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Abstract—Recently, a model-based depth estimation tech-
nique has been proposed, which estimates surface model
parameters by means of Hooke-Jeeves optimization. Assuming
a parametric surface model, the parameters best explaining
the perspective changes of the surface between different views
are estimated. This constitutes a fitting of models directly into
stereo images, which is in contrast to the usual approach
of fitting models into pre-processed disparity data. In this
paper, we conduct a comparison of the image fitting based
on Hooke-Jeeves, an image fitting based on gradient descent
and a disparity fitting based on RANSAC. We show that the
image fitting based on Hooke-Jeeves as well as the image fitting
based on gradient descent are sensitive to occlusion. However,
we also propose a simple pre-processing that eliminates this
problem. Our experiments revealed that all three approaches
have a similar depth accuracy. However, tests under challenging
conditions show that the fitting based on Hooke-Jeeves is more
robust than RANSAC and gradient descent.
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I. INTRODUCTION

A lot of approaches in computer vision involve the fitting

of planar models. There are two main applications of plane

fitting. The first is to improve depth maps generated by

a traditional correlation-based stereo processing. The key

assumption here is that homogeneous image regions are

likely to be planar. As correlation-based stereo is prone to

produce errors or holes in homogeneous regions because of

the weak texture, the planar fitting of disparity values leads

to a robust fill-in for such areas. On the other hand planar

fitting is used in many systems to estimate the orientation

of planar surfaces.

A naive approach for fitting a surface model into 3D

data or a disparity map is a least squared error fitting,

but this is seldom done because it is very sensitive to

outliers. To account for this problem the random sample

consensus (RANSAC) [1] has been developed. The main

idea of RANSAC is to find an outlier-free subset of the

data points by testing a set of hypotheses. These hypotheses

are generated from randomly sampled data points. Because

of its simple yet powerful nature, RANSAC has become

a common tool for fitting surface models to range data,

especially planar models [2], [3].

Fitting models into disparity has one major drawback. It

depends on the quality of the pre-processed stereo disparity

maps. If the stereo processing fails for a larger area due

to strong ambiguities then the model fitting will likely fail.

In these challenging situations it is advisable to incorporate

the surface model directly into the correspondence search in

order to increase the robustness of the depth estimation itself.

This could also be interpreted as fitting the surface model

directly to the stereo images. State-of-the-art approaches

[4], [5] do this by applying a homography [6] mapping.

A homography describes the mapping of planar surfaces

between different camera views. The parameters of the

homography are usually estimated by means of gradient

descent.

Unfortunately, approaches based on the homography map-

ping are restricted to planar surfaces. Moreover, for surface

models others than planes it is very difficult to derive

the necessary equations for gradient descent. In order to

circumvent the need for complex gradient formulas, Einecke

et al. proposed a method [7] based on the Hooke-Jeeves

optimization [8]. As Hooke-Jeeves does not use gradients

for the optimization process it is quite easy to change the

formulas for fitting other parameterizable surface models.

The only thing that has to be done, is to describe the

perspective mapping of a surface model between different

camera views. Einecke et al. exemplary demonstrated this

for planes, spheres and cylinders and showed that model

parameters can be estimated accurately. However, they did

not compare their results to other approaches.

In this paper, we compare the fitting of models into

stereo images based on Hooke-Jeeves, fitting to images

based on gradient descent and model fitting into disparity

data based on RANSAC. We limit the comparison to planar

surfaces in order to have a fair comparison between all

three approaches. We show that image fitting methods are

sensitive to occlusion but we present a simple pre-processing

that eliminates this problem. Furthermore, our experiments

highlight that image fitting techniques are indeed superior to

disparity fitting techniques for images with strong ambigui-

ties. Moreover, we show that the fitting based on Hooke-

Jeeves optimization is more robust than gradient based

approaches.

II. PLANE FITTING METHODS

In this paper, we compare three different methods for

planar fitting: fitting to stereo disparity data using random
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sample consensus (RANSAC), fitting to images by gradient

descent and fitting to images by Hooke-Jeeves optimization.

A. RANSAC

The most straightforward way of fitting a plane into stereo

disparity data is to apply a least squared error (LSE) fitting.

It is well known, however, that LSE fitting is very sensitive

to outliers. Hence, these outliers have to be removed. A

common approach for this is the RANSAC [1] method,

which comprises three basic steps:

1) Randomly select just enough data points for the model

parameter calculation, i.e. three data points for a planar

model.

2) Analytically determine the model parameters from the

selected data points.

3) Calculate the size of the census set. This set consists

of all data points whose distance from the estimated

model is below a threshold δ.

These steps are repeated for a certain number of times.

Afterwards the largest census set is used for fitting the

model, e.g. by means of LSE fitting.

B. Gradient Descent

As explained above, stereo estimation itself can only be

improved by incorporating the surface models directly into

the correspondence search. The reason is that this allows

for larger patch sizes to be matched. A common way of

doing so is to incorporate a homographyH which describes

the transformation of a planar surface between two camera

views. The goal is to estimate the homography parameters

that best describe the observed mapping of an image region

S. For two stereo images IL (left) and IR (right), this

estimation is described by the minimization

min
p

∑

x∈S

(

IL(x) − IR(H(x,p))
)2
, (1)

where H(x,p) is the homography mapping of the image
coordinates x with the parameters p. Deriving (1) for the ho-

mography parameters p leads to an iterative gradient descent

which is very similar to the image registration proposed by

Lucas and Kanade [9]. For example Habbecke and Kobbelt

[4] elaborated on this idea using a Gauss-Newton style

matching and approximated partial image derivatives. In this

paper, we use the traditional approach of Lucas and Kanade

for comparison. This becomes possible as the perspective

changes of a plane reduce to an affine warping for rectified

stereo images with horizontal epipolar lines

min
A,da

∑

x∈S

(

IL(x) − IR(Ax + da)
)2

. (2)

Here A describes the scaling and the shear and da describes

the translation. For the planar estimation in a parallel camera

setting only three parameters are of interest p = (p1, p2, p3),

A =

(

p1 p2

0 1

)

, da = (p3, 0)T . (3)

C. Hooke-Jeeves Optimization

A major drawback of the homography estimation is its re-

striction to a planar model. Recently, Einecke et al. proposed

a surface fitting [7] based on Hooke-Jeeves optimization

that overcomes this limitation. The starting point for this

approach is also the minimization (1). However, instead of

the homography, they use the basic stereo mapping equation

uR = uL − b
f

z

(

1
0

)

, (4)

where b and f are the baseline and the focal length of the

stereo camera system. By means of the above equation a

pixel uL from the left camera can be mapped to a pixel

uR in the right camera using the depth z. In order to map

a parametric surface, z has to be described in terms of the

surface’s parametric description. This means that the 3-D

formulation of a surface has to be rearranged for z. For a

planar model this leads to

z = f
xa sinαy − ya tanαx + za cosαy

uLx sin αy − uLy tan αx + f cosαy

. (5)

In this equation (xa, ya) is the 2-D anchor point of the plane
which can be chosen freely. The parameters to estimate are

the depth za of the anchor point and the orientation (αx, αy)
of the plane. Mapping formulas for spheres and cylinders are

described in [7].

Please note that all three methods (RANSAC, gradient

descent and Hooke-Jeeves) are comparable with respect to

the complexity of the estimation. All three methods have to

estimate three model parameters. Of course these parameters

can easily be transformed from one algorithm’s domain to

the domain of the other algorithms, which is necessary in

order to compare the different methods.

III. EXPERIMENTS

In this paper, we use two different sets of stereo images

for comparing and evaluating the three plane fitting methods.

Firstly, we use the Venus, Bull, Sawtooth and Poster scenes

(see Fig. 1) from the Middlebury stereo evaluation data sets

[10]. These scenes consist solely of planar surfaces which

makes them well suited for the analysis of planar fitting.

In order to test the fitting performance of the different

approaches under more realistic conditions, we refrained

from using a hand segmentation of the scene. Instead, we

applied a simple region growing to the left camera images.

From these regions we selected the ones with more than

100 pixels (see Fig. 2). The other regions are ignored in the

following evaluations. This first setup assesses the general

performance of the three methods and how well they can

cope with partial occlusions. Note that we compare the

methods on the basis of the disparity error and not the planar

parameter error because this is more expressive for the actual

performance.
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Figure 1. Left images of the Venus, Bull, Sawtooth and Poster scene.

(a) Venus (b) Bull

Figure 2. Segmentation of the Venus and the Bulls scene into homogeneous
regions by means of region growing. The regions are illustrated in pseudo-
colors. Regions smaller than 100 pixels are discarded and shown in black.

The second setup consists of some stereo camera images

taken from within a car while driving. The task for the three

plane estimation methods is to estimate the position and

orientation of the street. We use the challenging images of

a wet street which exhibits many distracting reflections.

A. General Performance and Occlusions

When we started our evaluation, we quickly found out

that approaches that fit models into images are prone to

fail for regions that are partially occluded in the other

image. For example Fig. 3 shows the resulting disparity

and disparity error maps for the Venus scene for gradient

descent and Hooke-Jeeves optimization. It can be observed

that both methods tend to wrongly estimate the orientations

of background regions near occluding objects. This effect is

most striking for the region above the newspaper (brownish,

triangular region in Fig. 2a).

An analysis of the problematic regions revealed that the

main reason for the bad performance are the usually large

intensity differences between a background region and its

occluder. As parts of an occluded region are only visible

in one camera image, a correct warping from one camera

image into the view of the other camera image will lead to

an overlay of completely different intensity values. This in

turn will lead to large errors in the squared error distance of

the minimization equation (1). As a first solution, we tried

to replace the squared error by other error measures. The

best results were achieved with truncated error measures.

However, truncated measures are unsatisfactory because the

threshold for truncation is not stable over different scenes.

In search of a better solution, we came up with an old idea

(a) (b)

(c) (d)

Figure 3. The first row shows the disparity maps of the Venus scene
for planar image fitting using a) gradient descent and b) Hooke-Jeeves
optimization. The planar fitting was applied to each region shown in Fig. 2a.
For better visualization c) and d) show the disparity error maps (pixel-wise
absolute difference to ground truth). The error is encoded by intensity, large
errors (more than 2 pixels disparity) are shown in white and small errors
in black. These results were achieved using the plain gray images. They
highlight the usual tendency of image fitting methods to fail for partially
occluded regions.

that is usually used to make correspondence search between

stereo images invariant to illumination changes.

We found out that normalizing the stereo images reduces

the intensity difference to a level were it does not disturb

the surface matching. In particular, we normalize the images

by:

Inormx =
Ix − µx

σx

, (6)

where

µx =
1

|N(x)|

∑

x′∈N(x)

Ix′ , (7)

σx =

√

√

√

√

1

|N(x)|

∑

x′∈N(x)

(Ix′ − µx)2 . (8)

This means that for each pixel x, we calculate the mean

intensity and the intensity variance in its neighborhood

N(x). By subtracting the mean and dividing by the standard
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(a) (b)

(c) (d)

Figure 4. Similar to Fig. 3 the disparity and disparity error maps for
Hooke-Jeeves and gradient descent planar image fitting are shown. In
contrast to Fig. 3, mean and variance normalized images were used for
matching. It demonstrates that image normalization is able to dramatically
reduce the occlusion problem for image fitting methods.

deviation the pixel is normalized. We found that the normal-

ization is most effective for small neighborhoods. Here we

use a neighborhood of 3x3 pixels.

The significant improvement for both gradient descent

and Hooke-Jeeves using the normalized images is shown

in Fig. 4. Comparing the error maps of gradient descent

and Hooke-Jeeves without image normalization (Fig. 3c and

3d) to the resulting error maps with image normalization

(Fig. 4c and 4d) shows a clear improvement. These results

demonstrate that image normalization dramatically reduces

the occlusion problem for image fitting methods.

It is important to note, that the improvement cannot be

explained by a reduced difference of corresponding pixels.

Firstly, the Venus scene was taken under ideal conditions,

i.e. corresponding pixels have almost the same intensity.

Secondly, the improvement vanishes if larger neighborhoods

are used for mean and variance calculation. Last but not

least, wrongly estimated planar fittings would not populate

around depth discontinuities but rather distribute equally all

over the image. The actual reason for the improvement is

that the normalization makes pixels within one image more

equal. Thus, the influence of strong contrasting structures,

like the strong contrast edge between the bright newspaper

and the dark background, is reduced.

Now that the occlusion problem is resolved a reasonable

comparison of the image fitting methods to disparity fitting

based on RANSAC is feasible. Table I compares the per-

formance of the three approaches for the four Middlebury

test scenes. Here we calculated the percentage of bad pixels

[10] for the estimated planar surfaces for an error threshold

of 0.5. These results show that all three approaches have a
similar performance.

Table I
PERFORMANCE OF THE THREE PLANE FITTING METHODS RANSAC,
GRADIENT DESCENT AND HOOKE-JEEVES. THE PERFORMANCE IS
MEASURED BY THE PERCENTAGE OF BAD PIXELS, I.E. PIXELS WHOSE

DISPARITY DIFFERS MORE THAN 0.5 FROM GROUND TRUTH.

scene RANSAC gradient
descent

Hooke-
Jeeves

Venus 1.42% 1.65% 0.37%
Bull 1.37% 1.68% 1.68%

Sawtooth 8.24% 7.55% 7.05%
Poster 5.20% 8.49% 5.44%

Figure 5. This figure shows the error maps of gradient descent fitting (left)
and Hooke-Jeeves fitting (right) with fixed initialization at 10 disparity. It
is clearly observable that the image fitting based on Hooke-Jeeves is much
less sensitive to initialization as compared to gradient descent fitting.

In contrast to RANSAC, image fitting approaches based

on gradient descent or Hooke-Jeeves need some initial guess

of the parameters. Thus, an important criterion for image

fitting approaches is the robustness against the initialization.

So far we initialized the fitting with a fronto-parallel as-

sumption and the starting disparity was acquired by standard

patch matching. In order to test how well gradient descent

and Hooke-Jeeves can cope with errors of the initialization,

we applied them again on the Venus scene but this time

the initial disparity was fixed to 10 pixels disparity. The
resulting error maps in Fig. 5 demonstrate that Hooke-Jeeves

can cope very well with such a bad initialization. On the

other hand, gradient descent gets stuck in a local minimum

for many regions. The sensitivity of gradient descent image

fitting could be reduced with a resolution pyramid. However,

the results show that in most cases such a costly processing

is not necessary for the Hooke-Jeeves optimization.

B. Performance under Heavy Distortions

The general claim of image fitting approaches is that by

integrating over larger image areas for fitting, the robustness

is improved and the aperture problem reduced. In order to

test this hypothesis, we recorded a short stream (320 frames)

with a camera system mounted on a car. The stream was

recorded under rainy weather condition. The goal for all

three approaches is to estimate the planar parameters of the

street in front of the car.

Fig. 6a shows exemplarily one frame of this rain stream.

As can be seen in Fig. 6b the traditional correlation-based

stereo processing struggles to find correct correspondences.

The reason for this is the superposition of the street structure
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(a) (b) (c)

(d) (e) (f)

Figure 6. a) Wet street with a mirror-like state and b) disparity map of traditional stereo. c) Image region for which the planar fitting is done. Resulting
disparity maps: d) RANSAC, e) gradient descent f) the method based on Hooke-Jeeves.
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(a) RANSAC
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(b) Gradient Descent
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(c) Hooke-Jeeves

Figure 7. These plots show the angular error of the estimation of the pitch angle of a camera mounted in a car. The stereo images were taken under
rainy weather condition (see also Fig. 6).

with the image of the surrounding because of the mirror-

like state of the street. Due to the bad performance of the

correlation-based stereo, the RANSAC fitting is prone to fail

to find a reasonable estimation of the street. Fig. 6d shows

that the fitted plane is very skewed. In contrast to this the

result of gradient descent (see Fig. 6e) and Hooke-Jeeves

(see Fig. 6f) are much better. However, in this frame gradient

descent was not able to find the correct inclination of the

street.

We applied all three methods to the 320 frames (32

seconds) of the rain stream. In order to assess the robustness

of the plane fitting under these challenging conditions,

we evaluate the so-called pitch angle. The pitch angle is

used in many intelligent vehicle approaches, for example

as an additional input for obstacle segmentation in order

to account for camera rotations relative to the street. This

angle changes when the car accelerates, decelerates or due

to small irregularities on the street’s surface. Here, we have

no ground truth of the pitch angle, but we know that it

closely varies around 90◦ because the angle between camera
and street is roughly 90◦ when the car is standing still.
By means of this knowledge, we can calculate an angular

error that should be close to zero but is allowed to have

small deviations from this as long as it is a smooth change.

Fig. 7 shows the angular error of the pitch angle for all three

methods. For better contrast we clipped angular errors larger

than 50◦.

The first thing that strikes is that RANSAC and gradient

decent fail to estimate the pitch angle between frame 80

and 200. This is the most difficult part of the stream with

heavy reflections as seen in Fig. 6a. In contrast the estimation

with Hooke-Jeeves produces good results with only a few

outliers for the whole stream. For the frames before 80 and

after 200 the three approaches have roughly the same per-

formance. This shows that in principle all three approaches

have a similar performance but under difficult conditions

502496



the estimation based on the Hooke-Jeeves optimization is

more robust than RANSAC or gradient descent estimation.

However, the results have to be seen with same caution.

The performance of the gradient descent and Hooke-Jeeves

optimization depend on the initialization. In order to be fair

for RANSAC we initialized the search for gradient descent

and Hooke-Jeeves at 70◦, i.e. with an initial error of approx-
imately 20◦. This is in general close enough for gradient
descent but not so close that the estimation becomes too

easy with respect to the RANSAC estimation. Nevertheless,

a more thorough analysis has to be done in future work

in order to investigate the degradation of the image fitting

approaches with respect to a decreasing accuracy of the

initialization. On the other hand a processing on image

streams allows for a temporal integration or tracking [11]

over time which limits the necessity of a good initialization

to the first frames.

IV. SUMMARY

In this paper, we compared a recently proposed method

based on Hooke-Jeeves optimization for fitting planes di-

rectly to stereo images to a gradient descent approach for

fitting planes into images and to RANSAC for fitting planar

models into pre-processed disparity maps. We showed that

the image fitting approaches tend to give wrong estimates

for partially occluded surface regions. However, we also

showed that this problem can be eliminated by a simple

normalization of the stereo images. Our experiments also

revealed that Hooke-Jeeves is much less sensitive to initial-

ization as compared to gradient descent. This makes a costly

processing on multiple scales superfluous.

Furthermore, we compared the overall performance of the

three approaches. RANSAC, gradient decent and Hooke-

Jeeves perform quite good for most situations. However, in

challenging scenes RANSAC occasionally fails due to the

bad performance of the stereo estimation step. In these cases

the image fitting methods should be advantageous as they

base their correspondence search on larger image patches.

Surprisingly, we could only observe this improvement for

the image fitting based on Hooke-Jeeves. The gradient based

approach failed. This could be related to the sensitivity

of gradient descent against the initialization and should

be analyzed more in detail in future work. Altogether, we

conclude that RANSAC, gradient descent and Hooke-Jeeves

show a similar performance for most situations but the image

fitting based on Hooke-Jeeves produces more reliable results

than RANSAC for heavily distorted images and is less

sensitive to initialization compared to gradient descent.
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