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Abstract

In this paper, we propose the application of standard
decomposition approaches to find local correlations in
multimodal data. In a test scenario, we apply these
methods to correlate the local shape of turbine blades
with their associated aerodynamic flow fields. We com-
pare several decomposition algorithms, i.e., k-Means,
Principal Component Analysis, Non-negative Matrix
Factorization and Uni-orthogonal Non-negative Matrix
Factorization, with regards to their efficiency at finding
local, relevant correlations and their ability to predict
one modality from another.

1. Introduction
The relationship between local and global structural proper-
ties is a key issue in many complex problem domains, e.g.,
visual perception, motor planning, and data mining. Meth-
ods that are capable of identifying local decompositions of
large problems, with possibly several free parameters, into
more manageable local elements, are important in order to
achieve structural robustness and generalization. Unsuper-
vised decomposition algorithms have been investigated ex-
tensively in recent years in the field of object and pattern
recognition. In many cases, they effectively aid the comple-
tion of tasks by amplifying relevant information [20], filter-
ing out noise [20], demixing and preprocessing signals [3],
analyzing data [14], or selecting proper features [10].

Decomposition approaches are capable of identifying sta-
tistically relevant correlations in high-dimensional data sets.
Hence, we can detect meaningful correlations between dif-
ferent types of data, if we apply the algorithms to a unified
data set comprising all modalities. As an example we con-
sider turbine rotor blades with various shapes and their asso-
ciated aerodynamic flow fields. Given a large set of shapes,
each one represented as a 2D binary image, decomposition
approaches can easily extract basic shape constituents re-
occurring in many of the images. Similarly, we can iden-
tify common pressure profiles representing the aerodynamic
flow field in the vicinity of a blade. However, the obtained
parts-based representations of shapes and pressure profiles
are typically not meaningful in the context of aerodynamic

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimization. This is due to the fact that the extracted basis
components of both modalities are not correlated. Nonethe-
less, applying a decomposition algorithm to a conjoint data
set comprising both modalities simultaneously, allows for
the identification of inter-modal, semantically meaningful
correlations. Also, the presence of another modality can sup-
press the extraction of functionally irrelevant, but frequently
occurring shape constituents, if the associated pressure pro-
files are uncorrelated with the occurrence of this shape prim-
itive. Hence, the simultaneous use of multimodal data in de-
composition approaches can: (i) improve the interpretability
of the extracted basis components of each single modality,
and (ii) extract functionally relevant correlations between
different modalities. To verify this hypothesis, we conducted
several experiments to compare the quality of the extracted
basis components using several common algorithms.

The paper is structured in the following way: In the next
section we provide a short review of various decomposition
approaches, namely k-Means, PCA, NMF and UNMF. Sec-
tion 3 evaluates the application of these methods to multi-
modal and high-dimensional data in a turbine blade test sce-
nario. In three studies we compare the abilities of the algo-
rithms at finding local, relevant correlations between modal-
ities and in predicting one modality from another. Finally,
section 4 discusses the results and makes some conclusions.

2. Decomposition of Multimodal Data
The starting point of all decomposition approaches is a set
of L vectors pooled in an input matrix X:

X = [x1, . . . ,xL] ∈ RM×L. (1)
Each data vector xi can be regarded as an observation of M
random variables. These random variables might represent
the pixels of an image, air pressure, joint angles, tempera-
ture or any other numeric information. If the input data con-
sists of several modalities, it is called multimodal and the
data from the different modalities are concatenated within
the vectors xi. Decomposition approaches aim for a more
compact, approximate representation of this data matrix us-
ing a small set of N < M � L meaningful components
spanning a new vector space, F:

F = [f1, . . . , fN ] . (2)
This assumes, that the data vectors xi are highly correlated
and span only a low-dimensional subspace of RM . In this



case, the basis vectors, fi, will express typical correlations
within the training set, and also correlations between differ-
ent modalities of the data. The vector space F is specialized
to compactly represent observations similar to the training
data. Expressing the data vectors xi with respect to this new
basis yields an approximation matrix R = [r1, . . . , rL] and
the coefficients of the linear combination – also known as
encodings – form an N × L matrix G. Formally, we can
restate this approach as matrix factorization:

X ≈ F ·G ≡ R, (3)

G = F−1 ·X. (4)

If F is non-square or singular, matrix inversion is not pos-
sible, but a best fit solution (least squares) can be esti-
mated utilizing Moore-Penrose pseudoinverse. To circum-
vent negative coefficients enforcing a parts-based represen-
tation, Non-Negative Least Squares [25] should be used to
determine the encodings. The accuracy of the representation
based on the basis F is measured by the reconstruction error
between the original data, X, and its approximation, R:

e = ‖X− F ·G‖2 = ‖X−R‖2 . (5)

Different algorithms are distinguished by the restrictions im-
posed on F and G. For example, NMF methods [14] con-
strain both basis vectors and encodings to non-negative val-
ues to avoid complex cancellations of features and facilitate
their interpretability. Other approaches enforce sparseness
[12][17] or orthogonality [7][4] constraints. The examined
algorithms are especially effective with uni-modal data dis-
tributions. Even if the data is composed from several modal-
ities, their distribution is not necessarily multi-modal, i.e.,
having multiple peaks. For the consideration of multi-modal
distributions please see alternatives such as Canonical Cor-
relation [11] or Linear Discriminant Analysis [9].

2.1 k-Means Clustering
k-Means clustering [18] is not a classic decomposition ap-
proach. Nevertheless, it represents observations xj by a set
of k prototypes fi resulting in an encoding, which is ex-
tremely sparse: only the coefficient associated to the nearest
prototype is equal to one. The prototypes are obtained in an
iterative process minimizing the total intra-class variance:

minVtotal =
k∑

i=1

∑
xj∈Si

(xj − fi)2. (6)

k-Means clustering does not necessarily result in optimal
partitions. Multiple executions of the algorithm or more so-
phisticated initialization approaches like in k-Means++ [2]
reduce sensitivity to the initial randomly selected cluster
seed points. Another issue of k-Means is the determination
of an adequate cluster number k. Coarsening and refine-
ment are two techniques that adapt k during clustering [18].
Relaxed forms of k-Means clustering allow associations to
several classes simultaneously and have close ties to PCA
and NMF [5] [6] [16]. In fact, Uni-orthogonal NMF has
been shown to be equivalent to k-Means clustering under
the condition GT ·G = I [7]. Some important applications

of k-Means are Voronoi tessellation [13], image segmenta-
tion [23], unsupervised classification [18] and initialization
of NMF-based decomposition algorithms [7].

2.2 Principal Component Analysis (PCA)
PCA [22] is a method of multivariate statistics that is closely
related to Singular Value Decomposition (SVD) [26]. Suc-
cessful applications of PCA are found in many fields, e.g.,
face recognition [24], gene expression analysis [26] or its
use as a preprocessing whitening step before application of
Independent Component Analysis (ICA) [3].

PCA tries to compute a new subspace, F, whose basis
vectors, fi, are pairwise orthogonal and thereby form an or-
thogonal set. These principal components point in the di-
rections of the largest variances, σ2

i . A projection into this
vector space decorrelates the input data and increases its sta-
tistical dispersion. One analytical approach to identify the
principal components is based on the eigenvalue decompo-
sition of the zero-mean input data covariance matrix C [24].

2.3 Non-negative Matrix Factorization (NMF)
Non-negative Matrix Factorization (NMF) [14] [15] is based
on the idea that for perception of the whole perception of
its parts is needed. With this in mind, the algorithm was
designed to learn parts-based representations. This is in
contrast to PCA and vector quantization algorithms like
k-Means, which learn holistic representations. Due to its
strict limitation to non-negative values, only additive com-
binations of features are possible, preventing cancellation
among elements during superposition. Lee and Seung [15]
propose multiplicative update rules for matrices F and G
to iteratively minimize either the squared error of approxi-
mation Eq. (7) or the Kullback-Leibler divergence Eq. (8).
Several variations of standard NMF have been derived to fur-
ther enhance sparseness [4][8][12][17], orthogonality [4][7]
or simultaneous clustering of rows and columns [7].

min
F≥0,G≥0

‖X− F ·G‖2 (square error) (7)

min
F≥0,G≥0

D (X || F ·G) (Kullback-Leibler) (8)

NMF does not always produce sparse, parts-based repre-
sentations. To improve the interpretability of the decom-
position results UNMF [7] imposes an additional constraint
leading to the orthonormalization of either F or G. A com-
bination of the two uni-orthogonal variants is used in Tri-
Factorization [7] to perform a bi-orthogonal 3-factor NMF.

3. Application to a Turbine Blade Data Set
To investigate the practical abilities of the presented de-
composition approaches at finding local inter-modal corre-
lations, we compare these methods exemplarily in a test
scenario using turbine blade shapes, which are of similar
complexity to the ones used in an evolutionary optimization
framework in [19]. The input to the algorithms consists of
2D blade profiles – represented as binary images – and their
associated aerodynamic flow fields – represented by pres-
sure values calculated from a simulated draft (see Fig. 1).
To simulate the fluid dynamic properties of the blade designs



(a) upper-tail blade (b) lower-tail blade

Figure 1: The training data of the first study is limited to
variations of two basic blade shapes differing in the trailing
edges. The associated aerodynamical flow fields are repre-
sented by pressure values and were calculated using CFD to
simulate a draft.

Figure 2: Color map used to visualize pressure data. Values
near zero are represented by black color, extreme negative
or positive values by blue and red respectively.

we used an in-house Navier-Stokes flow solver [1]. The set
of turbine blades comprises shapes that are not necessarily
suitable for practical application and are thus only of aca-
demic interest. Nevertheless, the performed studies show
characteristical properties of the evaluated algorithms. We
conducted three studies to compare the decomposition ap-
proaches based on their efficiency at finding local, relevant
correlations and their ability to predict one modality from
another. To visualize the pressure data we utilize an adjusted
jet color map shown in Fig. 2. It maps small absolute val-
ues to black in order to show their marginal influence in lin-
ear combinations. Larger positive and negative numbers are
mapped onto ranges of red to blue colors respectively. To
enhance perception of the inter-modal correlations, shapes
are depicted on top of the according flow fields using shades
of gray. Apart from the components of PCA, there is in-
significant overlap of form and pressure in the images. The
rows of the depicted encoding matrices show the activation
of the basis components for each training sample. The selec-
tion of basis components is not unique for all decomposition
approaches, except for PCA. Any positive monomial matrix
P that produces a (positive) scaling and permutation of basis
components results in another decomposition having identi-
cal approximation quality:

X ≈ F ·G = FP ·P−1G = F̃ · G̃ . (9)

In order to rank the basis components, fi, according to their
contribution to a reduction of the reconstruction error, we
sort them with respect to the expression ‖gT

i ‖ · ‖fi‖ where
gT

i is the i-th row vector of G corresponding to the average
contribution of fi to an approximation of the training set.

3.1 Study 1: Identifying Two Basic Blade Shapes
To verify the ability of the decomposition algorithms to
identify common constituents of a data set, the first study
considers a simple toy data set consisting of two basic blade
shapes as shown in Fig. 1. Both shapes have a common front

(a) Basis components 1 to 3. (b)

Figure 3: k-Means generates holistic, prototypical basis
components (a) with maximal sparseness in the orthogonal
encodings (b). Only one class is activated at a time.

(a) Mean vector and first two principal components. (b)

Figure 4: PCA extracts holistic, orthogonal basis compo-
nents (a). Principle components and encodings (b) have ar-
bitrary signs. Superposition of positive and negative parts.

part and only differ in their trailing edges. The data set con-
tains six small variations of each basic shape. We always
compute three basis components, although two should suf-
fice for this input data. Hence, the third component should
have much less influence on the reconstruction error than the
first two. In general, the necessary number of basis compo-
nents for a data set can be approximated by analyzing the
data variances using PCA eigenvalues.

k-Means clustering (see Fig. 3) produces prototypical ba-
sis vectors that are holistic and non-negative (due to the non-
negativity of the training data). Each basic blade form is
represented by a single basis component. The third clus-
ter centroid represents a training sample randomly belong-
ing to either of the basic shapes depending on initialization.
The basis vectors are neither orthogonal nor sparse. How-
ever, the encodings generated by k-Means are sparse and or-
thogonal in an extreme way. For every training observation
only one class is activated at a time. As depicted in Fig. 4,
PCA extracts the mean vector of the training data and the
two principle components related to the highest eigenvalues.
All three features are holistic and the two principle compo-
nents are orthogonal. The values of the encodings and the
basis vectors have arbitrary signs. The mean vector and the
first principle component are able to recreate the two basic
blade shapes by summation or subtraction resulting in can-
cellations between positive and negative parts. The second
principle component contributes to a further reduction of the
reconstruction error. NMF (see Fig. 5) is able to produce
sparse basis components or sparse encodings. If the sparse-
ness of one increases, the sparseness of the other decreases
[21]. Due to the training data presented in the first study,
NMF generates holistic basis components and sparse encod-
ings. These results take several thousand iterations of the
algorithm to manifest themselves. Before convergence the
basis components are quite similar to the results of UNMF.
The reason for this change in strategy from sparse to holis-



(a) Basis components 1 to 3. (b)

Figure 5: NMF decomposition results: holistic, non-sparse
basis components (a) and sparse encodings (b) caused by
nature of training data, limited to non-negative values.

(a) Basis components 1 to 3. (b)

Figure 6: Parts-based UNMF decomposition results: sparse,
orthogonal basis components (a), non-sparse encodings (b),
limited to non-negative values.

tic basis vectors is rooted in a reduced reconstruction error
for this specific data set that consists only of small varia-
tions of two basic blade shapes. All values of the encod-
ings and the basis components are non-negative. The first
basic blade form is approximated by two similar basis vec-
tors. The second basic blade form is represented by the re-
maining component. Figure 6 confirms that UNMF with an
orthogonality constraint imposed on the basis vectors cal-
culates sparse, pairwise orthogonal basis vectors and sparse
encodings. The basic blade shapes are constructed from a
common front part and a higher or lower tail. Correlations
between the two modalities, shape and aerodynamical flow
field, can be seen clearly in Fig. 6. A noticeable detail is that
the flow field area above the front, upper surface of the blade
shape is independently represented by the second and third
basis components, instead of employing the common first
feature. Closer inspection reveals that indeed this pressure
area slightly differs for both blade shapes.

3.2 Study 2: No Shape Restrictions
In the second study, we appraise functional components that
emerge from turbine blades without any form restriction. In
order to cover a higher variance of blade shapes we gener-
ate 250 diverse observations consisting of both modalities,
shape and pressure. The turbine blades are deformed and
thus only of academic interest. Figure 7 shows some of the
training samples. We extract subspaces spanned by 5, 10,
20, 35 or 49 basis components. The variation of the num-
ber of basis vectors allows us to analyze the reconstruction
errors more detailed. Additionally, we form a test data set
comprising 65 different observations to measure the ability
to generalize and represent novel though similar data.

The results of k-Means clustering are very similar to those
of the first study. The basis components are prototypical and
the encodings maximal sparse. The ability to generalize is
limited to the selection of the nearest cluster centroid. The

Figure 7: Some observations of the highly variable training
data used in study 2. No shape restrictions are imposed.

(a) Representative holistic and sparse basis components.

(b) Sparse encodings matrix.

Figure 8: Three out of 20 basis components (a) calculated
by NMF on 250 observations and encodings (b).

holistic principal components of PCA accomplish very small
reconstruction errors, but are difficult to interpret due to pos-
itive and negative values. The orthogonal basis components
of UNMF have a big variance in locality. Some features
mainly represent inner parts of blade shapes without any
defining influence on the flow fields. This leads to zero acti-
vation in the associated pressure modality. Other basis vec-
tors have significant activation in over 30 % of the pressure
pixels. The increased sparseness in some basis components,
especially in the pressure modality, could be the reason for
the poor reconstruction of the training data set. NMF shows
fundamental changes in comparison to the first study. For
this data set most basis components and the encoding ma-
trix are sparse. Figure 8 depicts three representative basis
vectors and the encodings calculated by NMF. The first il-
lustrated component represents a holistic basic shape and its
associated flow field. The second feature shows an interest-
ing correlation between the lower, frontal surface and the
pressure profile above the turbine blade and the third image
displays a basis vector focusing mainly on a single modal-
ity, the pressure profile. All NMF runs show qualitatively
similar components, independent of their number.

Figure 9 illustrates the approximation of one training sam-
ple by NMF. The three most activated basis components are
those visualized in Fig. 8. The absolute difference between
the original data and its reconstruction highlights the areas
that could not be represented adequately. As can be seen
from Tab. 1(a) and 1(b), the normalized mean squared re-
construction error,

NMSE =
1
L

L∑
i=1

‖xi − ri‖2

‖xi‖2
, (10)

decreases for all methods uniformly, if the number of avail-
able basis components (BC) is increased from 5 to 49. Fur-
thermore, it is shown that the subspace trained on the ob-
served data is able to represent the novel though similar test



(a) Original, encodings, reconstruction, absolute difference.

Figure 9: Reconstruction of a single training observation.
Compare Fig. 8 for the three most activated features.

(a) Original, encodings, reconstruction, absolute difference.

Figure 10: Encodings calculated only on pressure and then
used to reconstruct the missing shape modality.

data set. However, in this generalization test the reconstruc-
tion errors are slightly higher. We also evaluated the im-
pact of multimodality on the reconstruction error. To this
end, Tab. 1(c) compares the error values obtained from sep-
arate decomposition of both modalities and subsequent ac-
cumulation of the individual errors (column “Sep.”) with
those reconstruction errors obtained from joint decomposi-
tion of both modalities (column “Com.”). If the basis com-
ponents need to represent several modalities, the length of
the observation vectors increases, which makes it more dif-
ficult to identify similarities and extract features. This leads
to slightly higher reconstruction errors as a trade-off for
the learned correlations. Regarding the reconstruction error,
PCA performs best. It is closely followed by NMF, whose
relative generalization ability is unmatched. UNMF is worse
than k-Means in approximation of the observed training data
due to the unused pressure modality in some features, but
it outperforms the clustering method in reconstruction of
the novel test data set. For all evaluated algorithms we find
that the multimodality of the data slightly degrades recon-
struction performance. Additional constraints such as non-
negativity or orthogonality further increase the reconstruc-
tion error. Nevertheless, these factors render it possible to
extract more meaningful features and to find local correla-
tions between modalities, which increase the quality of the
basis vectors, i.e., their relevance and interpretability.

3.3 Study 3: Reconstruction of Missing Modalities
In the final study, we focus on the ability to reconstruct miss-
ing modalities based on the inherent correlations between
the components’ subparts. This means that the subspaces
comprising 49 basis vectors computed for the second study
on 250 observations are used to represent novel test data
consisting of only shape or pressure information. The ba-
sis vectors are specialized to represent turbine blades. To
project the test observations into the spanned subspace, we
utilize the Moore-Penrose pseudoinverse. The procedure
might introduce some negative encodings, because the least

(a) Study 2 (b) Study 2
Approach Observed Data Test Data

5 10 20 35 49 5 10 20 35 49
K-Means 52 36 29 23 21 87 88 78 78 77

PCA 38 28 19 13 10 74 53 44 38 34
NMF 40 31 22 17 15 74 59 48 38 36

UNMF 54 46 45 40 40 82 71 70 59 53

Approach
(c) Study 2 (d) Study 3

Observed Data Test Data Test Data
Sep. Com. Sep. Com. PR SR

K-Means 19 21 70 77 80 104
PCA 9 10 32 34 38 57
NMF 13 15 32 36 51 71

UNMF 24 40 40 53 84 156

Table 1: Study 2: Normalized mean squared reconstruction
errors (NMSE) for observed (a) and test data set (b) against
number of basis components (BC). (c): 49 BC, Sep.: sepa-
rate decomposition of modalities, Com.: combined decom-
position of modalities. Study 3: Reconstruction of missing
modalities (d), PR: pressure reconstructed, SR: shape recon-
structed. Values scaled by factor 103.

squares solution for the linear combination is not restricted
to non-negative contributions. However, this does not pre-
vent the estimation of missing modalities, when we use the
encodings gained from the first step to reconstruct all modal-
ities, including the previously neglected ones. If the test data
set is similar to the training observations used to calculate
the features, the missing information is approximated suc-
cessfully. Figure 10 depicts the reconstruction of a missing
shape modality for a novel test observation. The reconstruc-
tion errors for the approximation of missing modalities can
be seen in Tab. 1, section (d). “PR” stands for pressure re-
constructed. This means that the encodings were estimated
solely on the shape information and then used to reconstruct
form and pressure. “SR” describes the counterpart: shape
reconstructed. The encodings are calculated using only the
flow fields and then utilized to estimate both modalities, in-
cluding the former missing shape. In this study PCA ex-
cels due to its strong capability to find correlations. NMF
performs second best, representing a good compromise be-
tween interpretability and reconstruction quality. UNMF
outperforms k-Means in reconstructing aerodynamical flow
fields, due to k-Means’ lack of flexibility caused by its lim-
itation to only select the nearest cluster mean. On the other
hand, UNMF struggles approximating missing shapes, be-
cause of some basis components having “empty” pressure
modalities, which are not suited to calculate the needed en-
codings. In this case, even k-Means results in smaller re-
construction errors. Nevertheless, the decomposition algo-
rithms are able to approximate missing modalities success-
fully within a sufficiently small error margin. A practical
application could be the generation of new design concepts
by combining different local contributions to form a desired
global flow field and reconstructing the associated shape
primitives accordingly. If the result is too inaccurate, the



number of basis components could be increased or the train-
ing data adapted. The calculated form could be a starting
point for further analysis by an engineer.

4. Conclusion
In this paper, we have proposed the application of standard
decomposition approaches to find local correlations in mul-
timodal data. In a test scenario, we applied these methods to
correlate the local shape of turbine blades with their associ-
ated aerodynamic flow fields. We compared the decomposi-
tion algorithms with regards to their efficiency at identifying
local, relevant correlations and their ability to predict one
modality from the other. For the evaluated algorithms we
found that the multimodality of the data and additional con-
straints such as non-negativity or orthogonality can improve
the algorithm’s ability to extract meaningful basis compo-
nents with a trade-off of a small decrease in the reconstruc-
tion performance. With regards to the reconstruction error,
PCA performs best, because it decorrelates the input data
and increases its statistical dispersion. Both NMF-based ap-
proaches revealed an interesting inter-modal correlation be-
tween a shape feature on the lower side of the blades and the
aerodynamical flow field on their upper side. Furthermore,
it was possible to predict one modality from the other, which
is evidence for the learned inter-modal correlation and might
turn out to be useful in design optimization processes. New
design concepts could be generated by combining different
local contributions to form a desired global flow field and
selecting the associated shape primitives accordingly. Also,
interchangeable local features might be identified that have
similar influence on the air flow but have different shapes.
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