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Abstract. In this paper, we propose a new method for visual model
learning. The algorithm learns an object representation by one-shot and
adaptively extends a set of saliency filters. The filter coefficients are ex-
tracted from the environment by different views. In addition, the algo-
rithm fuses already learned visual filters and derives new visual classifiers
in order to gain generalized object concepts. We evaluate our method
on tracked sequences that are resulted from a processing with a visual
bottom-up attention model.
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1 Introduction

For object learning with robots, it is necessary that a robot actively learns to ex-
tract visual filters from the environment. A visual filtering process in a dynamic
scene requires the integration of multiple views with respect to environmen-
tal changes. In object recognition this is also known as object constancy. This
motivates the investigation into incrementally object categorization during the
tracking of a scene with focus on view-based object recognition. Visual classifiers
that result from manually annotated training samples are not modifiable during
the recognition process. This is reasoned by the fact that the object recogni-
tion system does not learn to structure the perceptual information by itself. In
order to avoid these drawbacks, a system needs to extract and to learn those
view-based classifiers unsupervised from its environment. Less work has been
investigated into object learning from active vision perspective with respect to
an adaptation of an appropriate active visual filtering process. Moosmann et
al. [1] propose a learning of a visual filter based on a biased decision tree. A
further object classifier is learned from few training samples in [2] on the basis
of a Bayesian framework. Both methods categorize an object without focusing
on its central region and miss the incremental integration of object views during
tracking into one classifier. Walther et al. [3] define a selection of salient regions
as a reliable basis for object recognition and determine an object representation
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by a set of SIFT features [4]. A complete bottom-up attention mechanism would
fail for an object representation during observing the scene. The integration of
continuous changing information is missing e.g. the different views of a rotating
hand. Schendan et al. [5] report that a categorization of unusual views of objects
requires more reaction time. This is also reported by Ganis et al. [6] who suggest
the integration of top-down processes in the categorization process.
In this paper, we present a new method for visual model learning during ob-
serving a scene. We assume a minimum requirement for object learning and
bootstrap the learning process by a visual bottom-up attention model [7]. The
method extracts additional visual classifiers and hypothesizes object constancy
in the center of the observed scene. This center information is used as a super-
vised signal during the tracking in order to approve the validity of an extracted
classifier. Our approach obtains an object representation by a linear combination
of possible stored views. After a new observation, the method enables a fusion
of similar responding stored models and retrieves them for the filtering process.
The paper is structured as follows. In section 2, we present the learning method
for the visual filtering process. Section 3 focuses on the evaluation with respect
to different object views. We give a conclusion in section 4.

2 Learning Method

The default visual aspects are defined by a set of filters [7] that extract a salient
point that is kept in the central region of the current view during the track. A
new saccade is triggered by a timer event and the gaze is recentered on a salient
point. Nonlinear view based models are extracted by SIFT features. During a
saccade, a visual model fj is learned by an one-shot learning process from the
centered image I (x, y). The one-shot learning process defines a filter as a triple
fj = {sji, wji, cj} for the j-th filter that is learned during the tracking. It consists
of a set of SIFT features sji, learned weights wji and a learned weighting coef-
ficient cj for this filter. Each tracking step is evaluated by gaining an improved
presentation of a visual classifier by hypothesizing object constancy. During the
tracking the object hypothesis is approved and an integration of new visual fil-
ters is realized. During a saccade the activity of already learned saliency filters
are compared and fused in order to achieve a generalized classifier.

2.1 One-shot learning of a visual filter model

In a first step a set of SIFT features is selected (see fig. 1). The SIFT extraction
defines each position of I as a keypoint in order to extract a sift vector s with
a defined �. Each centered image results into a set of overlapping SIFT features
S that describe the local orientation characteristics. The center feature and pe-
ripheral features for the j-th visual filter in the current track are defined by sj0
and sji with i = 1 . . . nj . Each s describes a nonlinear view-based model. After
the extraction of S, the one-shot learning process of an object view is initialized
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Fig. 1. Selection of nonlinear view-based models for the one-shot learning with an
inhibition.

by the selection of nonlinear view-based models sji. The idea of the SIFT se-
lection bases on the assumption to enhance the specificity of an extracted filter.
Therefore, those locations are inhibited in the periphery that correlates strongly
with sj0. For this a correlation (1) with sj0 is computed yielding a feature map
�j0 that is subject to a local maxima search.

�j0 =
∑

sj0 ⋅ S . (1)

Those sji
(
i = 1, . . . , nsel

j

)
that exhibit a large correlation value are extracted

and processed (for one-shot learning see fig. 2). This selection step results into
a set of nonlinear view based models that contain one positive sj0 for the center
position and a set of negative sji for the inhibition. After the selection of sji a
correlation computation with S results into a set of feature maps �ji (2).

�ji =
∑

sji ⋅ S . (2)

These features maps are used for the weight initialization for the visual model.

Fig. 2. Visual filter learning process during tracking.

The weights wji are computed by the Moore-Penrose Inverse + of �ji:

wji = �+
ji g with g = exp

((
−x2 − y2

)
/�2
)
. (3)

Afterwards an additional pruning step is conducted for those weights wji with
positive values. The step removes false positive wji and corresponding �ji and
recomputes wji again.The initial response of fj is determined by a saliency map
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yj (4) that is defined by the linear combination of wji and �ji.

yj =
1

c j
⋅
nsel
j∑

i=0

wT
ji �ji . (4)

The weighting coefficient cj is derived by a weighted mean (5) from the expected
center activity aj in the initial phase.

cj =
∑
x,y

g ⋅
nsel
j∑

i=0

wT
ji �ji and aj =

∑
x,y

yj ⋅ g = 1 . (5)

During the tracking the centered image is convolved with fj according to equa-

tion (4) and the resulting center activity a
′

j is compared to aj . A new filter is
inserted, if the current yj does not fulfill the object constancy hypothesis i.e.

a
′

j < �1. This means during the observation of an object the method integrates
several subviews fj∗ into one visual classifier Fk related to yj∗ (6).

yj∗ = max
j

(yj) and aj∗ =
∑
x,y

g ⋅ yj∗ . (6)

2.2 Fusion and initialization of new visual filters

During a saccade an evaluation step is conducted that decides whether a new
filter should be added or already learned filters should be used. Besides the
integration of different views of an object during the tracking, a fusion combines
learned filters with two strategies. The first strategy approves the center activity
a
′

j∗ and decides if an already learned classifier Fk for object k is used again for
the filtering process for the current observed object with Fk = Fk ∪ {fj∗}. If
more than one visual filter F responses above a defined threshold �2, they are
combined into one classifier Fk = Fk∪Fl. In the case that no classifier is available
for the current observed object (a

′

j∗ < �2 ), a new visual classifier is defined by
Fk+1 = {fj∗}.

3 Evaluation

The evaluation of our method bases on a video sequence that shows a person
who demonstrates a cup stacking task. A saccade movement is determined from
a saliency map that is computed by color, orientation, motion and intensity. An
inhibition of return leads to a gaze selection that have not been attended before.
A new saccade is triggered each second and separates the demonstrated task in
tracked sequences. Those tracked sequences are removed from the dataset with
more than one object in the center. A learning from multiple objects will be one
aspect of the further development of the proposed algorithm. For the extraction
of SIFT features, we resize the images from 525x525 pixels to 159x159 pixels and
compute them with � = 2. A SIFT vector describes each pixel in 8 orientations
for 4x4 spatial bins. The gaussian kernel g is computed with � = 0.05.
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Fig. 3. Example of the one-shot learning method (from left to right). The im-
age shows a hand (green circle) in the current centered observation. The im-
age 1 shows the saliency map yj of the one shot learned model with w =
(0.57,−0.08,−0.08,−0.11,−0.07,−0.02,−0.03,−0.10), aj=1 and cj=0.11. The image
2 shows the maxima extraction and feature map �s0 (see eqn. 1). The green square
shows sj0. Red squares mark sji for the inhibition and corresponding �ji (3-9) (see
eqn. 2) are shown.

3.1 One shot learning method and insertion of subviews

At first we evaluate the performance of a learned one-shot visual model fj and
the insertion of subviews j into one classifier Fk during a tracking step. The
performance of both is compared to the performance of a simple visual model
fj0 without an inhibition of peripheral observations with sj0 and wj0 = 1. An
example of the one-shot learning method is shown in figure 3. The comparison
of image 1 and 2 shows that the learned visual model inhibits regions like the
face and cups and enhances the specificity in the center field.
Figure 4 shows the integration of additional filters fj with respect to changing
views of a hand. The insertion is marked with enlarged pictures (from left to
right). The phases 1 and 2 marks the center activity a

′

j∗ before and after the
insertion and corresponding saliency maps yj∗ . In a first step fj is learned by one-
shot and three additional filter models are gradually inserted into one classifier F.
Phase 1 shows that the current filter is no longer valid and a

′

j∗ decreases. In phase

2 the center activity a
′

j∗ is improved by the insertion of fj . The modification of
the filter model leads again to a specific response to the observed hand.

In order to evaluate the performance of our approach, we compare the different
averaged center activities of fj0, fj and the resulting classifier Fk. The visual
filter fj0 and fj are derived from the first image of the tracked sequence from
the insertion process. The performance is tested on two datasets which contain
true positive tp and true negative tn hand samples (see fig. 5) in the center view.
The top right dataset contains 33 (tp) samples and the dataset bottom right
contains 22 (tn) samples without the appearance of a hand. Both activities of
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Fig. 4. Example of insertions (gray) of fj during tracking into one visual classifier Fk.
Image 1 shows the corresponding y∗j (below the threshold �1 = 0.9). Image 2 shows
corresponding y∗j after insertion.

the simple model fj0 show a high value to both datasets. The generalization of
detecting hands of this classifier is high. But also reveals a high activity with
respect to the absence of a learned hand model. In contrast to this, fj and Fk

suppresses the activity for objects to other classes. Both show a high activity to
different hand views, where Fk performs better than fj .

Fig. 5. Comparison of a simple visual model fj0 (green), fj (blue) and Fk (red) with
respect to averaged aj∗ . Images at top comprise samples with hands. Images below
comprise samples of different attended locations.

3.2 Fusion of visual models

In a first step, we show the fusion process of two visual classifiers F. The eval-
uation bases on six tracked sequences that captures a left and a right hand. In
a second step, we apply our learning method on tracked sequences that exhibit
different objects. The fusion of visual classifiers is depicted in figure 6 (from
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Fig. 6. Fusion of visual models during tracking and corresponding aj∗ with �2 = 0.75.
Different color bars show the decision phases of the filter learning process during a
saccade. The red bar marks a complete new a visual filter, brown for the fusion of a
new learned visual model with an already learned visual model, gray for the insertion,
green marks the fusion of two already learned visual filters with a new learned one-shot
model. On the right hand side the corresponding saliency maps y∗j are shown.

left to right). The small image patches show always the starting position of the
tracking. The different phases of the learning method are depicted and colored.
The corresponding filter response yj∗ is shown on the right hand side. The black
and blue line shows the activity course for the left and right hand. In phase
1-2 learned one-shot models are fused in an improved visual classifier for the
left hand. In phase 3 a new filter for the right hand is extracted. In phase 4
and 5 already learned filters are fused again for a separate recognition of both
hands. In phase 6, both filters for the left and right hand show a similar activity
a
′

j∗ > �2 and fuse into one visual classifier. The resulting saliency map is shown
in image 6. The filter is now able to classify both hands. The filter learning dur-
ing the tracking of different objects is depicted in figure 7 (from left to right).
These objects are cups, hands and faces. We evaluate 15 sequences that result
into 6 visual classifiers. The figure shows the activity a

′

j∗ of learned visual filters
during a saccade and the corresponding location for gaze fixation. The learning
process incrementally adds new visual classifiers, where the activities are shown
with colored bars. The filters for the right and left hand slowly converge into
one classifier. The responses of other filters show less activities in case of fixating
hands. Cups and faces also develop visual filters and show less activities with
respect to the absence of a learned visual model.

4 Conclusion

In this paper, we propose a new method for a visual filtering process that learns
incrementally a view-based object representation. Based on a saliency compu-
tation, our approach assumes a minimum of requirements and learns a set of
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Fig. 7. Activity of different learned visual filters during scanning the scene with �1=0.9
and �2=0.75. After a fusion (green bar), the left hand filter responses to further observed
objects and shows a hight activity to hands.

saliency filters. Our method shows accurate results with respect to the absence
of a learned model. Secondly, our method improves a visual model during the
tracking by insertions of different views. Thirdly, the proposed fusion method
combines several classifiers and enables a recognition of two hands that are sep-
arately recognized in an initial learning phase.
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