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Chapter 1

Dynamic Visual Motion Estimation

1.1 Introduction

Visual motion is the projection of scene movements on a visual sensor. It is a rich source of information
for the analysis of a visual scene. Especially for dynamic vision systems the estimation of visual motion
is important because it allows to deduce the motion of objects as well as the self-motion of the system
relative to the environment. Therefore, visual motion serves as a basic information for navigation and
exploration tasks, like obstacle avoidance, object tracking or visual scene decomposition into static
and moving parts.

Despite many years of progress, visual motion processing continues to puzzle the mind of researchers
involved in understanding the principles of visual perception. Basic aspects such as measuring motions
of spatially local entities have been widely studied. But what is most striking about motion processing
is its temporal dynamics. This is obvious, because the environment perceived by a visual observer like
a video camera or the human eye is highly dynamic. Moving objects enter and leave the field of view
and also change the way they move, e.g. change the direction or speed. Hence, suitable assumptions
about the dynamics of the visual scene and about the correlations between local moving entities are
beneficial for the estimation of the scene motion as a whole.

Probabilistic machine learning techniques have become very popular for early vision problems like
binocular depth and optical flow computation. The reason for that popularity is because of the pos-
sibility to explicitly consider inherent uncertainties in the measurement processes and to incorporate
prior knowledge about the state to be estimated. Along this line of argumentation, we present a
general approach to visual motion estimation based on a probabilistic generative model that allows
to infer visual motion from visual data. We start with a definition of visual motion and point out the
basic problems that come along with visual motion estimation. Then, we summaries common ideas
that can be found in different state-of-the-art optical flow estimation techniques and stress the need for
taking uncertainty into account. Based on the ideas of already existing models we introduce a general
Bayesian framework for dynamic optical flow estimation that comprises several different aspects for
solving the optical flow estimation problem into one common approach.

So far, the research on optical flow has mainly concentrated on motion estimations using the
observation of two frames of an image sequence isolated in time. Our main concern is to stress
that visual motion is a dynamic feature of an image input stream and the more visual data has been
observed the more precise and detailed we can estimate and predict the motion contained in this visual
data. Therefore both motion prediction and observation integration should be explicitly modeled in
an inference procedure for optical flow estimation. Recently - because of the development of efficient
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Figure 1.1: How a moving object, e.g. a car, is projected onto a surface.

loopy belief propagation algorithms - Markov Random Fields regained great popularity to impose
smoothness priors on motion measurements. On the contrary side, a way to impose consistent priors
that has not been paid much attention lately is to treat the motion estimation as a dynamical system,
like in Kalman-Filter approaches, to propagate motion information along time or scale assuming
smoothness along the time or scale dimension.

In this chapter, we propose to fuse both ideas - spatial smoothness and smoothness along time
and scale - into one common predictive prior model. This allows the formulation of a probabilistic
dynamical system to infer visual motion via spatiotemporal belief propagation. The main contribution
is the proposal of a certain class of transition probability functions which satisfy a probability mixture
model and allow for temporal prediction along with spatial smoothing. For this class of transitions
combined with additional factorization assumptions and approximate inference techniques it is possible
to get a computationally tractable probabilistic optical flow filter. To show the capability, the benefits,
and the drawbacks of the framework, we derive two realizations: one for continuous Gaussian and
one for discrete grid-based observation likelihoods as well as Mixture of Gaussians and Mixture of
Student’s-t-distributions transitions.

1.2 Problems of optical flow computation

1.2.1 Visual motion

If we move or if objects move through our field of view then the projection of the environment onto
the retina of our eyes changes. The projections over time form patterns of spatiotemporal brightness
changes that encode the movement of the projections called the visual motion [14]. This matter of
fact has motivated researchers from diverse areas like psychology of perception, visual neuroscience
or computer science to understand the principles and model the mechanisms behind visual motion
estimation.

More technically spoken, image sequences captured from a camera stream are mappings from the
three-dimensional world onto a two-dimensional light-sensing surface - usually a digital camera-chip -
over time. The image brightness I(x,t) at each spatial position x = (1 z2)? at a particular time ¢
(or over some interval of time) is a measurement how much light fell on the surface. When an object
in the world moves relative to this projection surface, the two-dimensional projection of that object
moves within the image sequence. The movement of the projected position of each point in the world
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refers to a velocity vector v(x,t) = (v; v2)” and the set of all these vectors is called the motion field
[24]. Figure 1.1 shows a sketch of the relations just explained.

1.2.2 Brightness constancy assumption

As mentioned beforehand, the motion field can be estimated using spatiotemporal brightness patterns.
In principle, the quality of any estimation problem depends on the unambiguity of the relation between
the observed data and the state to be infered [15]. In our case this is the relation between the observed
spatiotemporal brightness and the motion field. The basic approach to visual motion estimation
assumes constant brightness during the time brightness is measured [11]. This assumption implies
that changes in brightness can only be caused by translational movements of the projections onto the
image surface with constant velocity. Using the brightness constancy assumption the relation between
the brightness I(x,t) of an image pixel at position x at time ¢ and the corresponding velocity vector
v(x,t) during the time interval At reads

I(x + v(x, )ALt + At) = I(x,1). (1.1)

If the time interval At is sufficiently small then the left side of equation (1.1) can be approximated
via a first order Taylor series [23] as follows

aI(x, )
ot

Here, VxI(x,t) = (0I(x,t)/0x1,0I(x,t)/0x2) denotes the spatial brightness gradient and 91(x,t)/0t
the temporal derivative of the spatiotemporal brightness pattern. Both equations (1.1) and (1.2) are
ill-posed problems because they cannot be solved for the velocity unambiguously. Further more, the
displacement vAt is only an approximation to the true visual flow, called the optical flow [4], because
the brightness could also change due to changes in the lightning conditions. Nevertheless, if there is
(i) constant illumination during the time interval At (ii) perpendicular projection of the reflected light
onto the image surface and (iii) purely translational motion of the object parallel to the image surface,
then optical flow is equivalent to the true motion field [4]. There are further approaches to optical
flow computation like the phase-based approach which describes flow in fourier domain. A detailed
description of all the different methods as well as exhaustive comparisons can be found in [3].

Vil (x,t)v(x,t) + =0. (1.2)

1.2.3 Motion ambiguity

Besides incomplete models (1.1, 1.2) there are a series of fundamental problems concerning motion
estimation. The movement of an isolated pixel cannot be estimated without considering its neighboring
pixels. Therefore, only using the brightness constancy assumption (1.1) or the continuity equation (1.2)
is insufficient. The structure of the local brightness pattern composed by the neighboring pixels directly
affects the uncertainty of the motion estimate of the center pixel. The velocity v(x,t) is only unique if
the brightness within the brightness pattern varies along the two spatial dimensions. That means, the
brightness gradient VI(x,t) must not be zero for any dimension x = (21 x2)7. If this condition is not
satisfied it is not possible to find an unambiguous correspondence between pixels (brightness patterns)
from temporal consecutive image frames, also called the aperture or correspondence problem [13].

In figure 1.2 four types of motion uncertainties because of an ambiguity in the correspondence of
brightness patterns are shown. Here, a car drives down a road and the motion of four different parts
A-D of the car should be estimated. Although all parts move with the same velocity the uncertainties
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Figure 1.2: Different types of motion uncertainties because of ambiguous correspondence of brightness
patterns.

Figure 1.3: Motion ambiguities because of incoherently moving image parts and occlusion at motion
discontinuities.

of the estimates differ. Part A exhibits no structure in brightness at all. Therefore, the brightness is
constant over both spatial position and time. In this case, the brightness places no constraint on the
velocity [24]. The local brightness of parts B and C varies only in one direction. In these cases, only
the velocity component that is perpendicular to the edge direction is constrained. Along the edges
the brightness does not change and thus the velocity component parallel to the edge direction cannot
be estimated. In part D, the local brightness varies along two dimensions, in which case the optical
flow vector is uniquely constrained and the velocity estimate gets unambiguous.

Another problem that forces ambiguities are pixel occlusions at motion boundaries. This is depicted
in figure 1.3. Part A and B show two situations with brightness patterns overlapping while moving.
This leads to occlusion of neighboring pixels that have been seen beforehand and newly appearing
pixels that have been occluded in the past. The brightness pattern within a neighborhood of pixels
along such motion boundaries are not stable over time and therefore temporal correspondences cannot
be found unambiguously.
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1.3 Motion disambiguation

To be able to model all these ambiguities some authors [36, 22] propose to introduce uncertainty to
the model that describes the relation between image intensities and pixel velocities. For this purpose,
the velocity of an image location and the images of a sequence are understood as statistical signals

I(x+ (V(x,t) + 1nv) AL, t + At) = I(x,t) + 17, (1.3)

with 7, defining additive noise on the velocity and n; additive noise on the image intensity. More
general, a function Fy

Fy (I(x + (v(x,t) + )AL, t + At), I (x, t)) =, (1.4)

defines the relation between temporal consecutive images and the flow field. This implies probabilities
for the existence of image intensities and velocities namely conditional probability density functions

(pdf)
P(I(x,t+ Ab)|I(x,1),v(x,t)) (1.5)

that represent the uncertain relation between image observations I(x,t) conditioned on the hidden
states v(x,t). Using Bayes’ rule and some prior knowledge about the distribution of the velocity
P(v(x,t)) and the intensities P(I(x,t)) the conditional pdf for the velocity conditioned on the image
data can be infered

P(I(x,t + At),I(x,t),v(x,t)) = P(I(x,t+ At)|I(x,t),v(x,t)) x P(I(x,t)) x P(v(x,t))
P(v(x,t)|I(x,t + At), I(x,t)) x P(I(x,t+ At)) x P(I(x,1)),
P(I(x,t+ Ab)|I(x,t),v(x,t)

P(v(x,t)|I(x,t+ At), I(x,t)) = P(I(x, t+At))) &\ (X’t))' (1.6)

So far, the velocities v(x,t) and the image intensities I(x,t¢) have been assumed to be independent
for different positions x and times ¢. This is already a strong approximation. In the next section
this approximation is relaxed towards more spatiotemporal dependence. The expectation is that pdfs
are able to tackle the addressed ambiguity problems related to motion processing. As can be seen in
[23, 29, 35] specific information about the mentioned problems can, in principle, be extracted from
the shape of the pdfs.

During the last ten years velocity distributions have been suggested and discussed by several
authors [22, 25, 33, 30]. Additionally, a lot of different mainly deterministic approaches have been
developed for visual motion estimation [4, 2]. All these approaches are based on common constraints on
the flow field that are suitable for disambiguation and improvement of the estimates. The constraints
F define correlations between motion estimations at different points in image location x, different
points in time ¢ or different image scales k. Assuming independence between the dimensions x, ¢, and
k the constraints can be formulated in a probabilistic way as

F, (V(x,t, k), {v(x',t, k)}x/) =N, (1.7)
Ft(v(x,t,k), {v(x,t’,k)},y) =",
Fy, (v(x, t, k), {v(x,t, k')}k/) =M.

Here, {v(x',t,k)}x denotes the set of spatial neighbors to pixel velocity v(x,t,k). The constraint is
defined by the function F} and 7, considers additive noise on the constraining model. For the set of
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Figure 1.4: Three basic principles to disambiguate visual motion using constraints along the space,
time, or scale dimension.

temporal ¢ and scale k¥’ neighbors the notations are analogous. The most general case would be to
assume total dependence between all dimensions

F(V(X, tok), Av(x 6 k) b, v, L R) b, {vi(x, t, k')}k/) =17. (1.10)

Unfortunately, considering full dependence together with a probabilistic treatment leads to combina-
torial explosion and is in most cases computationally intractable.

A sketch of the three different types of independent disambiguation along the three dimensions
is given in figure 1.4. The most established method to reduce ambiguities is the integration of mo-
tion information over space (see Fig. 1.4 first row). That means, interactions between neighboring
velocities or even higher order derivations are considered [11, 4, 17, 1]. This is often accounted for by
smoothness constraints for neighboring velocities assuming that all pixels within the neighborhood 2
move similarly.

Further improvements are made using multiscale approaches (see Fig. 1.4 second row). This is
desirable, e.g., for being able to represent both large and small velocities at coarse and fine resolutions
with a reasonable effort. It is usually done in such a way that the larger velocities at coarser scale are
calculated first, then a warped version of the image is calculated using these large, coarsely sampled
velocities, and afterwards the residual velocities at the next finer scale are calculated, since they
have been calculated in a frame that is moving along with the velocities extracted from coarser scale
[1, 5, 28, 18, 8].

Another important aspect of motion estimation is the fact that motion is a dynamic feature of an
image sequence. Thus, the longer we observe a movement the more precisely we can estimate and
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Figure 1.5: A probabilistic directed graphical model for visual motion estimation. Here, ¢’ =t + 1
and t” =t 4+ 2 denote future timesteps and ¥’ = k + 1 and k" = k + 2 denote finer scales. Observable
nodes are shaded gray, hidden nodes are white.

predict its characteristics. This has motivated several approaches [26, 7, 10] to recursively estimate
the optical flow over time including a prediction model that defines some temporal relation between
pixel movements (see Fig. 1.4 third row). For prediction, a model for the underlying dynamics is
needed to predict image motion.

Some authors work in a probabilistic framework assuming that velocity distributions are Gaussian
parameterized by a mean and covariance. Kalman filtering can then be used to properly combine
the information from scale to scale or time to time taking into account uncertainties of the mea-
surements [26, 21]. The presumption of Gaussian distributed velocity measurements is sometimes
incomplete because velocity distributions are often multimodal or ambiguous [22, 30], especially at
motion boundaries. To circumvent this problem, particle filtering methods for non-Gaussian velocity
distributions have recently been used to improve motion estimation for tracking single or multiple
objects in a scene [19, 12].

1.4 A dynamical system for motion estimation

Having all the different possibilities of motion disambiguation in mind, the question is how to unify
them in one general framework for motion estimation. In this section we derive a quite general
probabilistic solution which is still computationally tractable.
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1.4.1 Dynamic Bayesian Network

A Dynamic Bayesian Network (DBN) is a directed graphical model of a dynamic stochastic process.
Here, we propose such a network as depicted in figure 1.5 to model the dynamics of visual motion.
The structure of the graphical model in figure 1.5 is similar to a Markov Random field. The difference
is that the edges are directed. As can be seen, it tightly couples several Markov chains along time
that are defined for each scale k via Markov chains along scale defined at each time step t. Note that
the DBN forces an independency structure. The probability that a node is in one of its states depends
directly only on the states of its parents [34].

We assume a generative model for the observables Y** of an image sequence I"T1K with T images
at equidistant points in time ¢t € 7 at K spatial resolution scales k € K with ¢/ =¢t+1and ¥ = k+1
being the next time step and the next finer scale, respectively. Without loss of generalization we
define the time intervals At = 1 and scale intervals Ak = 1 to be unity. Here, the observable Y**
comprises image data of several frames within a time interval around t at the same scale k. For
example, Y* = (Itk,It/k) has to be at least a pair of images with both images are defined over the
same image range X* at the same scale k but at consecutive points in time ¢ and t'. Each image I**
consists of image intensities I'¥ at each image position x € X*. Similarly, the hidden state Vtk is a
flow field at time slice ¢ and scale k defined over the image range X* with velocity vectors vi¥ at each
image position x.

1.4.2 Generative model

The probabilistic generative model is precisely defined by the following probabilities and factorization
assumptions:
First, an initial prior for the flow field at time ¢ = 1 and scale k =1

P(VH) = HP (1.11)

defining some preference for the speed and direction of the velocities in the flow field. Often this is
chosen to be a product of zero mean Gaussian distributions to prefer slow and smooth velocities [30].
Second, the specification of the observation likelihood for the images Y given the flow V% for all
times t € 7 and scales k € K

P(Y™|Vtk) Hf (Yt ik (1.12)

This factorisation assumption is somewhat unusual because we do not assume the image observation
to factorize in pixel observations but assume the observation likelihood to factorize in the velocities
only. And third, the specification of the transition probabilities for the flow fields VH* at the new
timestep ¢ at finer scale k' given the flow field V¥ at the same time ¢ but coarser scale k and the
flow field V' from last time ¢ but at the same scale k’. For the first time slice ¢t = 1 and the coarsest
scale k = 1 the transitions are conditioned only on one flow field V1% or V1,

P(Vlk/‘vlk) _ H¢ lk’ Vlk
P(vt’l’vtl) — H¢t th

P(VIHIVIE V) = H¢ Ve (v V). (1.13)
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Figure 1.6: Pairwise potentials of the scale-time transition probability.

These equations explicitly express that the probability distribution for each flow field factorises into
independent distributions for each velocity vector. Nevertheless, although each velocity vector is not
dependent on velocity vectors from the flow field at the same time and scale it heavily depends on all
the velocity vectors from the flow fields at coarser scale and past time. Further on, the conditional
dependence P(viF [V¥F V') can be split in two pairwise potentials ¢y, ¢;. This will allow us to
maintain only factored beliefs during inference, which makes the approach computationally practicable.

1.4.3 A general class of flow field transitions

To further specify the generative model we have to define the formulas for the prior (1.11), the
observation likelihood (1.12), and the transitions (1.13). Some concrete examples are given in the next
section 1.5. For the flow field transitions in equation (1.13) we propose a certain class of transition
probability functions which satisfy a probability mixture model. Equation (1.13) consists of two
pairwise potentials. The first potential gbt(vf(/k/, Vtk/) assumes that the flow field at every spatial scale
k transforms from ¢ — ' according to itself. The second potential ¢y (viF', VE'*) realizes a refinement
from coarser to finer scale k — k' at every time ¢’. A sketch of the information flow is shown in figure
1.6.
tl

To motivate the temporal transition factor ¢t(vxk/, Vtk/) we assume that the direction and speed

of a flow vector vik’ at position x at time ¢’ is functionally related to a previous flow vector vfﬁ/ at
some corresponding position x’ at time t,
viE ~ f(vER VIR, (1.14)

including some free parameters 6; that allow for adaptation of the temporal relation. Now, asking
what the corresponding position x’ in the previous image was, we assume that we can infer it from
the flow field itself as follows

!1.7

X'~ for(x x = ViR 64) (1.15)
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In principle f,; can be any arbitrary function that defines the relation between neighboring velocities.
Again the free parameters 0,; allow for adaptation of the spatial relation. Note that here we use
vt/k’ to retrieve the previous corresponding point x’. This is a suitable approximation as long as the
snmlarlty viF ~ v is not heavily violated. Combining both factors (1.14) and (1.15) and integrating

x’ leads to the ﬁrst pairwise potential

S (VR VY =3 fu(x x = vEF 0,0 fi(VER VI 6,). (1.16)

x/

Equlvalent to (1.14) for the scale transition factor ¢y (Vi V1F) we assume that the origin of a flow
vector vt K at position x at finer scale k¥’ corresponds to a flow vector vt o k from coarser scale k at
some corresponding position x”,

VIR~ fe(VER VIR 61). (1.17)

Since it is uncertain how strong a position x” at coarser scale k influences the velocity estimate at
position x at finer scale k', we assume that we can infer it from the neighborhood similar to (1.15)

X” ~ ka(X”,X; H:Ek:) . (118)

The considerations for the scale transition are analogous to the ones for the temporal transition. Again,
combining both factors (1.17) and (1.18) and integrating x” we get the second pairwise potential

Sr(VE VIRY =3 Fon (X% 0a) i (ViEE VR O (1.19)

x//

that imposes a spatial smoothness constraint on the flow field via spatial weighting of motion estima-
tions from coarser scale. The combination of both potentials (1.16) and (1.19) results in the complete
conditional flow field transition probability as given in (1.13). The transition factors (1.16) and (1.19)
allow us to unroll two different kinds of spatial constraints along the temporal and the scale axes while
adapting the free parameters for scale and time transition differently. This is done by splitting not
only the transition in two pairwise potentials, one for the temporal- and one for the scale-transition,
but also every potential in itself in two factors, one for the transition noise and the other one for an
additional spatial constraint. In this way, the coupling of the potentials (1.16) and (1.19) realizes a
combination of (A) scale-time prediction and (B) an integration of motion information neighboring in
time, in space, and in scale.

1.4.4 Inference

The overall data likelihood P(Y 511K VETLEY g assumed to factorize as defined by the directed
graph in figure 1.5

T K
P(YIZT,I:K’VI:T,I:K _ H HP Ytk‘|vtk‘ X P(Vll)
t=1k=1
T-1 K-
H P Vt 1|Vt1 H Vlk"|v1k? (Vt/kl|thk,Vtk/) ) (120)
t=1 k=1

What we are usually interested in is the probability for some flow field given all the data aquired
so far. For the offline case where all the data of a sequence is accessable this would be the prob-
ability P(V*|YET1E) - For the online case where only the past data is accessable the probability
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P(V#|Y1:1:K) would be interesting. To infer these probabilities, Bayes’ rule and marginalization has
to be applied. For the offline case this reads

Z P(leT,lzK Vl:T,l:K)

tk N 1T 1KY
P(V*Y ) = P(YTTIK) (1.21)
Vl:T,l:K\Vtk
The online case neglects future observations and simplifies to
41 P(YLtLEK 1t 1K
PV = S 122

L P(Yl:t,l:K)
VLt,LK\vtk
Either for the online or offline case, the direct computation of the marginals using equation (1.21)
or (1.22) would take exponential time [34]. The most prominent solution to this problem is Belief
Propagation (BP) which is a very efficient approximate inference algorithm especially applicable if the
graph has a lot of loops and many hidden nodes like it is the case for our graphical model for dynamic
motion estimation (see figure 1.5).

1.4.5 Approximate inference

Here, we propose an approximate inference algorithm based on Belief Propagation and restrict our-
selves to the online case (1.22) since its extension to the offline case is straightforward [6] (see also
section 1.5). The marginal probabilities that are now computed only approximately are called beliefs
and here we use a’s as the notation for forward filtered beliefs

a(viF) = P(viky BtLEY (1.23)

Let us start with the inference of the flow field at first time slice t = 1 and coarsest scale k = 1 just

having access to the observable Y. Applying Bayes’ rule we get

LY, vi ) P(vy')
P(Y)

a(vy!) = P(vi![Y!) =

i (1.24)
This is the initial belief that has to be propagated along time and scale. To derive an approximate
forward filter suitable for online applications we propose the following message passing scheme that
realizes a recurrent update of the beliefs. Let us assume, we isolate one time slice at time ¢ and neglect
all past and future beliefs, then we would have to propagate the messages my_ from coarse to fine
and the messages my/_,; from fine to coarse to compute a belief over the scale Markov chain. Similarly,
if we isolate one scale k for all time slices and neglect all coarser and finer beliefs, then we would have
to propagate the messages m; ¢ from the past to the future and the messages my_,; from the future
to the past to compute a belief over the temporal Markov chain. For the realization of a forward
scale-time filter, we combine the forward passing of temporal messages m;_,p and the computation of
the likelihood messages my ., = E(Yt/k/, ng/) at all scales k. As a simplification we restrict ourselves
to propagating messages only in one direction k — k’ and neglect passing back the message my/ _.
The consequence of this is that not all the V-nodes at time ¢ have seen all the data Y1H1K byt
only all past data up to the current scale Y 51*  This reduces computational costs but the flow
field on the finest scale V&X is now the only node that sees all the data Y141 X Nevertheless, we
also tested passing back the messages my/_ which only slightly improved the accuracy but increased
computational costs.
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The factored observation likelihood and the transition probability we introduced in (1.12) and
(1.13) ensure that the forward propagated joint belief

P(Vt,l:K’Yl:t,l:K) _ HP(V;’LK‘YLt’l:K)
x

will remain factored. Similar to BP in a Markov Random Field, we assume independency for all
neighboring nodes in the Markov blanket. This means the belief over V% and V' at time ¢ is
assumed to be factored which implies that also the belief over V¥ and V¥ factorizes.

P(Vt/k,vtk/|Y1:tl’1:kl \Yt/k’) _ P(Vt’k|Y1:t/,1:k)P(Vtk’|Y1:t,1:kz/) _ Ha(vik)a(v;k/) ’ (1'25)

where we used \ as the notation for excluding Y** from the set of measurements Y115 The
two-dimensional forward filter propagates the belief over V¥'# and V%' from (1.25) via multiplying
with the scale-time transition (1.13) and marginalizing over V¥* and V**'. The result is multiplied
with the new observation likelihood (1.12) and normalized by P(Y**') to get the updated belief

P(vf(’k:/|Y1:t’,1:k:/) _ P(Ylt’k’) E(Yt/k/,vik/) Z Z P(Vik/|vt/k,Vtk/)P(thk,Vtk/|Y1:t/’1:kl \Ytlkl),
Vit'k itk
Oé(VikJ) x mY—»y(Vik/) Z Z ¢k(vik”vt’kz)¢ t’k:’ Vtk:’ Ha t/ k tk’)
Vit'k itk
x mYHU /k’ Z ¢k tk’ Vtk Ha Z ¢ t’k:/ Vtk:/ Ha tk:/
Vit'k Vitk/
x my—o(VEF)  x mp (VER) X my—y (VEF) . (1.26)

As can be seen, the complete scale-time forward filter can now be defined by the computation of
updated beliefs o as the product of incoming messages,

tk)

Oé( X my_w( tk) mk_,k/( tk) mt_,t/(vf(k) . (127)

Inserting the proposed class of temporal transitions (1.16) into (1.26) leads to the following temporal
message

mt_)t/(vf;k,) = Z(bt L VW HOé tk/

Vitk!
= Zz.factx X_V th)ft(vtk/ tk/ Ht)H ( f{k,)v
vtk x/
= Zz.fact Hact)ft(vfck ’v;k,: ;Ht)a(vfck ) Z H a(v;k )7
tk’ x/ vitk! ZF#X!
Wi
1
- fot X' x = viF0,0) Y AEE VI 0)a(vE) . (1.28)

’
vik
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Note that the summation ) 'y, is summing over all possible flow fields, i.e. » yu represents X k
summations th’f’ th’f’ thk/ .-+ over each local flow field vector. We separated these into a sum-
1,1 1,2 2.1

mation thk/ over the flow field vector at x’ and a summation thk/\vtk/ over all other flow field
vectors at x # x’. Then, we use the equivalence thk’\vt’y’ | B a(viF) = [l 2oy a(viF)y =1.

Similarly, we arrive at the scale message if we insert the scale transition (1.19) into (1.26)

110 /1.0 ! !
mk:—»’c’(v;k ) = Z ¢k?(v§ck 7Vt k) H O‘(V;k) )
x

vit'k
= > farX % 00) f (VN VEF 00) [ [ (ViR
vit'k x/ X
= D> S x5 00) i (Vi Vi B)a(vih) S0 T atvih),
vilk %/ vi'k 27X
\vik
1
= fok.(x’,x; Oz1) ka(vik/,vi]“;é?k)a(vilk). (1.29)
x/

t'k
vx

Finally, the three equations (1.27), (1.28), and (1.29) define a very efficient tightly coupled scale-time
forward filter for visual motion estimation. It realizes a complete probabilistic recurrent estimation
of a set of flow fields V'K with different resolutions k swept along the time dimension ¢. It follows
the principle that the longer you observe a scene and the finer the resolution of the data is the more
accurate the flow can be estimated.

1.5 Filter realisations

The pseudo-code, Algorithm 1, shows the very compact form of the derived scale-time filter suitable
for an algorithmic implementation. What remains to be done, is the specification of the observation
likelihood (1.12) and the potentials of the transition probability (1.16) and (1.19). Without loss of
generalization the derivation for the filter assumes discrete state variables which is reflected in using
summations Y, for marginalization. If continuous state variables are given the summations ) simply
have to be replaced by integrals [. Everything else keeps being the same. To show the applicability
of the framework, we derive two realizations: One for continuous Gaussian and one for discrete grid-
based observation likelihoods as well as Mixture of Gaussians and Mixture of Student’s-t-distributions
transitions. Both realizations have already been published at the International Conference on Machine
Learning and Applications [31, 32]. Here, we summarize the essentials of the modelling in relation to
the general filter framework. For optical flow estimation results, discussions on the parameters, and
benchmark tests we refer to the published material.

1.5.1 The Gaussian realisation

Now, we define the observation likelihood and the transitions in such a way that we are left with a
purely Gaussian belief representation. This results in a filter similar to an extended Kalman Filter
only propagating means and covariances along scale and time.
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Algorithm 1 Scale-Time Filter

Initialize the priors a(vy ™)

fort' =1to T do
for ¥ =1to K do
for x = 1 to X* do

Compute the messages

my —y (Vik/)

mt—n:/(Vfc/kl) => fau(x,x— Vik/; Out) D yer ft(Vik/, Vf(kf/; Ht)a(v;’?/)
x/ *

Mg (ViF) = 30 For (%% 001) Xy fr(ViH vEE; O )a(vEF)
x/
Update the beliefs
'K 'K

a(VvER) oc my o (VER) my_p (VEF) mp g (VE

end for
end for
end for

Gaussian observation likelihood We follow a similar argumentation as Simoncelli et al. [22] to
obtain the £(vi¥)-factors (1.12) of the observation likelihood. However, our likelihood results from
a generative model assuming that a scalar field patch of temporal derivatives Iﬁ“x € RY"*1 centered
around X is generated by the velocity v € R2X! at position x and the gradient field patch (VI#*)T ¢
RX*X2 centered around the same position x.

While introducing this model based on patches around position x instead of only the pizel at
position x itself we imply that the optical flow is locally constant in a sense similar to the Lucas-
Kanade constraint [17]. Additionally, we assume i.i.d. additive Gaussian noise s;, S, on the temporal

derivatives and the flow field, respectively.

(V) = NIEIVETVEZE) (1.30)
. 0

D N I (1.31)
0

ol = (w,}c’z )(}ijf”t‘:;r : (1.32)

In notation (1.30), the patches can be regarded as vectors and the covariance matrix Ezkx is a diagonal

with entries Uékxx, that depend on the position x’ relative to the center x, the time ¢, the scale k, the
flow field covariance S,, and the variance on the temporal derivatives s;. Here, f; takes into account the
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spatial uncertainty of the velocity measurement and can implement any kind of spatial weighting, such
as a binomial blurring filter proposed in [21] or an anisotropic and inhomogenous Gaussian weighting
fo=N(X|x,2% ) which is investigated in [32].

In contrast to [21], we introduced time ¢ as an additional dimension and derived a more compact
notation by putting the spatial weighted averaging directly into the likelihood formulation defining
multivariate Gaussian distributions for vectors that describe image patches centered around image
locations. Allowing for uncertainties E}kx that are adaptive in location x, scale k and time t we are
able to tune the local motion measurements dynamically e.g. dependent on the underlying structure
of the intensity patterns.

Mixture of Gaussians transition For the temporal contraint (1.14) we now chose a Gaussian
Vi O N(VEF IV o) (1.33)

which says that the change in time of the flow field is white with undirectional transition noise between
V" and V¥ . For the spatial interaction (1.15) an inhomogeneous anisotropic Gaussian is assumed

X' ~ N(x|x - viF k) . (1.34)

to be able to steer the orientation and to adapt the strength of the uncertainty in spatial identifi-
cation X% between corresponding positions in time. Combining both factors (1.33) and (1.34) and
mtegratmg x' we get a Mizture of Gaussians (MoG) as the first pairwise potential (1.16)

S (ViEF V) =3 N x — vEF SE N (VEF VI oy) (1.35)

with the Gaussian spatial coherence constraint being the mixing coefficients. Equivalent to (1.33) for
the scale transition factor (1.19) we chose a Gaussian

NN( Lr x”?ak) ) (136)

assuming white transition noise o;. The influence of neighboring velocity states from coarser scale is
also modelled as an adaptive Gaussian kernel similar to (1.34)

x" ~ N (X" |x, ngx) . (1.37)

Again, combining both factors (1.36) and (1.37) and integrating x” we get a MoG as the second
pairwise potential
or(Vi™ VIR =3 N[, SEIN (Vi Vi o) 4 (1.38)
<
that imposes a spatial smoothness constraint on the flow field via adaptive spatial weighting of motion
estimations from coarser scale. The combination of both potentials (1.16) and (1.19) results in the
complete conditional flow field transition probability as given in (1.13).

Approximate inference To arrive at a Gaussian belief we introduce a last approximative restric-
tion. We want every factor of the posterior probability (1.27) to be Gaussian distributed

a(viF) o< my o (VIE) my_p (V) mp o (V) i N (VEF| B (1.39)



CHAPTER 1. DYNAMIC VISUAL MOTION ESTIMATION 16

We fulfill this constraint by making all single messages Gaussian distributed. This already holds for the
observation likelihood my _,(v!¥). A more accurate technique (following assumed density filtering)
would be to first compute the new belief o exactly as a MoG and then collapse it to a single Gaussian.
However, this would mean extra costs. Here, we do not investigate the tradeoff between computational
cost and accuracy for different collapsing methods. Inserting Gaussian distributed beliefs « into the
propagation equations (1.28, 1.29) leads to two different MoGs for the resulting messages

mt_)t/(vf(k):Zﬁi,k NEEF | AEF SUFY ~ N (vEF Wl * QlFy) (1.40)
X,
with
P = Nx x|l 2, (1.41)
pl = (op + SEVAYE (x — x) + SR AL ulh | (1.42)
s = kA% (0 + 2% (1.43)
~ / ’ -1
stk [At’f] — o+ Xtk + 3
and o
mk—ﬂf’(vik ) = Z_t i N( | t”72x” ) ~ N(vf(k |7T3(k 7H§(k ) ) (144)
x//
with o
Pk =NE'xZF) . S =0+ 30 (1.45)

In order to satisfy the Gaussian constraint formulated in (1.39) the MoG’s are collapsed into single
Gaussians (1.40, 1.44) again. This is derived by minimizing the Kullback-Leibler Divergence between
the given MoG’s and the assumed Gaussians for the means w!* 7w/ and the covariances Q¥ TI¢
which results in closed-form solutions for these parameters. The final predictive belief a(viF) follows

from the product of these Gaussians

a(vif) = L) NI, 2““) (1.46)

St = rtk [H;’“Jrnﬁﬂ Qi (1.47)
—1 —1

A ) R VG ¢ Gl s Rl B (1.48)

By applying the approximation steps (1.39, 1.40) and (1.44) we guarantee the posterior (1.27) to
be Gaussian which allows for Kalman-filter like update equations since the observation is defined to
factorize into Gaussian factors (1.30). The final recurrent motion estimation is given by

a(vf(k) _ ( tk‘utk Etk) (1.49)
= N(-IE|(VIEN'VE SEONVE |k, 25 (1.50)

1
Eik _ |:Atk_|_v1tkAtk (VItk)T] ’ (1.51)
TS YAV L VS v (1.52)

For reasons explained in [21] the innovations process is approximated as the following

15~ 0/0tT (Iﬁf, ﬁ;k) , (1.53)
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with 7 applying a backward warp plus bilinear interpolation on the image I¥ using the predicted
velocities ¥ from (1.48). We end up with a Gaussian scale-time filter which is, in comparison to
existent filtering approaches [10], [21], [26], not a Kalman Filter realization but related to an extended
Kalman Filter since the result of the nonlinear transitions is linearized after each message pass with
the collpase of each MoG to a single Gaussian.

1.5.2 The grid-based realisation

A grid-based filter allows only a discrete set of state variables but is not restricted to any distribution.
Here, we neglect the scale dimension but show how past and future observables can be processed
offline via a Two-Filter.

Observation likelihood Now, we define the observation likelihood P(Y*|V?!) by assuming that the
likelihood factor £(Y*|v) of a local velocity vi should be related to finding the same or similar image
patch centered around x at time ¢ that was present at time ¢ but centered around x — vi. More
rigorously, let S(x, u, X, v) be the Student’s t-distribution and N (x, p, 2) = lim, .~ S(x, u, X, v) be
the normal distribution of a variable x with mean p, covariance matrix 3 and the degrees of freedom

v. In the following the covariance is chosen to be isotropic & = ¢2E (with identity matrix E). We
define

(Y VL) ZN '|x, 01) (If:,|ffc,7vi, or,vy) = ZN(X/|X — vk, QI)S(I;/,JFV;HQ,JI, vr). (1.54)

x/

Here, NV (x'|x, o) implements a Gaussian weighting of locality centered around x for I**! and around
x — vL for I*. The parameter g; defines the spatial range of this image patch and o the grey value
variance. The univariate Student’s t-distribution S(I. tH,If(, vt 01, vr) realizes a robust behaviour

against large gray-value differences within image patches, which means these gray-values are treated
as outliers and are much less significant for the distribution.

Mixture of Student’s t transition Similarly to equation (1.54), we define the transition proba-
bility P(vir||[V?) by assuming that the flow field transforms according to itself like defined in 1.16
and further specified as

PV V) o N x = Vi ov) S (Vi Vi, ov, vv). (1.55)

Using a heavy tailed Student’s t distribution, we assume robust spatiotemporal coherence because
evaluations on first derivative optical flow statistics [20] and on prior distributions that allow to
imitate human speed discrimination tasks [27] provide strong indication that they resemble such heavy
tailed Student’s t-distributions. The parameter gy defines the spatial range of a flow-field patch, so
we compare velocity vectors within flow-field patches at different times ¢ and t + 1. We introduced
new parameters gy and oy for the uncertainty in spatial identification between two images and the
transition noise between V* and vit!, respectively. The robustness against outliers is controlled by vy,
with smaller/larger vy decreasing/increasing the influence of incoherently moving pixels within the
observed spatial range gy. With vy — oo the uncertainty for the velocity gets Gaussian distributed
and (1.55) equals the transition probability formulated in [9] which expresses the belief that pixels are,
on average, moving along a straight line with constant velocity. Therefore, the proposed spatiotemporal
transition model 1.55 can be seen as a generalization of the transition model proposed by Burgi et al.

[9]-
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Two-Filter inference Like beforehand, for inference we need to propagate beliefs over the flow field
V. Storing a distribution over a whole flow field V! is infeasible if one does not make factorization
assumptions. The factored observation likelihoods and transition probabilities we introduced ensure
that the forward propagated beliefs will remain factored. However, the standard backward messages
do not exactly factor under this model. Hence we follow a two-filter approach [16] where the ”backward
filter” is strictly symmetric to the forward filter.

Following the derivation for the temporal belief propagation 1.28 and specifying the transition
probability as in equation 1.55 the forward filter reads

a(vtl) o« YT VIR o (vE) (1.56)
Oé*(ij_l ZN ‘X - VH—I? ov ZS t+1’vx 1OV, VV) (V ’) : (157)
Vt

If we have access to a batch of data (or a recent window of data) we can compute smoothed posteriors
as a basis for an EM-algorithm and train the free parameters. In our two-filter approach we derive
the backward filter as a mirrored version of the forward filter, but using

P(VEIVIFY) o Y N (X |x + vE, ov) S(VE, viE oy, vy) (1.58)
<

instead of (1.55). This equation is motivated in exactly the same way as we motivated (1.55): we
assume that v ~ S (th,rl, oy,vy) for a corresponding position x’ in the subsequent image, and that
x' ~ N(x—vL, Qv) is itself defined by v. However, note that using this symmetry of argumentation is
actually an approximation to our model because applying Bayes rule on (1.55) would lead to a different,
non-factored P(V![V!T!). What we gain by the approximation P(V!|[Vit1) ~ [T P(vL|V!T!) are
factored (3’s which are feasible to maintain computationally. The backward filter equations read

ﬂ*(vt) o LYHVE) B(vE) (1.59)

X X

ZN x4 Vi 00) Y S(ViIVIE ov, )BT (V). (1.60)

t+1

To derive the smoothed posterior we need to combine the forward and backward filters. In the two-filter
approach this reads

POY V) P(vA[Y™)

WVl = PVAYMT) = A (1.61)
B ( ’YtJrlT)P(YtJrlT) (V;‘let)
- (V) (Y1)
o« a(vh) pvE (1.62)

) 7o
with P(Y!1T) and P(Y'T) being constant. If both the forward and backward filters are initialized
with a(v2) = B(vL) = P(vx) we can identify the unconditioned distribution P(v%) with the prior

X

P(vx). For details on the standard forward-backward-algorithm we refer to [6].

1.6 Summary

A reliable and robust motion estimate is an important low-level processing unit that has the potential
to bootstrap a lot of visual perception tasks to be solved by a cognitive vision system. Since the
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estimation of motion information has to rely on highly uncertain visual information a probabilistic
treatment of the problem is proposed. Based on three basic approaches to solve motion ambiguities,
the derivation of a probabilistic filter is given that combines all these three approaches into one re-
current framework. The derivation comprises an efficient approximate inference algorithm based on
belief propagation applied on a directed graphical model with a graph topology suitable for inter-
twining belief propagation along two dimensions, scale and time, simultaneously. Introducing some
factorisation assumptions and a special class of transition probabilities results in a very compact and
computationally efficient algorithm. For this algorithm two implementations are presented. The first
one realizes a purely factored Gaussian belief propagation and the second one the propagation of a
factored non-parametric discrete distribution. The presented framework provides a flexible basis for
the realization of user specific motion estimation algorithms with the focus on online applications. It
also serves as an exploration platform to investigate in adaptation mechanisms and online learning
strategies for example to improve the optical flow estimation accuracy or increase the robustness for
highly dynamic scenes.
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