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Abstract— Newly emerging, highly complex Advanced Driver
Assistance Systems (ADAS) fuse the output of various system
modules (e.g., lane detection, object classification). Such knowl-
edge fusion is realized in order to gain additional information
of the environment allowing for complex system tasks as path
planning, the active search for specific objects and task-specific
analysis of the environment. As part of our previous work, we
realized a highly generic type of such ADAS using biological
principles. The present contribution offers a novel approach for
the detection of curbstones and elevated roadsides in inner-city
that relies on biological principles taking inspiration from the
human neural signal processing. The gathered results can be
fused to an ADAS in order to improve the quality of various
other system percepts and allow additional system tasks.

Keywords: curbstone detection, driver assistance, robust

path identification, lane detection

I. INTRODUCTION

Following the significant progress in computer hardware

combined with its decreasing costs, a new class of driver

assistance systems has emerged. These so-called Advanced

Driver Assistance Systems (ADAS) typically combine nu-

merous system modules into highly interlinked system ar-

chitectures that allow for complex system tasks, as path

planning or active collision avoidance (see, e.g., [1], [2]).

Typically these system architectures are rather static in

terms of possible system tasks and supported environments.

Different from that, in our earlier work a dynamic, task-

dependent tunable ADAS was developed (see, e.g., [3], [4])

that relies on biological principles. Among other things this

system comprised a subsystem for marked and unmarked

road detection, an environmental map as well as a generic

image preprocessing stage for the detection of basically any

object class. As part of this human-like ADAS, a subsystem

for the detection of curbstones and elevated roadsides was

developed that relies on biological principles. This system

will be described and evaluated in this contribution.

In general, a robust approach for the detection of curb-

stones and elevated roadsides would improve various other

system percepts in an ADAS (e.g., in a more precise environ-

mental map a pedestrian could be assigned to the sidewalk,
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The system presented in this contribution was realized as part of the Ph.D.
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the vision processing could be guided to suspicious objects

near the detected roadside, a precise localization in a digital

map would be possible). Furthermore various system tasks

in inner-city become possible (improvement of autonomous

parking maneuvers, improved collision avoidance in inner-

city or more precise analyzation of intersections).

As the following Section 2 will show, only few dedicated

approaches for curbstone and elevated roadside detection

exist that mainly suffer from different limitations. Most of

them rely on a single sensor approach, disregarding the full

potential of sensor fusion. As opposed to that, the approach

described in Section 3 relies on the fusion of different sensor

modalities using biologically inspired methods. In Section 4

the capabilities of the proposed approach are assessed, after

which the contribution is summarized.

II. RELATED WORK

Only few dedicated approaches for the detection of curb-

stones and elevated roadsides exist. Typically these ap-

proaches rely on a single sensor for the generation of 3D

data. Based on this 3D data a height map of the environment

can be generated and suspicious edges are detected and

refined.

More specifically, in [5] a laser scanner is used to derive

3D data of the environment. The derived differences in height

of neighboring scan points are thresholded, filtered and a line

model is fitted. The laser scanner used in this application

is marked by a relatively low frame rate, which restricts

the maximum supported velocity. Furthermore, the range of

robust detection of curbs is restricted due to the growing

influence of noise with increasing distance to the ego vehicle.

Another more sophisticated approach is presented in [6].

For generating dense 3D data, a stereo camera setup is used.

The authors propose the computation of a so-called Digital

Elevation Map (DEM), which is a height map of the scene as

viewed from above. On the DEM, an edge detection, filtering

and spline fitting is realized. Although the presented DEM

is very noisy, the gathered results appear to be robust. As

the presented results show, only curbs that are near to the

vehicle can be detected. This is due to the growing influence

of inaccuracies (e.g., the quantization error) with increasing

distance to the ego vehicle (see [7] for a comprehensive

treatment of this issue).



Other approaches fuse different sensor outputs in order

to improve the detection robustness. For example, in [8]

a laser sensor is combined with a monocular camera. The

single-layer laser sensor is used to detect the position where

the curbstone cuts the sensed layer. This point is used as

starting point for the image processing. More specifically,

a static edge detector is applied starting from the laser-

sensed curbstone. Since, in some cases the appearance of

curbstones only slightly differs from the road (i.e., virtually

no edge is present in the captured image) this approach

is marked by a restricted robustness. Another multi-sensor

approach is described in [9]. Here stereo data and vision data

is fused using probabilistic methods. The described approach

realizes a late fusion of the road detection results of all

present sensors. More specifically, curbstones are detected

by specific edge filters and elevated roadsides by the stereo

sensor. No early information fusion between the detection

results takes places, limiting the achievable performance gain

from sensor fusion.

Newly emerging multilayer laser scanners offer novel pos-

sibilities for the detection of curbstones and road boundaries,

since such sensors combine high frame rates with a high

accuracy 3D scan (see e.g., [10] for typical high precision

applications of such sensors). However, it is important to

note the relatively high costs of this sensor type.

As opposed to that, stereo cameras are getting affordable

and technologically sound (e.g., robust solutions for cali-

brating the cameras exist) and require a comparatively low

amount of space in the vehicle. Still, as described above

sufficient accuracy for curb detection can only be gained

in the first few meters from the ego-vehicle. To solve this

dilemma, our contribution proposes a specific fusion of 3D

and vision data. Vision data is marked by its high information

density. The vision-based detection of curbstones and lane

borders is possible even at large distances. Still, curbstones

and lane borders can have various appearances, which makes

the design of a generic appearance-based model difficult.

As described in the following, in the here proposed system

stereo data is used to detect curbstones near the vehicle. At

greater distances a complete switch to vision takes place.

The detection result of the stereo cue is used to adapt a

vision template of the present curbstone/elevated roadside,

while relying on biologically inspired approaches for signal

processing.

III. SYSTEM

The proposed overall system concept for the adaptive

detection of curbstones and elevated roadsides is depicted in

Fig. 1. After giving a rough overview of the major processing

steps, all system modules are described in detail.

The proposed system consists of two major parts. First a

stereo-based detection step, second a vision-based detection

step that is initialized and modulated by the results of the

first. The stereo-based curbstone detection relies on dense 3D

data coming from a stereo camera setup. Based on that, a

specific height map (the so-called Digital Elevation Map) is

computed and temporally integrated in order to reduce noise.
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Fig. 1. System architecture.

On this thereby extended Digital Elevation Map, a specific

biologically motivated edge filtering is applied resulting in a

robust curbstone detection up to a distance of 9 meters from

the vehicle. Based on the stereo detection result a vision

template of the roadside is generated and adapted. Using this

template, the course of the roadside is detected via means of

computer vision. The second detection step stops, when the
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Fig. 2. Dense 3D world positions for all image pixels based on stereo.

statistical properties of the road and nonroad area (on both

sides of the road) change abruptly. This change typically

marks an erroneous vision-based curbstone detection far in

the distance or an object that occludes the roadside.

In the following, all system modules are described in de-

tail. The system uses pairs of color images of 400x300 pixels

captured by a stereo camera setup mounted in the car as input

information. After an image undistorsion and rectification

step (see [11]) as well as a transformation into grayscale, a

dense disparity D(u, v) is computed using correspondence

search with a probabilistic matching algorithm (see [12] for

details). Based on the disparity image the 3D world position

for all image pixels can be computed using:

Zstereo(u, v) =
fuB

D(u, v)
+ t3 (1)

Ystereo(u, v) =
Z(v − v0)

fv

+ t2 (2)

Xstereo(u, v) =
Z(u − u0)

fu

+ t1. (3)

With: B... basic distance between cameras principal point

fu, fv ... normalized focal length [in pixels]

D(u, v)... disparity

u0, v0... principal point of the left camera

t1, t2, t3... translational camera offset.

Please refer to Fig. 2 for a visualization of the used dense

stereo data and Fig. 3b for the here applied coordinate

system. In the following step, the stereo maps Zstereo(u, v),
Ystereo(u, v), Xstereo(u, v) are unrectified (i.e., the prior recti-

fication before disparity computation is neutralized) to make

them comparable to the input image in terms of pixel posi-

tion. Now, the Digital Elevation Map (DEM) is computed,

which is a metric height map of the scene as viewed from

above (see [13] for details). However, as dedicated testing has

revealed, the plain DEM is too noisy for a direct elevation

edge detection (see Fig. 4c). Therefore different from [13]

and hence as a novel approach a temporal integration pro-

cedure is applied on the DEM. More specifically, based on
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Fig. 3. (a) Visualization of the bird’s eye view, (b) Coordinate system and
position of the camera (car is heading in Z-direction).

a single track model that uses the vehicle velocity and yaw-

rate from the CAN bus, the longitudinal and lateral vehicle

motion as well as yaw angle is estimated. Furthermore,

from the left camera image a bird’s eye view representation

(see [14] for background information) is computed for all

input images. The bird’s eye view (BEV) is a metric rep-

resentation of the scene as viewed from above that results

from remapping the gray scale input image (see Fig. 3a and

4b). Using the BEV of the current and previous image the

motion of the vehicle is computed using Normalized Cross

Correlation (NCC). In order to reduce the computational

costs of the NCC, the estimated motion of the vehicle from

the single track model is used to define an anchor point for

the correlation template in the current BEV. Based on this

procedure, the vehicle motion of the previous 10 time frames

is determined and stored. The DEMs of the previous 10 time

frames are shifted accordingly and superimposed resulting in

the integrated DEM (iDEM). As Fig. 4d shows the iDEM is

marked by much less noise as the DEM in Fig. 4c (see [15]

for technical details on the temporal integration procedure).

Finally, on the iDEM an elevation edge detection is

realized. More specifically, odd Gabor filters of the orien-

tations 45, 90 and 135 degree are applied on three scales

for reducing the computational costs, while allowing the

detection of different edge widths. For that, on the iDEM a

three level Gaussian image pyramid is computed. The applied

Gabor filters are biologically motivated image filters that

were shown to exist in the vision pathway of the mamal

brain (see [16] for the biological and [17] for a theoretical

background on this filter type). For the right/left roadside

odd Gabor filters with off-on/on-off contrast type selectivity

are used (refer to Fig. 5 and 4e for an example and [18] for

technical details on this specific decomposition technique for

Gabor filters). By decomposing the Gabor filters, a simple

and effective way for side-specific filtering of elevated edges

on the right and left roadside becomes possible.

Dedicated evaluation has shown that (for our camera

setup) from a distance of about 9 meters on a curb detection
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Fig. 4. Exemplary inner-city scenario (visualization for right curbstone
only): (a) Captured image with detected right curbstone (blue line: stereo-
based, green line: vision-based), (b) Bird’s eye view, (c) DEM, (d) Temporal
integrated DEM, (e) Odd Gabor off-on filtered.

(a) 90° Odd Gabor on−off (b) 90° Odd Gabor off−on

Fig. 5. Application of 0 degree odd Gabor filter kernels on simplified road
border images: (a) Kernel for on-off contrasts (left road border), (b) Kernel
for off-on contrasts (right road border).

on stereo starts to get noisy and cannot run robustly. There-

fore, stereo is used as cue for roadside detection for the first

9 meters distance from the vehicle only.

As stated by [16], also psychophysical evidence exists that

marks stereo as the primary depth cue of the human for the

first few meters only. After that other (monocular) vision

features take over. In accordance to that, the processing is

switched to vision-based edge detection. More specifically,

the last stereo-based elevation edge measurement is used

to adapt a vision template using the data of the left color

image. After a prediction step (a segment-wise linear line

model is applied) the template is used to verify and correct

the real position of the roadside using NCC. In case of

a low NCC value a probabilistic crosscheck is done. For

that 5 vision cues are computed on the left color image:

the hue and saturation channel of the HSI color space, as

well as the edge density on the hue, saturation and intensity.

All 5 features have been shown to be robust cues for un-

marked road detection (see [7] for technical details on these

features). In order to determine, if a vision-based detected

roadside segment is valid, image patches left respectively

right of the roadside segment (subsequently called “road

patch” Proad and “nonroad patch” Pnonroad) are compared to

their template counterparts Troad and Tnonroad. The named

templates are derived from the valid roadside region that

was previously determined using the DEM. The comparison

between the road/nonroad patches and their templates is

realized by applying the distance measure δ(Pk, Tk) with

k ∈ {road, nonroad} that is based on the Bhattacharya coeffi-

cient γ(HPk

i ,HTk

i ) (a measure for determining the similarity

between two histograms) calculated on the histograms HPk

i

and HTk

i of the image patches of all N = 5 vision cues:

δ(Pk, Tk) =

N
∑

i=1

√

1 − γ(HPk

i ,HTk

i ) (4)

γ(HPk

i ,HTk

i ) =
∑

∀u,v

√

HPk

i (u, v)HTk

i (u, v).

In case δ(Pk, Tk) is bigger than the maximum distance

between all previously found (valid) DEM road/nonroad

patches, the newly found roadside segment is invalid and

the algorithm stops. A big distance δ(Pk, Tk) can result from

a detection error (typically happening far in the distance) or

from an object that occludes and interrupts the roadside. The

thereby gathered information can be used in our biologically

motivated ADAS to guide the attention. In case the roadside

is interrupted in the vicinity of the camera-carrying ego-

vehicle, the attention system could be set to analyze the

specific image region more closely in order to rule out a

potential danger coming from a so far unknown object on

the road.

In the following, an abundant evaluation of the described

algorithm will allow the assessment of its capabilities and

robustness.

IV. RESULTS

With [7] a robust unmarked road detection system for

inner-city application was presented. Based on that, [15]

describes a temporal integration system for unmarked road

detection results. More specifically, in [15] road patches

detected by systems as [7] are shifted according to the

vehicle ego-motion, overlaid, and thresholded in order to

gather more robust temporally integrated road segments.

Since the analysis of the remaining road detection errors in

the results of [15] has shown that in challenging situations

the curbstone can be surpassed by the detected road segment,

we extended the system and added the here presented curb

detection system as final postprocessing step. More specif-

ically, all road segments surpassing the detected curbstones

were corrected (clipped). In order to evaluate the benefit

of the here presented system, we used an inner-city stream

(210 images with hand-labeled groundtruth) and the same

evaluation methods as in [15]. The evaluation was realized on



road detection results with and without temporal integration

of road segments. For the evaluation we hence adopt the

following Equations:

Completeness =
TP

TP + FN
(5)

Correctness =
TP

TP + FP
(6)

Quality =
TP

TP + FP + FN
. (7)

The Equations define different groundtruth-based mea-

sures, which were taken from [19] (with pixels being True

Positive (TP), False Negative (FN), False Positive (FP)).

On a descriptive level, the Completeness states, based on

given ground truth data, how much of the present road was

actually detected. The Correctness states how much of the

detected road is actually road, in order to avoid classifying

all pixels as road leading to a Completeness of 100%.

The Quality combines both measures, since between the

Completeness and Correctness a trade-off is possible. Based

on this, the Quality measure should be used for a comparison,

since it weights the FP and FN pixels equally. For a more

detailed analysis, the Completeness and Correctness can be

evaluated and thereby determining what exactly caused a

difference in Quality.

Road detection # test Correct- Comple- Quality
approaches images ness teness

System [7] without 210 83.9% 77.1% 66.4%
temp. integ. of
road segments

Curbstone postproc., 210 95.8% 76.7% 73.7%
without temp. integ.
of road segments

System [15] with 210 80.2% 88.7% 72.3%
temp. integ. of
road segments

Curbstone postproc., 210 94.9% 88.1% 83.8%
with temp. integ.
of road segments

TABLE I

EVALUATING THE INFLUENCE OF DETECTED CURBSTONES ON

UNMARKED ROAD DETECTION RESULTS WITH AND WITHOUT

TEMPORAL INTEGRATION.

As Tab. I shows using the curbstone detection results in

a postprocessing step improved the detection Quality from

66.4% to 73.7% (without applying temporal integration)

respectively from 72.3% to 83.8% (with applying temporal

integration). When analyzing Tab. I more closely, it can

be perceived that postprocessing with curbstone detection

results lowers the Completeness by a small extend. For

both cases the Completeness is diminished: without tempo-

ral integration (from 77.1% to 76.7%) and with temporal

integration (from 88.7% to 88.1%). More specifically, that

means that some true-positively detected road segments

were falsely corrected and hence clipped by applying the

curbstone detection results. Still, the postprocessing step

Frame 87

(a)

(f)

(e)

(d)

(c)

(b)

Frame 123Frame 96

Fig. 6. Typical frames of inner-city stream: (a) Captured images with
detected right curbstone (blue line: stereo-based, green line: vision-based),
(b) Hand-labeled groundtruth road segments, (c) Detected road without
temporal integration, (d) Incorporating curbstone detection result (without
temporal integration), (e) Detected road with temporal integration, (f)
Final detection result: Incorporating curbstone detection (with temporal
integration)

corrects more false-positive pixels than it falsely corrects

true-positive ones. For both cases the Correctness grows:

without temporal integration (from 83.9% to 95.8%) and

with temporal integration (from 80.2% to 94.9%). Summing

up, the Correctness is overproportionally improved leading

to the measured significant increase in Quality. In order to

facilitate the empirical assessment of the gathered results, in

Fig. 6 some typical frames of the used inner-city stream are

depicted.

For our experiments we use a Honda Legend prototype car

equipped with a mvBlueFox CCD color camera from Matrix

Vision delivering images of 800x600 pixels, which are re-

sized to 400x300 for the referenced ADAS sub-modules. The

images are grapped with 10Hz, which is hence the processing

rate our road detection module has at least to reach. The

image data as well as the vehicle state data from the CAN bus

is transmitted via LAN to several Toshiba Tecra A7 (2 GHz



Core Duo) running our RTBOS integration middleware [20]

on top of Linux. As most of the system’s sub-modules

are already part of our ADAS running in real-time (e.g.,

stereo computation, bird’s eye view, temporal integration

architecture, single track model), we expect the remaining

currently Matlab-implemented sub-modules to fulfill real-

time requirements also.

V. SUMMARY

The paper describes a biologically inspired approach for

detecting curbstones and elevated road borders. More specif-

ically, image filter kernels were applied that are known

to exist in the human vision pathway. Also a human-like

multi-sensor fusion between stereo and various other vision

cues is applied that allows the online adaptation of a road

border respectively curbstone model. As a novel approach,

our system applies a temporal integration step on the digital

elevation map (DEM) for diminishing noise and increasing

the range for stereo-based curbstone detection.

An incorporation of the presented system into the ADAS

described in [3] would enhance its robustness (e.g., improve-

ment of the environmental model) and would furthermore

offer additional possibilities to modulate the system behavior

(e.g., focus attention to image locations of abruptly ending

curbstones).
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