
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Biased competition in visual processing
hierarchies: a learning approach using multiple
cues

Alexander Gepperth, Stephan Hasler, Sven Rebhan,
Jannik Fritsch

2010

Preprint:

This is an accepted article published in Cognitive Computation. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Cognitive Computation manuscript No.

(will be inserted by the editor)

Biased competition in visual processing hierarchies: a

learning approach using multiple cues

Alexander R.T. Gepperth · Sven Rebhan ·

Stephan Hasler · Jannik Fritsch

Received: May 1st, 2010 / Accepted: XX

Abstract In this contribution we present a large-scale hierarchical system for object

detection fusing bottom-up (signal-driven) processing results with top-down (model or

task-driven) attentional modulation. Specifically, we focus on the question of how the

autonomous learning of invariant models can be embedded into a performing system,

and how such models can be used to define object-specific attentional modulation

signals.

Our system implements bi-directional data flow in a processing hierarchy. The

bottom-up data flow proceeds from a preprocessing level to the hypothesis level where

object hypotheses created by exhaustive object detection algorithms are represented

in a roughly retinotopic way. A competitive selection mechanism is used to determine

the most confident hypotheses, which are used on the system level to train multimodal

models that link object identity to invariant hypothesis properties.

The top-down data flow originates at the system level, where the trained mul-

timodal models are used to obtain space- and feature-based attentional modulation

signals, providing biases for the competitive selection process at the hypothesis level.

This results in object-specific hypothesis facilitation/suppression in certain image re-

gions which we show to be applicable to different object detection mechanisms.

In order to demonstrate the benefits of this approach, we apply the system to the

detection of cars in a variety of challenging traffic videos. Evaluating our approach on

approximately 3500 annotated video images from more than 1h of driving, we can show

strong increases in performance and generalization as compared to object detection in

isolation. Furthermore, we compare our results to a late hypothesis rejection approach,

showing that early coupling of top-down and bottom-up information is a favorable

approach especially when processing resources are constrained.
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1 Introduction

Visual processing in the human neocortex is organized in a hierarchical fashion: neurons

in lower levels such as LGN and V1 and A1 have small receptive fields and are sensitive

to a very specific set of stimuli, whereas neurons in higher areas tend to have larger

receptive fields and are increasingly broad in their selectivity[31]. As a consequence,

neural activity in lower hierarchy levels is tightly coupled to sensory input whereas

higher-level neurons may well respond to rather abstract categories and concepts[31].

It has long been known that information processing in such hierarchies is bi-directional,

consisting of a bottom-up (away from sensory input) and a top-down (towards sensory

input) component[12, 17], and this has been linked to accounts of attentional modula-

tion, i.e., the selective and large-scale enhancing or suppressing of neuronal responses

in accordance with task demands[14, 22, 32]. For visual processing, there seem to exist

at least two concurrently active mechanisms of attentional modulation: space-based at-

tention which enhances certain locations in the visual field and feature-based attention

which is not localized but affects all populations of neurons representing a particular

visual property[11].

Since cortical neurons, especially at high hierarchy levels, compete strongly with

each other for representing the current stimulus, it has been proposed that local facili-

tation or inhibition of neural responses by top-down signals can explain the pronounced

effects of attentional modulation simply because small local biases may result in very

different stable states of the competition process[4, 18, 28]. This biased competition [4]

account of attentional modulation has influenced many models of visual attention; we

incorporated it into our research because we found that competition between object

hypotheses is an unavoidable step for agents with constrained resources; the ”biasing”

of the existing competition mechanism is a then straightforward extension.

Since attentional modulation is observed to enhance performance w.r.t. a wide va-

riety of tasks, the question immediately arises how models for task-specific attentional

modulation are obtained. An influential concept, the so-called reverse hierarchy theory

[12] states that such models are first acquired in high levels of the processing hierarchy

and subsequently used to train task-specific responses in lower levels. We present the

method of system-level learning which implements an important aspect of reverse hi-

erarchy theory by introducing dependency models between highly invariant quantities

available on the highest level of a processing system. This is motivated by our finding

that such system-level models usually show high generalization ability.

1.1 Motivation for the presented work

Our experience with cluttered and uncontrolled traffic environments suggests that

purely appearance-based (i.e. based on local pixel patterns) object detection suffers

from significant ambiguities: the more complex a scene is, the higher is the probability

that some local pixel pattern will be similar to the object class of interest. In order

to overcome this difficulty, we claim that object-specific models relating appearance-

based visual information to non-local and non-visual information must be taken into

account to achieve the required disambiguation. For convergent, hierarchically orga-

nized systems, this implies that such models can only be formed at high hierarchy

levels where the required information is available. The idea of system-level learning

(see also [8]) is to represent all quantities available at the highest hierarchy level in a
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common way in order to use a single, scalable learning algorithm for detecting corre-

lations. The focus of this article is to use system-level models for generating and using

expectations to generate attentional modulation: given a search cue, e.g. a certain ob-

ject identity, system-level models are queried for features correlated with this identity,

and the resulting expectation is used to define attentional modulation.

1.2 Research Questions, claims and messages

Based on our experience with object detection in complex traffic scenes, we formulated

a number of hypotheses. which this article will investigate based on a hierarchical car

detection system system as shown in Fig. 1. We evaluate the system in challenging

real-world situations using extended annotated video sequences 1.

Fig. 1 Illustration of the basic structure and the inherent novel points of the presented
system. 1) Learning of multi-modal system-level models for generating attentional modulation
during system operation 2) Application of system-level models for attentional modulation.
What kinds of models are learned effectively depends only on the processing results that are
supplied to the system-level learning mechanism.

.

Hypothesis 1: Detection performance The goal of this article is to demonstrate that

attentional modulation signals can be derived from system-level models, and that their

application to lower hierarchy levels results in strongly increased performance in object

detection, as well as in significant generalization ability. The beneficial effect of suitable

1 We will make available the videos and annotations described in this article to researchers
upon email request to the first author
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attentional modulation has been established in previous studies[33] in simple environ-

ments, and without using learning; our goal is to show that the benefit is even more

pronounced in complex outdoor situations, and that learning attentional modulation

is both feasible and efficient.

Hypothesis 2: Generality We advocate the view that biased competition[4] is a common

mechanism for attentional modulation in neocortical hierarchies. In order to demon-

strate this particular point, we conduct experiments with a symmetry-based object

detection method and show that it can be successfully controlled by attentional mod-

ulation using a common competitive selection mechanism.

Hypothesis 3: Robustness We aim to show that the fusion of modulation signals is

feasible, computationally efficient and increases robustness especially in difficult envi-

ronments. Although the issue of fusing multiple modulation signals has been studied

in indoor settings (see, e.g., [13, 35]), our goal is to verify the benefits in a challenging

outdoor scenario. In particular, we intend to demonstrate that performance is unaf-

fected by the inclusion (or omission) of uninformative modulation signals when using

our fusion approach.

Hypothesis 4: Efficiency We hypothesize that the concept of applying attentional mod-

ulation early in a processing hierarchy is a consequence of constrained resources. We

verify this by comparing the object detection performance of our system under strong

resource constraints when using attentional modulation versus when using a naive

high-level rejection approach.

Hypothesis 5: Bootstrapping This article aims to show that successful training of system-

level models can occur using a self-generated supervision signal. Bootstrapping is a

well-known and nontrivial issue (see, e.g., [21, 29]); However, a system capable of boot-

strapping will be truly capable of autonomous learning in an embodied agent, which

will eliminate the effort of creating supervision signals completely.

1.3 Related work

Visual attention has been subject of intense research in the recent decades, resulting

in a number of theoretical models such as Guided Search 2.0[40], Selective Tuning[34]

or Biased Competition[4].

A large number of computational models were proposed subsequently, which we

will review in this section, focusing mainly on approaches that address learning of

attentional modulation.

A strictly feature-based attention model was proposed by [16]. It focuses on feed-

forward processing and lateral competition, either in the form of center-surround fil-

tering or explicit competition mechanisms. This model was applied in numerous real-

world scenarios, e.g., [15], for goal-driven scene analysis[25] or fast object detection and

recognition[37]. While the work described in [25] employs high-level semantic models

of object-to-object or object-to-goal relations to guide visual attention to behaviorally

important locations, these models are specified by a designer and not acquired through
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learning. The work of [37] couples an exhaustive object detection mechanism to signal-

driven saliency with beneficial results. In this approach, object-specific models enter

only through training the object detection mechanism.

The coupling of object detection and contextual information mediated by low-level

modulation is demonstrated in [24] where context information about the ”gist”, i.e.,

a low-dimensional description of a scene, is used to infer the locations of relevant

objects in images by statistical models constructed from training examples. In this

work, learning is achieved by computing statistical models about the location and size

of objects depending on scene gist in an offline fashion. The concept of gist is taken

further in [13] where a generic probabilistic model of 3D scene layout is proposed

that can be queried for likely image locations of, e.g., cars or pedestrians in order

to inform an exhaustive local object detector. This work is interesting because the

images used to reason about 3D scene layout were actually monocular. Furthermore,

object detection may not only be guided by global scene properties but also by other

objects in the scene: in [3], a discriminative model of local object-to-object interaction

is proposed that formalizes cooperation and competition between local detections of

multiple object classes and gives a probabilistic interpretation of this process. Lastly,

object detection may also be regarded as an active process in which the performed gaze

actions (i.e., object detections) should maximize information acquisition. Based on the

saliency map approach of [16], a POMDP formalism is used in [35, 36] to optimize

gaze target selection based on the detections arising from previous gaze targets, visual

saliency and global scene priors.

The Selective Tuning Model, originally proposed in [34], was integrated into a num-

ber of computational attention models. The focus of these models is, on the one hand,

on explaining cognitive phenomena such as feature binding in cortical hierarchies[30]

and, on the other hand, showing real-world capability using, e.g., visual motion as

attentional cue as demonstrated in[33]. Methodically, the Selective Tuning model is a

feature-based model that emphasizes the importance of lateral competition (modeled

by winner-takes-all mechanisms) and top-down feedback signals. The models used to

generate attentional modulation signals are not obtained by learning but chosen ”by

hand”. Qualitative evaluation is performed on indoor scenes to validate and demon-

strate the used models.

Attentional models more strongly motivated by neural processing can be found in

[2, 9, 10]. All employ neural dynamics as a key ingredient with emphasis on bottom-

up and top-down data flow in recurrent architectures. A key issue in [9, 10] is the

interplay and fusion of bottom-up and top-down information, where the realization of

biased competition by the modulating competitive neural dynamics is central to the

work of [2]. Whereas the attentional effects obtained in [2] are purely feature-based,

the models of [9, 10] include aspects of space-based attentional modulation as well.

Evaluation is performed on still-images of indoor scenes in [9, 10] and by an analysis

of single-neuron responses in [2]. Both models do not emphasize learning but employ

fixed models for generating attentional modulation.

Another group of attention models focuses on feature-based, object-specific selec-

tivity through learned search models, as well as applicability in real-world scenarios.

Whereas the work of [23] focuses on car detection in road traffic scenarios, the VOCUS

model[6] targets mobile robotics applications. Both approaches use an offline opti-

mization procedure to generate feature-based object search templates based on small

numbers of image patches. These templates are fused with a bottom-up attention sig-
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nal similar to [16] such that both visual saliency as well as proximity to the search

template may trigger object detection.

Fig. 2 Global structure of the described hierarchical object detection system. Functional mod-
ules are object detection (A,B), stereo processing (C), free-area computation (D), competitive
hypothesis selection (E) and population encoding (F). Attentional modulation is trained at
the system-level (G), linking hypothesis identity to elevation, distance, distance-to-free-area
and 2D image position (F). System-level training happens in a supervised way using ”true”
object identities supplied by ground-truth data. Given an arbitrary desired object identity (the
search cue), attentional modulation is applied to the hypothesis level of object detection, thus
favoring the detection of objects of the desired identity. Data flows from symmetry detection
(A) to other modules are identical to data flow from the appearance-based classifier (B) but
are not shown for clarity. For comparison, we also implemented a ”late rejection” module at
system level (H) which uses a multilayer perceptron for directly (without influencing lower
system levels) mapping population-coded quantities produced at the hypothesis level to an
object identity decision.
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Fig. 3 Transfer of different types of measurements to population codes. The particular type
of measurement determines how it is translated into a population code. A) a discrete distri-
bution from, e.g., an object classifier, is translated into a population code where only certain
locations carry information. B),C) Quasi-continuous one-dimensional measurements (e.g., ob-
ject elevation and distance) are encoded into population codes that are extended along one
axis. Note that the uncertainty (multimodality) of measured distributions is transferred to the
resulting population code. The precise way of encoding is determined on a case-by-case basis.

2 Methods

We present a system (see Figs. 1,2 and [7]) of significant complexity which receives

inputs from a stereo camera, the vehicle-internal CAN bus and two laser range-finding

sensors. It computes a list of entities that are judged to be relevant, i.e., cars and

vehicles. The system is not yet running in a vehicle but receives its inputs by a timestep-

based replay of recorded data, which is exactly equivalent to the way data would be

received in our prototype vehicle. Since the system is not operating on ”live” data, it is

possible to replay annotations (e.g., positions and identities of other traffic participants)

as ”virtual sensors”, that is, as if they were obtained from measurements.

2.1 Interfacing of system components by population coding

Population coding is a biologically inspired way of encoding information. Basic prop-

erties of population coding models[26, 41] are the representation of information on

two-dimensional surfaces in analogy to cortical surfaces, and, on the other hand, the

concept of storing confidence distributions for all represented quantities.

Mathematically, a population code is therefore a collection of one or several two-

dimensional lattices, where each lattice point (”neuron”) stores a normalized confidence

value corresponding to the belief that a certain property (”preferred stimulus”) asso-

ciated with this lattice point is present in the encoded information. These properties

link population coding closely to the Bayesian approach to probability[1]. In particular,

population coding represents encoded quantities as distributions over possible values,

thus implicitly storing the associated uncertainty in accordance with the ”Bayesian

brain” hypothesis[19].

In order to be able to link system-level information by learning methods as de-

scribed in Sec. 2.8, we convert such quantities into population codes. The system-level

quantities we want to encode are confidence distributions which may be either one- or

two-dimensional which we denote source distributions. The nature of source distribu-

tions may be spatially discrete (i.e., having nonzero confidence values only at certain
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Fig. 4 Performance example of symmetry-based object detection. A) Embedding into pro-
cessing system. B) Input image and generated multi-scale confidence map. A total of K = 8
scales is used for symmetry, corresponding to filters of pixel height h = 3 and half-width
w

2
= 5, 9, 13, 18, 25, 35, 49, 69. Shown are confidence maps corresponding to filter widths 5,25

and 69.

positions) or continuous as well as graded (with confidences assuming values in a range

between 0.0 and 1.0) or binary. Examples of different kinds of source distributions and

their population encoding are shown in Fig. 3. For the actual encoding, we employ the

convolution coding technique [26] using a Gaussian kernel of fixed size. In case a source

distribution is one-dimensional, we embed it into a two-dimensional distribution along

a specified axis before performing convolution coding.

2.2 The appearance-based classifier

The appearance-based classifier[39] generates object hypotheses in two successive steps.

As a first step, it generates retinotopic confidence maps as described in [38]. Each pixel

of a confidence map represents the detection of a specific view of an object (in our

case: back-views of cars) at a specific scale k = 0, . . . , K − 1. In a second step, object

hypotheses are generated from the confidence maps by the competitive selection process

described in Sec. 2.7. Details about processing and classifier training are given in [7].

2.3 Symmetry-based object detection

Just as the appearance-based classifier, symmetry-based object detection generates

object hypotheses in two steps: first, generation of a multiscale, retinotopic confidence

map and second, competitive hypothesis selection (see Sec. 2.7) based on the produced

maps. Fig. 4 shows an example of a confidence map for a given input image. Details of

the symmetry calculation can be found in [7].

2.4 Free-area computation

The free area is defined as the obstacle-free area in front of the car that is visually

similar to a road. This quantity carries significant semantic information. Since it is, by
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construction, bounded by all obstacles that the car might collide with, many relevant

obstacles are close to the boundaries of the free area. For the purposes of the presented

system, the quantity of interest is therefore the distance of an object hypothesis to the

free area. Details of free-area calculation and the transfer to population codes are given

in [7]. Please see Fig. 5 for examples of free-area computation and the transfer of the

corresponding distance-to-free-area measurement to population codes z1(p).

2.5 Distance and elevation computations

We employ dense stereo processing for measuring the distance and height of image

pixels in car-centered coordinates. For obtaining hints about the identity of objects,

such measurements are helpful but not optimal: It is not really the height relative to a

car-centered coordinate system that carries semantic information, but rather the height

over the road surface. Details about the computation of this quantity as well as stereo

Fig. 5 Performance example of free-area and distance-to-free-area computation for two object
hypotheses. A) Embedding into processing system B) Video image C) computed free area

F̃ 1(x) D) pixelwise distance-to-free area map F 1(x). Each pixel value in the map is determined
by that pixel’s minimal distance to a computed free-area pixel. Due to computational reasons,
an upper limit dmax is imposed. Note that distances are negative for pixels on the free area.
E) Population codes z1(p) obtained for two different object hypotheses.

Fig. 6 Size-dependent population encoding of hypothesis position. A) Embedding into pro-
cessing system. B) Hypothesis size determines the nonzero level in the pyramid of population
codes z0

i
(p).
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Fig. 7 Examples of stereo processing for elevation and distance calculation. A) embed-
ding into processing system B) video image with object hypothesis C) dense elevation map
F 2(x), similar to distance map F 3(x). D) population-coded elevation z2(p) resulting from
this measurement. An analogous processing generates population coded-distance z3(p). Such
population codes may be more or less strongly multimodal, thus reflecting the uncertainty of
the associated measurement.

distance computation are given in [7]. Please see Fig. 7 for an example of the transfer

of elevation (and distance) measurements to population codes z2(p), z3(p).

2.6 Position and size related analysis

Lastly, two important system-level quantities are ”retinal” hypothesis position and

size. Even though the retinal position of objects changes, for example, during turning

maneuvers (similar examples can be mentioned for retinal size), we found that these

quantities can nevertheless provide useful hints about object identity. Therefore, they

are encoded into population codes z0
i (p) at the hypothesis level of our system as shown

in Fig. 6. Details about computation and population encoding are given in [7].

2.7 Competitive hypothesis selection

Situated on the hypothesis level of our system (see Fig. 2), competitive hypothesis

selection is roughly modeled based on the way lateral inhibition operates in cortical

Fig. 8 Competitive hypothesis selection in a resolution pyramid of confidence map produced
by the appearance-based classifier. Maxima in the confidence maps (right) correspond to object
hypotheses defined by rectangular areas in the input image (left). As indicated, a maximum
with high confidence inhibits its neighborhood region across all scales.
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surfaces. It requires a resolution pyramid of K scales containing retinotopic confidence

maps ci(x), i = 0, . . . , K − 1 produced either by the appearance-based classifier or the

symmetry detection (see Secs. 2.2, 2.3), and generates up to a desired number H of

object hypotheses hj , j = 1, . . . , H. Examples of retinotopic confidence maps at several

pyramid levels are shown in Figs. 8 and 4. Selection processes described in this article

typically use a value of H = 40.

Bottom-up operation Based on the pyramid of confidence maps, ci(x), local activity

maxima are detected across all scales i ∈ [0, K]. Each local maximum with index j at

a position x∗
j and scale s∗j is interpreted as a rectangular object hypothesis centered

at x∗
j , having a width/height determined by s∗j . Based on the peak values cs∗

j
(x∗

j ), the

list of maxima is subjected to a thresholding operation to suppress weak hypotheses.

This threshold θ, θ > 0, strongly influences the number of generated hypotheses and

the types of possible errors. With increasing threshold usually more objects are missed,

while low thresholds lead to increased false detections. Competitive hypothesis selec-

tion works in a greedy fashion, i.e., the maximum with the highest peak value is chosen

first and its position and scale x∗
0, s∗0 are used to define a surrounding region of inhi-

bition (see Fig. 8) in all confidence maps ci(x). Maxima in inhibited regions cannot be

selected any more. The remaining maxima are processed in descending order, where all

hypotheses are rejected whose area intersects with an already inhibited area by more

than 75%. The process stops when the desired number of hypotheses, H , is reached

or no further local maxima remain. We discovered that the detection performance for

cars increases when using a specific region of inhibition which is higher and less wide

than the object hypothesis itself, probably because this accounts better for the typical

occlusions between cars.

Fig. 9 Typical effects of attentional modulation on classifier. A) Embedding into processing
system. B) Sample input image. C) confidence map of classifier at scale 5. Note the strong (but
incorrect) maxima indicated by the ellipse and the arrow. D) Top-down modulation image at
scale 5. E) Modulated confidence map. Note that the local maxima indicated by the arrow and
the ellipse have been merely attenuated; especially the maximum indicated by the arrow may
still be selected since there are no competing maxima nearby. In contrast, local maxima close
to the upper border of the image have been almost eliminated. Selection behavior depends
strongly on the number of allowed hypotheses, H, and the selection threshold θ.
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Integrating attentional modulation Assuming a pyramid of attentional modulation maps

mi(x), mi(x) ∈ [0, 1] ∀x, i, attentional modulation can be applied before hypothesis

selection:

cmod
i (x) = ci(x)mi(x) (1)

This process provides a systematic bias to the competitive hypothesis selection by

changing the relative strengths of local maxima in the confidence maps, thus realizing

biased competition[4]. In effect, attentional modulation enhances or attenuates local

maxima depending on their agreement with the system-level models encoded in the

modulation maps. Sufficiently strong local maxima can survive even though they are

attenuated by attentional modulation if they continue to exceed the selection threshold,

and if there are no competing local maxima within the radius of inhibition. Examples

of the ”survival” of strong local maxima can be observed in Fig. 9.

2.8 Data transmission and associative learning

We assume that positions x,y in arbitrary population-coded neural representations A,B

with activities zA(x, t), zB(y, t) (see, e.g., Fig. 3) are connected by synaptic weights

wAB
xy . The transmission of information from A to B by means of learned synaptic

connections wAB
xy is governed by a simple linear transformation rule:

zB(y, t) =
X

x

wAB
xy (t)zA(x, t). (2)

We employ a supervised learning strategy where the supervision signal can come

from annotated data or can be generated within the system (bootstrapping).

In line with our focus on simple but generic learning methods, we perform an online

gradient-based optimization of (2) based on the mean squared error w.r.t the teaching

signal for neurons in representation B. Given two neurons at positions x,y with activ-

ities zA(x), zB(y) in two population-coded representations A,B, plus a teaching signal

for representation B, tB(y), the learning rule reads

wAB
xy (t + 1) = ǫzA(x)[zB(y) − tB(y)]

≡ ǫx(y − y∗).

(3)

where ǫ << 1 is a small learning rate constant. We used the abbreviations x ≡

zA(x, t), y ≡ zB(y, t), y∗ ≡ tB(y, t) for presynaptic and postsynaptic neurons as well

as target values to obtain a more usual way of writing this learning rule.

For obtaining the expected activity in a population-coded representation B, we

simply train weights wBA
xy performing the reverse mapping B → A and thus can obtain

eA(x, t) =
X

y

wBA
xy (t)zB(y, t) (4)
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Fig. 10 System-level learning of object models. A) Embedding into processing system B)
Encoding of system-level quantities at the hypothesis level. C) Learning of the mapping be-
tween object identity and population-coded system-level quantities. Note that both directions
of the mapping are learned, i.e., one can determine the expected identity given a feature, but
just as easily the expected feature distribution given an identity. The latter case is used for
generating attentional modulation.

2.9 System-level learning of object models

Input to the system-level, the highest hierarchy level of our system, is the set of pop-

ulation codes for space/feature-based hypothesis poperties z0
i (x), z1,2,3(x) as well as

ground-truth data, i.e, information about ”true” positions and identities of relevant

objects obtained from annotations (see Sec. 2.13).

As shown in Fig. 10, the following steps are performed for each hypothesis: the

hypothesis and the feature maps are jointly used to generate population-coded repre-

sentations of hypothesis features (see Fig. 3), in this case distance, elevation, image

position and distance-to-free-area. Using ground-truth data (see Fig. 2), a population-

coded representation of the teaching signal for object identity is generated (see Fig. 3)

depending on whether there is an annotated object containing the center pixel of the

hypothesis (see [7] for details). Alternatively, the population-coded teaching signals

may also be obtained from the identity estimate provided by the appearance-based

classifier. The teaching signal is then used to update the mapping from population-

coded hypothesis features to object identity.

We perform training using a procedure called blocking: we group the stream of

hypotheses into intervals corresponding to 30s of real time and apply system-level model

training only for odd-numbered groups. The even-numbered groups are later used for

evaluation, therefore they are processed using a learning constant of ǫ = 0.0. Blocking

is a widely accepted procedure (see [20]) that allows us to train and evaluate system-

level models on all streams while maintaining a high dissimilarity between training and

evaluation sets (traffic scenes usually change strongly in 30s).

2.10 Generation of object-specific attentional modulation

This function is in many respects the reverse of the learning procedure shown in Fig. 10:

a population-coded object identity (see Fig. 3), the search cue, is specified and acti-

vation is propagated backwards through the system-level network using Eqn.(4), the
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Fig. 11 Generation of object-specific attentional modulation. A) Embedding into processing
system B) Learned reverse mapping from an object identity representation (the search cue)
to population-coded feature value distributions. C) Decoding of the population-coded feature
value distributions. For all features except xy-position, this involves a ”cutting” of the popu-
lation code along the line indicated by the gray dashed arrows. D) Generation of individual
attentional modulation maps. For all features except xy-position, this involves a lookup oper-
ation, substituting values found in individual feature maps by corresponding confidence values
from expected distributions generated in step C. E) Fusion of modulation maps by simple
addition and normalization.

search cue and the learned reverse weight matrices. In this way, object-specific expected

feature distributions ek(p) are obtained, again in the form of population codes.

For space-based attention, the reverse propagation produces a pyramid of K ex-

pected image position distributions e0
i (p), i = 0, . . . , K−1 which can be upscaled using

bicubic interpolation to obtain space-based modulation signals:

m0
i (x) = scaleN,Me0

i (p) (5)

For feature-based attentional modulation, the expected feature distributions ek(p),

k = 1, 2, 3 must first be decoded. Since each position p in a population-coded repre-

sentation is associated with a certain feature value, the expected feature distributions

can be transformed from distributions over positions, ek(p), into distributions over

feature values, ẽk(p̃n), n = 1, . . . , ν. For feature-based attention, we set ν = 1 whereas

space-based attention requires ν = 2 since we encode a two-dimensional image position.

Individual feature-based attentional modulation signals mk(x) can be generated

by a lookup operation in retinotopic feature maps F k(x) produced by the algorithms

of the preprocessing level, see Secs. 2.5, 2.4:

mk(x) = ẽk(F k(x)). (6)

Up to this point, feature-based modulation maps are only selective for feature values

and not to position and size of object hypotheses. In order to fuse feature- and space-

based modulation signals, we first perform a separate normalization step for space- and
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Fig. 12 Fusion of space- and feature-based modulation signals. A) Embedding into processing
system. B) Normalization and summation of feature-based attentional modulation signals. C)
Duplication across scales D) Summation of multiscale feature- and space-based modulation
signals with subsequent maximum normalization. The resulting multiscale modulation map
therefore fulfills mi(x) ∈ [0, 1]∀i∀x.

feature-based contributions. Subsequently, we sum feature-based modulation signals

and duplicate them over all pyramid scales. The final normalized multiscale modulation

map mi(x), i = 0, . . . , K − 1 is obtained by

m̂k(x) =
mk(x)

maxκ∈{1,2,3},xmκ(x)
, k ∈ {1, 2, 3}

m̂0
i (x) =

m0
i (x)

maxi,xm0
i (x)

m̃i(x) =

0

@

X

κ=1,2,3

m̂κ(x)

1

A + m̂0
i (x)

mi(x) =
m̃i(x)

maxj,xm̃j(x)
(7)

The multiscale modulation map mi(x) is used to influence competitive hypothesis

selection as described in Sec. 2.7. The process of generating attentional modulation

using learned system-level models is schematically shown in Fig. 11; the fusion of

space- and feature-based modulation signals is separately visualized in Fig. 12.

2.11 Model training for ”late rejection”

In order to perform ”late rejection” of object hypotheses as envisioned in Fig. 2, a

mapping from population-coded system-level quantities to object identity (likewise a

system-level quantity) must be determined. In addition to the available linear system-

level models, we use a multilayer perceptron (MLP) for this task which may achieve

better performance due to the employed nonlinearities.

MLP training is performed in an offline fashion; we run the system without atten-

tional modulation on stream I (see Sec. 2.13 and Fig. 13), recording the population

codes generated for the first 10000 object hypotheses. Inputs to the MLP are data

vectors consisting of the concatenation of all population-codes obtained from a single
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hypothesis, where population codes are downsampled to a size of 16x16 pixels. The

dimensionality of the input space is therefore 256 x 19 = 4864, thus encompassing dis-

tance, distance-to-free-area, elevation and the 16 position features). We train the MLP

using Rprop, early stopping regularization, weight decay and manual equalization of

the imbalance between car and non-car examples[27]. The MLP uses a sigmoid non-

linearity and has three layers: one input, a hidden layer of size 50 and an output layer

of size 1. The size of the input layer is given by the summed size of the system-level

features described in Sec. 2.8. The teaching signal is applied such that an activity of

1.0 at the output neuron indicates car detection whereas a value of 0.0 corresponds

to a non-car object. The training of system-level models is performed by running the

system without modulation using a learning constant of ǫ = 0.0001; Both methods are

trained respecting the blocking procedure of Sec. 2.9, the blocking interval being 30s.

2.12 System configurations

The described system can be run in two ways: in training mode and processing mode.

In training mode, the appearance-based classifier is used for hypothesis generation

using a competitive selection threshold (see Sec. 2.7) of θclass = 0.0. Furthermore, the

neural learning constant ǫ (see Sec. 2.8) is set to 0.00002 which amounts to assuming
1
ǫ = 50000 training examples (more examples do not cause problems, however the

relative influence of ”old” examples deteriorates in this case). Learning is disabled

for examples from the evaluation set (see Sec. 2.9). The system is presented with

a concatenation of video streams I,II,III. Once 1
ǫ training examples are processed,

training is stopped and the neural weights are stored. During training mode, attentional

modulation is disabled since models are only meaningful after training. This is again

for convenience only since untrained attentional modulation essentially produces a

constant distribution over the image and is thus not causing any effects.

In processing mode, learning is switched off by setting ǫ ≡ 0. Instead, previously

trained weights are used to generate attentional modulation. In processing mode, either

symmetry (see Sec. 2.3) or the appearance-based classifier (see Sec. 2.2) are used for

generating object hypotheses but never both at the same time.

Since object hypotheses have to be of sufficient quality for the online training of

accurate system-level models, we do not use symmetry in training mode since its overall

car detection performance (when not supported by attentional modulation) is poor, see

also Sec. 3. In contrast, we are able to evaluate both methods separately in processing

mode with no detrimental effects. Generally, classifier and symmetry have to be used

in a mutually exclusive way since the system does not ”fuse” results from different

object detection mechanisms in the presented form. Apart from this technical point,

the distinction between training and processing mode is for convenience only: in this

way, the system needs to be trained only once instead of being trained separately for

every performance evaluation. A detailed list of parameter settings in training and

processing mode can be found in Tab. 2.

2.13 Experimental setup

Video streams and annotations We recorded five distinct video streams covering a

significant range of traffic, environment and weather conditions. All videos are around
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Fig. 13 Selected example images from streams I-V. All videos were taken in RGB color using
a MatrixVision mvBlueFox camera at a resolution of 800x600. Used frame rates were 10Hz
except for video II where a setting of 20Hz was used. Aperture was always set to 4.0 except
for video IV where we used a value of 2.4. A self-implemented exposure control was used on
both cameras, manipulating the gain and exposure settings of each camera.

ID weather daytime single images annotated images
I overcast,dry afternoon 9843 957
II low sun, dry late afternoon 22600 949
III heavy rain afternoon 6725 643
IV dry midnight 6826 464
V after heavy snow afternoon 16551 867

Table 1 Details about the used video streams. Please note that streams II and V were
recorded at a frame rate of 20Hz.

15 minutes in length and were taken during test drives along a fixed route covering

mainly inner-city areas, along with short times of highway driving. Please see Tab. 1

for details and Fig. 13 for a visual impression. For the quantitative evaluation of object

detection performance, we manually annotated relevant objects in the recorded video

streams, please see Fig. 14 for details.

Evaluation measures For each image, we compute the number of false positive hy-

potheses and false negative annotations (see Fig. 15). From these, we obtain two stan-

dard quality measures (see,e.g., [5]) denoted false positives per image (fppi) and recall.

For a fixed parameterization of the system, the performance is given by a point in a

recall/fppi-diagram. By plotting these two quantities against each other for variations

of the detection thresholds θclass or θsymm, we obtain plots similar in interpretation

to receiver-operator-characteristics (ROCs). Such ROC-like plots will be used for vi-

sualizing object detection performance in Sec. 3. We only consider annotations whose

associated occlusion value (see Fig. 14)is less than 80%.

3 Experiments and Results

For all experiments, the training and evaluation of system-level models is performed

using the blocking procedure described in Sec. 2.9. To reduce computational effort, the
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Fig. 14 Examples of recorded streams and annotated information. Each annotation consists
of a rectangular area, an identity and an occlusion value (not shown). In order to reduce the
annotation effort, only every tenth image in a video sequence was annotated. We annotated
positive examples for a number of different object classes. Since this study focuses on vehicles,
we ensured that really all vehicles present in a given image are covered by an annotation. As
can be seen from the images, we use what we term semantic annotations, which means that
is has been tried to mark the whole area containing an object even if it is partially occluded.

Fig. 15 Example of single-image performance evaluation. A) Hypothesis matching an anno-
tation (true positive case) B) hypothesis not matching any annotation in the current image
(false positive case) C) annotation matched by one or more hypotheses D) annotation not
matched by any hypothesis (false negative case) E) annotation that is not considered due
to size constraints, see text. Such annotations do not constitute a false negative case when
matched by a hypothesis, but neither a true positive case otherwise.

variation of the object detection thresholds, be it θclass, θsymm or θMLP, is not con-

ducted by running the system over a whole video stream for each possible threshold

value. Rather, the system is run once using object detection thresholds of 0.0 and simul-

taneous storing of object detection confidences. Subsequently, detection performance

for all threshold values can be computed offline using the recorded confidences. As a

consequence, all object detection thresholds have zero values in Tab. 2. For actually

running the system for performing car detection, a suitable threshold would have to

be selected for either θclass, θsymm or θMLP.
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Table 2 Global parameters used for experiment

Parameter explanation value
H max. Nr of Hypotheses 40 or 10 (Sec. 3.6)

N,M image/feature map size 400,300
n,m population code size 64,64
θclass classifier selection threshold task-dependent, 0.0 for eval.
θsymm symmetry selection threshold task-dependent, 0.0 for eval.
θMLP symmetry selection threshold task-dependent, 0.0 for eval.

ǫ system-level learning rate 0.00002 or 0.0001 (Sec. 3.2)
K nr of pyramid scales 16 (classifier) or 8 (symmetry)

nblocking blocking interval 30s

Fig. 16 Assessment of performance improvement by attentional modulation for video streams
I-V by ROC-like plots. The dashed green curves give the performance of the appearance-based
classifier without attentional modulation, the solid red curves show the performance when using
attentional modulation. System-level models were trained on streams I-III using blocking. A
clear improvement can be observed for all streams.

3.1 Effect of learned attentional modulation on object detection performance

For determining the performance gain due to attentional modulation, system-level

models are trained using streams I,II,III (since a comprehensive training set can be

expected to result in good generalization ability of the trained models). Performance

is evaluated for the appearance-based classifier on streams I-V using both space- and

feature-based attentional modulation. In order to establish a baseline for comparison,

we additionally evaluate the system’s performance when attentional modulation is

disabled (i.e., the pyramid of modulation maps from Sec. 2.7 is set to mi(x) ≡ 1)

which amounts to evaluating the appearance-based classifier alone.

As described in Sec. 2.13, we create ROC-like plots by varying the classifier thresh-

old θclass (see Sec. 2.2) for comparing the system performance to baseline performance.

The resulting plots are given in Fig. 16.
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Fig. 17 Assessment of generalization performance of top-down modulation using stream
II,IV,V. System-level models were trained on stream I,II,III (baseline) and on stream III, both
times using blocking. Results were very similar in nature on streams I,III (not shown). Solid
green curves: appearance-based classifier without modulation. Solid red curves: appearance
based classifier using attentional modulation trained on streams I,II,III. Dashed green curves:
appearance based classifier using attentional modulation trained on stream III. As can be seen
from the plots, training system-level models only on stream III does not affect performance
significantly in any direction.

Fig. 18 Performance comparison of attentional modulation using bootstrapped and anno-
tated training (stream I not shown). Dashed green curves: plain classifier performance without
attentional modulation. Solid green curves: effects of attentional modulation trained on streams
I+II+III. Red curves: effect of system-level models trained on streams I+II+III using boot-
strapping. Performance using bootstrapped training is very similar to annotated training and
markedly superior to the ”plain” classifier (except on stream IV).

3.2 Generalization to different environment conditions

In analogy to cross-validation methods, this experiment is intended to show that train-

ing system-level models on data from any video stream and testing on the remaining

ones gives comparable performance in each case. We therefore trained system-level

models on each stream separately using parameters given in Tab. 2 and evaluated on

streams I-V as in Sec. 3.1. Results did not show notable differences to the performance

observed in Sec. 3.1, therefore Fig. 17 shows results only for the case of training using

stream III, one of the most challenging video streams.
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Fig. 19 Improvement of detection performance by the fusion of attentional modulation sig-
nals. For space limitations, we show only streams I, III,IV. Upper row: effect of fusing infor-
mative modulation signals on detection performance. Solid red curves (”el”): elevation only,
solid green curves (”d2fa”): distance-to-free-area only, dashed green curves (”el+d2fa”): fusion
of distance-to-free-area and elevation, dotted blue curve (”all”): fusion of position/size (not
shown), distance-to-free-area and elevation signals. In streams I and IV, good performance is
mainly obtained through the elevation signal. In stream V, the free area computation often
fails due to laser reflections, resulting in meaningless distance-to-free-area measurements and
impaired elevation measurements. As can be seen, the fusion of modulation signals makes
performance robust against failure (documented by poor distance-to-free-area performance)
or deterioration (documented by impaired elevation performance) of individual modulation
signals. Lower row: robustness of the system against addition of uninformative modulation
signals. The inclusion or omission of the distance-based modulation signal only has a negligi-
ble effect. Solid red line (”all+dist”): detection performance when using distance-to-free-area,
elevation, position/size and distance. Dotted blue line (”all”): detection performance when
omitting distance.

3.3 Bootstrapping using the appearance-based classifier

The third experiment is intended to show that the successful training of system-

level models does not require annotations. In the case of the presented system, the

appearance-based classifier (see Sec. 2.2) can, due to its already strong performance,

replace annotated data by its object class estimate for each training sample. Each

object class estimate provided by the classifier is converted to a population code as

described in Sec. 2 and Fig. 3 and provided as supervision signal to the training of

models (see Sec. 2.9). Results are shown in Fig. 18.

3.4 Fusion of multiple modulation signals

This set of experiments provides insights into the effects of fusing attentional modula-

tion signals. Using system-level models trained as described in Sec. 3.1, we repeatedly
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Fig. 20 Left graph: Effect of attentional modulation on symmetry-based object detec-
tion. Dashed green curve: symmetry-based detection without modulation. Solid red curve:
symmetry-based object detection with attentional modulation. Dotted blue curve: appearance-
based classifier without attentional modulation (for comparison). As can be seen, attentional
modulation improves the almost chance-level performance of symmetry-based car detection
to a level close to the much more powerful appearance-based classifier. Right two graphs:
Comparison of early modulation and late rejection approaches under moderate (H = 40) and
strong (H = 10) resource constraints, shown for streams I and III. Solid curves: attentional
modulation with strong (blue curve) and moderate (gray curve) constraints. Dashed curves:
late rejection with strong (blue curve) and moderate (gray curve) constraints. Please observe
the marked difference between resource-constrained object detection performance using atten-
tional modulation (solid blue curve) or late rejection (dashed blue curve). Especially on the
recall axis, the late rejection approach achieves a much poorer performance when simulating
constrained resources. This effect was observed also on streams II,IV and V (not shown).

evaluate the system’s performance for streams I-V, applying various subsets out of

the set of available modulation signals. In this way, we can quantify the individual

contributions of each modulation signal when using the fusion mechanism described

in Sec. 2.10. Furthermore, we conduct experiments about the effects of the uninforma-

tive distance-based modulation signal (see Sec. 4.1) on the fusion process as stated in

Sec. 1.2. By including and omitting this modulation signal, a quantitative statement

w.r.t. the robustness of the fusion process can be obtained. The results can be viewed

in Fig. 19.

3.5 Generalization to different object detection methods

In order to show that attentional modulation can be applied with benefits to different

object detection algorithms, we evaluate the effects of attentional modulation using

symmetry (see Sec. 2.3) for generating object hypotheses. Symmetry requires no train-

ing but only produces meaningful object hypotheses at night. Therefore, evaluation

was conducted using stream IV only. The results are given in Fig. 20.

3.6 Assessment of early attentional modulation versus late rejection

This experiment is intended to assess performance differences between our method

of attentional modulation where models are coupled in early, i.e., before competitive

hypothesis selection (see Sec. 2.7), and the alternative where a late coupling of models

is performed, i.e., after hypothesis selection. For this purpose, we implement and train

such a ”late” system as described in Sec. 2.11 and compare its performance to that

achieved using ”early” attentional modulation.
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For this purpose, two experiments are conducted for each stream, differing only in

the value of H , the upper limit on the number of hypotheses imposed by competitive

hypothesis selection (see Sec. 2.7). The different values of H reflect different degrees of

resource constraints: H = 40 represents the default case of abundant resources, whereas

H = 10 is intended to simulate strong constraints on, e.g., processing time.

For both experiments, the performance of late rejection and early modulation is

evaluated. This is achieved by varying one of the thresholds θclass, θMLP while leaving

the other at 0.0. We therefore obtain two ROC-like curves per experiment and stream.

For each stream, we now compare performances of early and late approaches for differ-

ent values of H . Evaluation is performed on streams I-V but did not differ significantly,

therefore Fig. 20 shows only results for stream I and III.

4 Discussion

In this section, we will discuss the evaluation of the presented system w.r.t. these

requirements, based on the research hypotheses put forward in Sec. 1. In Sec. 4.3, we

will present a critical comparison to existing work and suggest possible improvements.

4.1 Assessment of results w.r.t. research hypotheses

Performance increase by attentional modulation The experiments of Sec. 3.1 showed

that the ”translation” of multimodal system-level models into attentional modulation

signals is feasible and results in significantly increased object detection performance.

The performance increase is more marked for the ”difficult” streams IV and V; we hy-

pothesize that this is due to increased visual ambiguity (caused by imprecise classifier

models, low light or low contrast conditions) whose resolution by attentional mod-

ulation then has a potentially larger effect. It can also be observed that attentional

modulation improves performance on both the fppi and the recall axis in Figs. 16,17,

reflecting the fact that modulation can enhance as well as suppress. To be certain of

our results, we checked whether the performance increase occurs for stricter match

measures (see Sec. 2.13) as well and found that, although absolute performance drops,

the relative improvement by attentional modulation persists.

Generalization The results presented in Sec. 3.2 suggest that trained attentional modu-

lation, in contrast to the appearance-based classifier, exhibits significant generalization

to environment and weather conditions encountered in the video streams. The system-

level models of Sec. 3.2 are trained using examples from stream III only: nevertheless

performance of the attentional modulation on the remaining streams, e.g., I,II,IV,V

is strong. When using the blocking procedure on the same video stream, it might be

argued that general environment conditions are still shared because they are taken

from the same video stream. However, considering the extreme differences in lighting,

visibility and contrast between video streams, this experiment demonstrates that strong

generalization can indeed be achieved.

It should be ensured that this generalization is due to the system-level models and

not just coincidence. Although it is unlikely that overfitting occurs given the good

generalization demonstrated for attentional modulation signals, we want to explicitly

compare performance of system-level models on training and evaluation sets. For this
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Fig. 21 Checking system-level models for overfitting. We compare performance of system-
level models evaluated on disjunct training and evaluation sets from stream I. Left: performance
on training set. Right: performance on evaluation set. Training set performance is somewhat
superior but significant performance is still achieved on the evaluation set. In case of overfitting,
the performance on the evaluation set should differ much more strongly.

purpose, we employed the training and evaluation procedures described in Sec. 2.11

using stream I. Fig. 21 shows that performance on the training sets is superior, but

only slightly. These results persist when using video streams II-V.

Given the strong within-stream differences that are reflected by the large block-

ing interval, we can state that overfitting does not occur to a significant extent. It is

intuitively clear that small blocking intervals lead to similar training and test sets in

continuous video streams. Since there is one annotated image per second, and as there

are 30-40 training examples (object hypotheses) per image, the blocking interval of

30s amounts to approximately 1000 examples. For this reason, we argue that training

and test sets are sufficiently dissimilar to assess generalization behavior. The block-

ing procedure described in Sec. 2.11 is an accepted way of evaluating the real-world

performance of detection systems, see, e.g.,[20].

Fusion of attentional modulation models The experiments of Sec. 3.4 show that the

fusion of informative attentional modulation signals improves performance. Conversely,

performance is unaffected when an uninformative signal is added to the fusion process

due to the intrinsic properties of uninformative signals. This robustness property is

crucial for real-world applicability since the uncontrollability of real environments can

easily give rise to situations where individual system-levels become uninformative. In

such cases, attentional modulation must continue to be meaningful, otherwise misjudg-

ments can occur with potentially grave consequences.

We determine whether a modulation signal is informative by analyzing the perfor-

mance of its underlying system-level model. As can be seen from Fig. 21, the system-

level models for distance-to-free-area and elevation are much more informative than the

distance-based system-level model which is essentially at chance level. System-levels

for position/size are informative as well (not shown) but show inferior performance.

The experiments of Sec. 3.4 suggest that combining informative modulation signals

increases performance beyond the level achieved by individual attentional modulation

signals: this is especially the case for stream V where one can observe an improvement

due to the fusion process even though the individual modulation signals (especially the

distance-to-free-area) achieve unsatisfying results by themselves.

Application to different object detection mechanisms By applying attentional mod-

ulation to a simple symmetry-based detection mechanism, we could show that the
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Fig. 22 Direct comparison of system-level models and MLP classifier performed on evaluation
set from stream I. Left: multilayer perceptron using population-coded distance, elevation, size
and distance-to-free-area as input. Right: Individual system-level models for each feature, see
Sec. 2.8. MLPs performance is slightly superior overall which is unsurprising since it is three-
layered, can use nonlinearities and combines all its input features. In contrast, the system-level
models directly map each population-coded input to object identity (no combination). Training
and evaluation of MLP and system-level models was performed as described in Sec. 2.11.

proposed mechanism of learned attentional modulation is applicable to very different

object detection methods with beneficial results. The detection method need not even

be specific to the object class of interest (just as symmetry detection is not a really

good car detector, see Sec. 3.5); in such cases, the object specificity is almost exclu-

sively due to the influence of attentional modulation. The only requirements are the

existence of a (possibly multiscale) confidence map with retinotopic organization and

a competitive hypothesis selection process, e.g., as described in Sec. 2.7. As a conse-

quence, the described learned attentional modulation can be expected to work well

with saliency maps[16] or other low-level point detectors.

Benefit of early modulation As can be clearly seen from Sec. 3.6, the late rejection

approach is moderately inferior for H = 40. For H = 10, however, the difference is

very pronounced, especially considering the achieved values on the recall axis. This

is a very important result when considering object detection in autonomous agents

usually facing severe computational constraints. In order to ensure that this effect is

really due to the beneficial influence of attentional modulation, it must be established

that the reported performance gain is not simply due to superior performance of the

system-level models as compared to the MLP. In order to clarify this, we compare the

classification performance of the individual system-level models to the performance

of the trained MLP. System-level models perform two-class discrimination and can

therefore be evaluated by ROC analysis. As can be seen from Fig. 22, even the best

system-level model does not approach the classification performance of the MLP. We

conclude that superior object detection performance occurs because the modulated

classifier has access to more information: it can use both system-level and detailed

retinotopic information, whereas the MLP can just use system-level information.

Bootstrapping The results of Sec. 3.3 show that attentional modulation derived from

bootstrapped system-level models yields results that are significantly superior to those

obtained without modulation. At the same time, performance is only slighty inferior

to the performance achieved by using system-level models trained on ground-truth

information. For the purposes of this article, successful bootstrapping implies that our
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system is capable of fully online operation without requiring ground-truth data for

training at run-time. Obviously, ground-truth data is still required for training the

classifier, but but the additional ground-truth data required for training successful

system-level models is avoided. A systematic comparison and an in-depth analysis of

the benefit of bootstrapping will be given in a subsequent publication (but see [21, 29]).

4.2 Online learning capability

As the term ”online learning” is used in various ways in the literature, we wish to give

a precise definition here before we discuss the presence of this property in our system.

We assume the following properties:

1. The total number of training examples does not have to be known at any point

during the system’s run-time.

2. Each training example is seen only once

3. Learning is performed using only information that is (or would be) available to a

performing system. This specifically excludes the use of annotated data at run-time,

whereas the use of annotated data prior to run-time is of course acceptable.

Without considering bootstrapping, our system fulfills only the first two conditions.

Although, by the choice of the learning rate constant ǫ, a time scale is defined after

which previously presented examples are slowly forgotten, this does not contradict the

stated requirements. Moreover, forgetting only occurs if a training example is not re-

inforced by similar ones. When taking bootstrapping(see Sec. 3.3) into account, also

the third requirement is fulfilled. In this configuration, annotated data is only used for

training the appearance-based classifier which occurs prior to the run-time of the sys-

tem. We therefore conclude that the presented system is indeed capable of performing

online learning, enabling it to run and learn in a ”live” system once processing speed

has been optimized sufficiently.

4.3 Comparison to related work

There are several differences of our work to the literature discussed in Sec. 1.3. First of

all, most investigations do not share the symmetry between training and evaluation our

system exhibits. Mostly, system components or prior distributions are trained offline

and separately, and are later connected by either probabilistic inference or heuristic

coupling. In contrast, we present a system which obtains all required training informa-

tion while running. As a consequence, training and evaluation of system-level models

can be assumed to operate on similar underlying probability distributions: in this way,

the common effect that heuristically chosen training data (e.g., negative examples) are

actually different from evaluation scenarios cannot occur. Furthermore, the learned

system-level models are not purely visual but multimodal in nature and are derived

from object properties with powerful semantic meaning, such as an object’s distance

to the obstacle-free area ahead of the agent, or an object’s height above the computed

ground plane. We thereby go beyond many approaches which use straightforward visual

object properties like pixel size, pixel position, color a.s.o. We also present an exam-

ple of successful bootstrapping of models for attentional modulation, showing that a

system can perform successful online learning if a self-supervision signal of sufficient
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quality is available. Additionally, we present an investigation which shed light on a

previously disregarded aspect of attentional modulation, namely the benefit compared

to ”late coupling” approaches that eliminate inconsistent detections only at the end of

a processing chain. Lastly, the presented system differs from related work by its large-

scale evaluation using continuous and variable traffic video sequences. Some authors[3]

use extensive evaluation datasets like the PASCAL data but the focus is not on recog-

nizing relevant classes in road traffic scenes, but to recognize and discriminate a large

number of object classes in arbitrary scenes. Other authors[13] evaluate performance

in traffic scenes but with evaluation sets that are much smaller than ours.

When comparing our system to [2, 9, 10], it is obvious that the modeling of cortical

interactions is much more restricted since we focus strongly on the modeling of abstrac-

tion hierarchies. Functionally, we use a simplified competition mechanism at hypothesis

level (see Sec. 2.7) which clearly does not capture the details of a fully neuro-dynamic

approach (hysteresis, latency behavior, ..). However, this simplified mechanism still

converges to attractor states which are non-trivially influenced by attentional modu-

lation signals. Thus, while gaining computational efficiency and simplicity, our system

is able to make use of the computational power of the biased competition mechanism.

Furthermore, the model of [10] considers only the learning of a single object search

template; this is in contrast to our approach where a large number of examples are

processed to generate a detailed but general system-level model that can be inverted

for detecting the target object class. This point applies equally to [2] where learning is

not considered at all, and an even more strong focus is given to the network dynamics

and biological plausibility.

Approaches based on high-level semantic models such as [25] use models of higher

abstraction and complexity than our system with impressive results. The key difference

is that such models are designed not learned, and a rigorous evaluation in real-world

environments is not targeted.

In contrast to Selective Tuning models [30, 33] where attentional feedback is prop-

agated through multiple hierarchy levels, attentional modulation is only propagated to

the intermediate level of the presented system. We did not implement further feedback

propagation since the algorithms at the preprocessing level are, at present, not suited

to deal with this information. Similarly to Selective Tuning, we use winner-takes-all

interactions and, effectively, an inhibition-of-return mechanism at the hypothesis level.

Top-down attention approaches such as [6, 23] differ from our work by the way

of acquiring models. Although these authors present integrated systems using object

specific attentional modulation, such modulation is obtained by performing an offline

optimization based on heuristically defined positive and negative examples. The au-

thors describe evaluations in indoor scenes[6] and traffic environments[23] although the

number and diversity of annotated images is much lower than in the presented work,

especially for indoor evaluations.

Very closely related to our work is the work by [13] which aims at reconstructing

3D scene geometry from monocular images; such geometric information is then used to

guide exhaustive object detection mechanisms. In contrast, we use information about

3D scene layout directly obtained from advanced stereo processing; on the other hand,

our system does not perform Bayesian inference to determine the most likely 3D scene

layout since we rely on the quality of our stereo information. Additionally, our system is

able to process and train models using various quantities not related to 3D scene layout,

such as distance-to-free-area, image position/size and many more (color, texture, aspect

ratio which were not shown because their influence on performance was not significant).
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An evaluation of car and pedestrian detection performance in images of outdoor traffic

scenes is given in [13], although the number of annotated images and objects is much

smaller than in our evaluation.

Similarly to [13], the work of [24] uses global scene properties to infer positions and

sizes of objects; however in contrast to [13], this is an unidirectional process where

the position of objects cannot influence scene property estimation. In [24], a low-

dimensional scene descriptor (”gist”) is computed and used for object training models

that relate the positions of certain object classes to the current gist value. Using a

small training and evaluation set of indoor/outdoor scenes, performance improvement

is demonstrated w.r.t. exhaustive object detection. This is similar to our approach,

although our evaluation datasets are much larger, and we employ a larger number of

models that inform object detection about the likely positions and sizes of objects.

Another interesting approach to attentional modulation is presented in [36]; as in

our work, the influences of multiple models are fused using probabilistic inference to ob-

tain attentional modulation. Used models are: prior distribution over object positions,

visual conspicuity computed by a saliency map and a model computing the location

where the greatest information gain given previous detections may be obtained. In ad-

dition, another topic also discussed here is raised: accuracy of object detection using

only a limited number of object hypotheses (there called ”gaze targets”). The authors

show that, using their method with a limited number of gaze targets, the performance

of exhaustive object search can be approached in indoor scenes. We obtain exactly this

result, although our evaluation is considerably more extended and the detection task

of finding cars in cluttered outdoor scenes is, to our mind, a more challenging one.

The method put forward in [3] proposes a generic framework for spatial inter-object

influences in object detection. In contrast to our system which uses heuristic non-

maxima suppression (NMS) to reduce the number of object hypotheses, the authors of

[3] train discriminative models for performing this task in a way that is learned from

data. It is notable that this framework is also capable of enhancing object hypotheses;

this is in contrast to our NMS method which can just suppress. In our investigations, we

heuristically determined certain parameters in the NMS of Sec. 2.2 that are beneficial

for detecting cars, so we can confirm that the optimization of NMS can indeed improve

detection performance.

5 Summary and future work

We presented a large-scale integrated processing system performing object detection

in challenging and diverse visual environments. It is our conviction that the presented

system is unique in enhancing object detection by space- and feature-based attentional

modulation that is autonomously trained within the system, as well as a rigorous

evaluation of real-world performance.

Future work will include the investigation of attentional modulation signals with

higher object specificity, as well as space-based attentional modulation based on more

behavior-centered spatial representations. We will continue evaluating our research

based on real-world data while considering more task-specific ways of evaluating detec-

tion performance. As a last point, we will conduct further investigations regarding the

possibilities of bootstrapping, especially w.r.t. the minimal quality an object detector

must achieve for successful bootstrapping.
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