined. However, it is inap-
propriate for joining (normalized) probability distributions,
for which Jenson-Shannon divergence-based clustering yields
better results. Since the competition between the local experts
of an NGnet overwrites the normalization of p(y|i,Θ) (see
(8)) we used Kullback-Leibler divergence-based clustering to
construct G(y,µnew,Σnew) of the new local expertMnew.
In contrast, Jenson-Shannon divergence-based clustering is
used for calculating G(c,αnew,Γnew).

In summary, the merging of local models can be done
using the greedy strategy depicted in Algorithm 1.

IV. CATEGORIZATION ON ADAPTIVE FEATURE SPACES

To incrementally learn categories during online operation,
the learning system has to continuously build up associations
between sequentially arising stimuli and category labels. The
adaptive NGnet we presented is suited to cope with this
task. However, it is desirable to additionally build feature
representations which facilitate the categorization task. Such
a feature extraction should improve over time as more
information is accumulated and, thus, has to run in parallel
to categorization. Most present approaches to online category
learning disregard this fact, insofar as they rely on a fixed
set of (predefined) features (see [3] for an exception of this).
In contrast, our system incorporates both feature extraction
and categorization (see Fig. 3 (a)) such that an input pattern
x is first transformed into its feature representation y which
is subsequently used for categorization. Both parts are sub-
ject to simultaneous incremental learning. Consequently, the
categorization is carried out using a continuously changing
feature space.

A. Category-Discriminative Feature Extraction
Our feature extraction layer is composed of two stages. In

the first stage we extract category-discriminative features by
means of Maximizing Renyi’s Mutual Information (MRMI)
[18]. Secondly, we apply Principle Component Analysis
(PCA) to obtain principle feature dimensions and perform
dimensionality reduction.

The aim of the MRMI algorithm is to learn a transforma-
tion matrixR which extracts category-discriminative features
y = R∗x. It makes use of the information-theoretic principle
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Fig. 3. The framework for the categorization using an adaptive feature
space: (a) Input samples x become transformed into feature patterns y
which are subsequently categorized. (b) The feature extraction layer is
simultaneously learned using a limited STM buffer (see text for details).

of maximizing the mutual information between the features
and category labels. Therefore, let X and C be a stochastic
input stimulus vector and its associated category label with
x(k) and c(k) being random realizations of them. The mutual
information I(Y ; C) = H(Y )−H(Y |C) with Y = R ∗X
then describes the amount of information the random feature
vector Y carries about the category C. In [18] it has been
proposed to replace Shannon’s definition of entropy H(Y )
by Renyi’s quadratic entropy H2(Y ) which can be efficiently
calculated using Parzen windows:

I(Y ; C) ∼= H2(Y )−H2(Y |C) (37)

H2(Y ) ∼= − log
1
K

K∑
k=1

G(y(k)− y(k − 1), 2σ2I) (38)

Here, G(z, σ2I) = exp(−1
2

zT z)
2σ2 ) is a Gaussian kernel

evaluated at z, where the kernel is centered at the origin
and has a diagonal isotropic covariance matrix.

Consider a training set composed of samples xj(k) as
representatives of category j where yj(k) = R ∗ xj(k).
Furthermore, let Kj denote the number of samples belonging
to category j, Kc the number of categories, and KT =∑Kc

j=1 Kj the length of the training set. Then the information-
theoretic criterion can be formulated as follows:

I(Y ; C) = − log
1

KT

KT∑
k=1

G(y(k)− y(k − 1), 2σ2)

+
Kc∑
j=1

 Kj

KT
log

1
Kj

Kj∑
k=1

G(yj(k)− yj(k − 1), 2σ2)


(39)

Consequently, R can be learned via stochastic gradient
ascent on I(Y ; C).

To perform dimensionality reduction we apply PCA on the
feature space learned via MRMI. Without loss of generality
we assume the stimuli X to be white with zero mean and
unit variance. Then the covariance of the feature vectors Y

is cov(Y ,Y ) = R ∗ RT . Let Ψ = [ψ1,ψ2, . . . ,ψN ] be
the eigenvectors of R ∗ RT and Λ = [λ1, λ2, . . . , λN ] the
associated eigenvalues. Then the principle feature component
space can be obtained by

Y = Φ ∗X = (ΨT ∗R) ∗X. (40)

The eigenvalues Λ represent the distribution of the features’
energy among each of the principle components. Conse-
quently, one can restrict feature extraction to the principle
feature components whose cumulative energy content ex-
ceeds a threshold θPCA with 0 ≤ θPCA ≤ 1. Therefore,
let the columns of Ψ be arranged such that their associated
eigenvalues are sorted in descending order and let E(k) be the
cumulative energy content among the first k principle com-
ponents, i.e. E(k) =

∑k
i=1 λi/

∑N
j=1 λj . Then we choose

Ψ = [ψ1,ψ2, . . . ,ψk] with E(k − 1) < θPCA ≤ E(k).

B. Adaptation to Changing Feature Space

In an incremental learning system the feature space
Sy (on which categorization is based on) continuously
changes. Therefore, the NGnet has to continuously adapt
its local experts, i.e. their input probability distributions
p(y|i,Θ) = G(y,µi,Σi). Since we apply a linear feature
extraction, a step-wise feature space adaptation Sy → S̃y can
be described by an affine transformation

ỹ = A ∗ y + b (41)

with y ∈ Sy and ỹ ∈ S̃y. Thereby, it is

A = Φ̃ ∗Φ−1 = Ψ̃
T ∗ R̃ ∗R−1 ∗Ψ (42)

b = 0 (43)

where Ψ,R,Φ as well as Ψ̃, R̃, Φ̃ denote the feature ex-
traction matrices before and after the training of the feature
extraction layer. Consequently, the new Gaussian pdfs under
this transformation are

G(ỹ,A ∗ µi + b,A ∗Σi ∗AT ). (44)

C. Incremental Learning Framework

Our framework for the simultaneous learning of categories
and feature representations is illustrated in Fig. 3 (b). It
makes use of a limited short-term memory buffer (STM) of
samples (x, c) which are used to train the feature extraction
layer. In summary, the incremental learning is carried out
according to the following algorithm:

Algorithm 2 Incremental Learning

Initialize the feature extraction to R = I , Ψ = I
Initialize an empty NGnet
for all training samples (xt, ct) do

Update the STM with (xt, ct)
Train the feature extraction on the entries of the STM
Adapt the NGnet to the new feature space
Calculate the sample (yt, ct)
Update the NGnet according to (yt, ct)

end for
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Fig. 4. The NGnet applied to the cross function: (a) the target function, (b) the network’s approximation, and (c) the receptive fields of the local experts.

V. SIMULATION RESULTS

To test our framework we performed simulations in the
domains of function approximation and categorization. For
the latter we further applied fixed and adaptive feature spaces.
The used parameter settings are shown in Table I.

A. Function Approximation
To illustrate the NGnets ability to incrementally acquire

local experts, we initially applied it for the approximation of
the cross function which is defined as

c = max
{
exp(−10y2

1), exp(−50y2
2),

1.25 · exp(−5(y2
1 + y2

2))
}

.
(45)

Fig. 4 shows the results of this simulation. As can be seen, the
adaptive NGnet adequately approximates the cross function.
The receptive fields of the local experts become oriented
along the dimension of minimal gradient. Furthermore, the
partitioning of the input space becomes fine-grained in re-
gions where the cross function’s gradient is high, whereas
just few experts are needed in regions where the cross
function does not change a lot. Fig. 5 plots the evolution
of the root mean squared error (RMSE) as well as the
number of local expert. The plots illustrate that the first
training samples yield a sharp increase in the number of
local models whereas the error significantly decreases. After
that, the network allocates new experts until convergence is
reached. However, even after saturation in the number of
experts, the error further decreases since experts continue to
specialize to certain input regions.

B. Categorization - Artificial Example
In a second experiment we applied the adaptive NGnet

to an artificial binary categorization problem. Therefore, we

TABLE I
PARAMETER SETTINGS USED IN THE EXPERIMENTS

Exp. η θremove θassign1 θassign2 θsplit θmerge ξ1 ξ2 θPCA

A 0.01 0.01 0.1 0.2 0.1 0.7 1 4 -

B&C 0.01 0.01 1 1 0.1 0.8 1 4 0.95
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Fig. 5. The evolution of the number of experts and the root mean squared
error (RMSE) for the approximation of the cross function.

randomly created input patterns x ∈ ℜ4 with xi ∼ N (5, 1).
The target categories of the input patterns were defined as

c = sign [x1 · x2 − x3 · x4] ∈ {−1, 1} . (46)

A test set composed of 2500 input samples was used to
calculate the categorization error. Thereby, we applied the
sign function to the continuous outputs of the NGnet to yield
a category decision. We further evaluated our frameworks
ability to simultaneously extract category-discriminative fea-
tures. Therefore, we compare the results of two simulation
runs: with and without using feature extraction.

The results are shown in Fig. 6. In (a) we can identify
three major training phases for both simulations: (1) Initially,
the number of experts increases due to the (one-shot) mem-
orization of prototypical category members. (2) After that,
the number of experts saturates since new input samples can
be sufficiently described by already memorized prototypes.
(3) Finally, the number of experts decreases to a minimum
which is maintained afterwards. In this phase, the NGnet is
able to find commonalities among the prototypes (overlap
between the experts is large) and merges them accordingly.
This results in a categorizer of minimum complexity as well
as an improved generalization ability.

The plots also show that the incorporation of feature
extraction enables our framework to find a less complex
categorizer at a much faster time scale than if we do
not extract category-discriminative features (see inset for
a zoomed plot). This is due to the fact that the extracted
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Fig. 6. The evolution of (a) the number of experts and (b) the categorization
error for the artificial categorization problem. The plots correspond to
simulation runs with and without simultaneous learning of the feature
extraction. For the test incorporating feature extraction the vertical dotted
lines indicate instances in time where feature dimensions have been pruned.
The inset in (a) shows a zoomed plot for the number of experts.

features facilitate the generalization ability of the NGnet,
since more category prototypes coincide at similar locations
of the feature space (which results in an increased overlap
between experts). The finally extracted feature f is given
by f ≈ (x1 + x2) − (x3 + x4) which is a suitable linear
approximation of the target function. Even though a less
complex categorizer is learned using feature extraction, it
yields a better categorization performance compared to not
using feature extraction (see (b)). Overall, we achieve ≈ 3%
categorization error.

C. Categorization - Letter Recognition

Next, we evaluated the categorization framework on the
Letter Recognition Data Set of the UCI Machine Learn-
ing Repository [19]. This database contains 16-dimensional
integer-type feature vectors of 20000 pixel images of the 26
English capital letters. For the following test we restricted
the set to the letters A, E, I , M , Q, U , Y which results in
training and test sets composed of 4114 and 1317 samples,
respectively. We sequentially presented training samples to
the categorization system depicted in Fig. 7 (a). We used
7 NGnets, each of them acting as a binary categorization
module for one of the letters. We further used one feature
extraction module which produces the class-discriminative
feature space the NGnets operate on.

The results of this simulation are shown in Fig. 8 where
we plot the number of experts as well as the categorization
error for each of the NGnets. As can be seen, curves similar
to the previous example are obtained: the categorization
error quickly decreases whereas the number of experts for
each module initially increases, then saturates, and finally
decreases to a minimum as the networks generalize among
their experts. However, it can be observed that some letters
are easier to categorize than others. This is exemplarily
shown for the letters I and Q. The NGnet corresponding
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Fig. 7. System architectures used for the categorization of the Letter
Recognition dataset: Either (a) a common feature space on which all NGnets
operate or (b) individual category-specific feature spaces are used.

to I remains less complex than the one corresponding to
Q throughout the training. It necessitates ≈ 500 samples
less to generalize, which is indicated by the drops in the
number of experts. Even though a less complex NGnet is
used for the recognition of an I , the performance is better
than for the recognition of a Q. These results demonstrate
the ability of our network to autonomously adapt its internal
complexity according to the difficulty of the task. It is further
shown, that the categorization task becomes easier over
time as robust class-discriminative features become extracted.
Consequently, at the end of the training we observe networks
of smaller size compared to the beginning.

Next, we applied the framework depicted in Fig. 7 (b) to
the same task. In this test each NGnet comprises an individ-
ual feature space which discriminates the corresponding letter
from all other letters. Consequently, much of the knowledge
about the categories shifts into the extracted features by
which less complex categorization modules are needed. This
is confirmed by the results shown in Fig. 9 where we compare
the average number of experts per NGnet as well as the
overall categorization error to the framework of Fig. 7 (a).
We observe a significant decrease in the size of the NGnets
whereas the error just slightly increases. Overall, we obtain
a miscategorization rate of ≈ 2-3 %.

To allow a comparison to a state of the art approach,
we further applied incremental support vector machines
(iSVMs) [20] to the letter recognition task. More precisely, 7
iSVMs have been used as binary categorizers for the single
letters. Fig. 9 plots the performance curves for two different
parameter settings of the iSVMs. The first setting was chosen
such that the categorization errors for the iSVMs and our
framework are similar. In this case, the iSVMs employ
significantly more complex classifiers (in terms of the mean
number of support vectors) than our framework. The second
parameter setting was chosen to obtain comparably complex
iSVMs. In this case, our framework shows much better
performance than the iSVMs. From this we conclude that
the use of individual feature spaces within our framework
yields a better complexity-to-error balance.
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NGnets, which carry out the recognition of single letters, are shown.

VI. CONCLUSION

Adaptive learning algorithms are essential for online ap-
plications where training samples are obtained one by one.
Here, we presented a truly sequential training procedure
for an NGnet. Key to the network model are local model
manipulation mechanisms for network growth and pruning.
Following a probabilistic interpretation of NGnets, we pre-
sented criteria and mechanisms for the allocation, pruning,
splitting, and merging of hidden units. Our simulation results
confirmed the network’s ability to autonomously adapt its
size and its parameters according to task requirements.

We further introduced a framework in which categoriza-
tion is carried out using simultaneously extracted category-
discriminative features. Our simulations showed that these
features facilitate the categorization carried out by the NGnet,
by which a faster training, significant less complex networks,
and an improved generalization could be achieved. A com-
parison to the use of incremental SVMs showed a favorable
performance of our framework.

We additionally illustrated the use of different system
configurations: categorization using a common feature space
or using category-specific feature spaces. The automatic con-
struction of suitable system configurations according to the
requirements of the task as well as a thorough performance
comparison to other existing approaches will be part of our
future work.
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