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Abstract

We present a system for robust pitch extraction in noisy and

echoic environments consisting of a multi-channel signal en-

hancement, a pitch extraction algorithm inspired by the pro-

cessing in the mammalian auditory system and a pitch track-

ing based on a Bayesian filter. For the multi-channel signal

enhancement we deploy an 8 channel Geometric Source Sep-

aration (GSS). During pitch extraction we first apply a Gamma-

tone filter bank and then calculate a histogram of zero crossing

distances based on the band-pass signals. While calculating the

histogram spurious side peaks at harmonics and sub-harmonics

of the true fundamental frequency are inhibited. The grid

based Bayesian tracker operating on the resulting histogram

comprises a Bayesian filtering in a forward step and Bayesian

smoothing in a backward step on a 100 ms time window. We

evaluate the system in a realistic human-robot interaction sce-

nario with several male and female speakers. The evaluation is

based on the degradation of the pitch tracking results obtained

from the signals recorded on the robot to those of a simultane-

ously recorded clean headset signal. Hereby, we also include

the comparison to two well established pitch extraction frame-

works, i. e. get f0 included in the WaveSurfer Toolkit and Praat.

Overall the results demonstrate that pitch tracking with small er-

rors is possible in all cases tested and that the proposed system

performs better than the two benchmark algorithms.

1. Introduction

Despite many algorithms presented in the past, reliable extrac-

tion of fundamental frequency, whose percept is called pitch,

in acoustically adverse environments remains difficult. In this

paper we present a system for robust pitch extraction in a real-

istic human-robot interaction scenario where echoes and noise

degenerate the speech signal captured by the robot. The system

comprises three main building blocks. The first is a Geometric

Source Separation (GSS) which enhances the signal. The sec-

ond step is an algorithm for pitch extraction which takes inspira-

tions from models of human pitch perception. It is based on the

calculation of a histogram of zero crossing distances after trans-

formation of the signal in the frequency domain via application

of a Gammatone filter bank. The final step is the deployment of

a Bayesian tracking algorithm on the resulting histograms. An

overview on the system is given in Fig. 1.

In the following we will detail the building blocks of the

proposed system for pitch extraction. After this we will give

an overview on the human-robot interaction scenario in which

we tested our algorithm. We evaluate the performance of the

system based on a comparison of the tracking performance ob-

tained on a clean headset signal and the signals recorded on

the robot in comparison to two commonly used pitch extraction

frameworks. A discussion of the results will conclude the paper.

2. Geometric Source Separation

We used an online version of Geometric Source Separation

(GSS) [1] for sound source separation.

A spectrum vector of M sources and a spectrum vector of

signals captured by the N microphones at frequency ω are de-

noted as s(ω) and r(ω), respectively. The spectrum vectors are

obtained by application of the Fast Fourier Transform (FFT) on

the time domain signals s(t) and r(t). The source separation is

then formulated as

y(ω) = W(ω)r(ω), (1)

where W(ω) is called a separation matrix. The separation

is defined as finding W(ω) which satisfies the condition that

output signal y(ω) is the same as s(ω). In order to estimate

W(ω), GSS introduces two cost functions, that is, separation

sharpness (JSS) and geometric constraints (JGC) defined by

JSS(W) = ‖E[yy
H − diag[yy

H ]]‖2
(2)

JGC(W) = ‖diag[WD− I]‖2
(3)

where ‖ · ‖2 indicates the Frobenius norm, diag[·] is the

diagonal operator, E[·] represents the expectation operator and

H represents the conjugate transpose operator. D is a transfer

function matrix based on a direct sound path between a sound

source and each microphone. W at the current time step t,
Wt, is estimated recursively to minimize these cost functions

as follows:

Wt+1 = Wt − µSSJ
′

SS(Wt) + µGCJ
′

GC(Wt)

J
′

SS(Wt)=2ESSWtrr
H

and J
′

GC(Wt)=EGCD
H ,

where J′(W) is an update direction of W derived from its

complex gradient [2]. µSS and µGC are step-size parameters.

For further processing the source from the frontal direction

is chosen and transformed back into the time domain via appli-

cation of the Inverse Fast Fourier Transform (IFFT).

3. Pitch Estimation

The algorithm we apply for pitch extraction relies on the cal-

culation of a histogram of zero crossing distances and a sub-

sequent inhibition of side peaks resulting form harmonics and

sub-harmonics of the true fundamental frequency [3]. It com-

bines information residing in the spectral and the temporal do-

main following inspirations from different human pitch percep-

tion models [4].

The first step of the pitch extraction is the transformation of

the signal resulting from the GSS into the frequency domain via
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Figure 1: System overview
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Figure 2: Signal resulting from the GSS after application of the

Gammatone filter bank. A male speaker is uttering the Japanese

sentence “a r a y u r u g e N j i ts u w o s u b e t e j i b u N n

o h o u e n e j i m a g e t a n o d a”. The sentence contains a

high proportion of vowels and voiced consonants and translates

to “every fact was biased towards its preference”. Pitch tracks

for the clean and noisy signals are shown. Unvoiced regions are

marked in gray.

a Gammatone filter bank (see Fig. 2).

3.1. Extracting Temporal Information

Commonly the autocorrelation function is used to extract tem-

poral information. As the autocorrelation is very time con-

suming and not supported by biological data [5] we use in our

system the zero crossing distances (ZCD) in the signal. Let

Ci = [ti,1, ti,2, . . . , ti,N ] denote the ordered sequence of the

time indices of all rising zero crossings, i. e. from negative to

positive, in the band pass signals gi(t) in the i-th channel of the

Gammatone filter bank:

Ci(m) = ti,m with gi(ti,m−1) < 0∧gi(ti,m) ≥ 0,∀m. (4)

Then the sequence of zero crossing distances is defined by

Di(m) = Ci(m + 1) − Ci(m). (5)

Based on this, a signal di(t) is constructed which has in

the interval between two zero crossings as its value the zero

crossing distance. Hence di(t) = Di(m) where m is chosen

such that Ci(m) ≤ t < Ci(m + 1). This distance between

adjacent zero crossings, more precisely its inverse, codes the

frequency of the signal.

3.2. Extracting Spectral Information

We asses the spectral information via a comb filter with teeth at

the locations of the harmonics. In a scan through all possible

fundamental frequencies fmin ≤ f0 ≤ fmax the corresponding

comb filters are set up. For each of these comb filters the alloca-

tion of the teeth with harmonics of the current fundamental can

be checked at each instant in time. The “filter response” of the

comb filter is calculated based on the found allocation pattern.

The better the found pattern matches the expected pattern the

higher the response (see [3] for more details).

3.3. Combining temporal and spectral information

Instead of using the energy in the teeth, i. e. the channels of

the Gammatone filter bank, we use the zero crossing distances

di(t) in the channels to determine if a tooth is set. The ZCDs

provide an instantaneous frequency estimate of the band-pass
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Figure 3: Histogram of the zero crossing distances (ZCD) for

the signal in Fig. 2 prior to the inhibition of the side peaks.

Unvoiced regions are marked in gray.

signal. In a harmonic signal the ZCD of the first harmonic are

half the distances of the fundamental and the distance of the

second harmonic a fourth those of the fundamental. Based on

this simple relation one can set up a rule to compare the found

distance to an expected one. In the scan through all fundamental

frequencies we can compare the ZCD di(t) at time instant t and

channel i against the current harmonic hypothesis fh = k · f0

and the corresponding ZCD dh = fS

k·f0
, with fS being the sam-

pling rate. The deviation ∆ = dh − di(t) is a measure for the

match of the current channel and the hypothesis. To determine

if a tooth is set we apply a threshold ∆t = 0.04dh. Summing

up over all teeth of the comb filter and dividing by the num-

ber of teeth yields a normalized match value m(t, f0) for the

current fundamental frequency hypothesis f0. The fundamental

frequency hypothesis f0 and the distance hypothesis d0 = fS

f0

can be used interchangeably. To facilitate comprehension we

will in the following only use f0. However, one has to keep

in mind that the actual scan through all fundamental frequency

hypotheses is realized by decrementing the current distance hy-

pothesis d0 by the minimal decrement determined by the sam-

pling rate δd = 1

fS
and then calculating the corresponding f0.

In addition also the test if a tooth is set is performed in the dis-

tance domain. The resulting histogram h′ is displayed in Fig. 3.

Unfortunately, spurious peaks at harmonics and sub-harmonics

of the true fundamental frequency occur due to partial matches

of the comb filter at these harmonics and sub-harmonics. This

behavior can also be observed when using the autocorrelation

(see [3] for more details).

3.4. Inhibition of Side Peaks

To avoid the spurious peaks we introduce an inhibition of these

partial matches based on their expected matches. Let m(t, f0)
be the match of the current comb filter calculated as described

above (compare also Fig. 4.a). Then m1/2(t, f0) would be the

match of a comb filter set up at f0/2, i. e. corresponding to

a true fundamental frequency f ′

0 of f0/2, but which contains

only the teeth that are not covered by the comb filter set up at f0

(compare also Fig. 4.b). This quantifies to which extent f0/2
would be a better match than f0. Similar m2(t, f0) would be

the match of a comb filter for a true fundamental frequency f ′

0

of 2f0 and containing only the teeth which are to be expected

to be missing in m(t, f0) (compare also Fig. 4.c). The inverse

v2(t, f0) = 1 − m2(t, f0) indicates how much 2f0 would be a

better match than f0. The final histogram value h(t, f0) is then



Figure 4: Visualization of the different comb filter patterns used

to inhibit side peaks.
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Figure 5: Histogram of the zero crossing distances (ZCD) for

the signal in Fig. 2 after inhibition of side peaks. Unvoiced

regions are marked in gray.

the full match reduced by the maximum of the partial matches:

h(t, f0)=m(t, f0)−w(f0) · max[m1/2(t, f0), v2(t, f0),

m1/3(t, f0), v3(t, f0), . . . ]. (6)

with w(f0) = 3
√

f0min
/f0 being an inhibition weight de-

pendent on the current f0, hypothesis. When comparing Figs. 3

and 5 one can see that this inhibition step makes the true funda-

mental frequency much better visible and successfully reduces

the most prominent side peaks.

4. Pitch Tracking

On the histogram h we apply a tracking algorithm based on

Bayesian filtering [6]. We originally developed this algorithm

for formant tracking and adapted it in [7] also to pitch tracking.

Bayesian trackers sequentially estimate the state xt at time

t conditioned on all information contained in the sensor data

zt [8]. Uncertainty is introduced by a probabilistic distribution

over xt, called the belief Bel(xt) = p(xt|z1, . . . , zt).

Let Bel−(xt) denote the predicted belief at time t which

can be obtained via the application of the pitchs’ underlying

dynamics p(xt|xt−1). Then the belief at time t is calculated

by correcting the predicted belief according to the observation

from the pitch histogram p(zt|xt) and a normalization factor α.

Since we want to estimate pitch locations on a discrete grid

defined by the evaluated zero crossing distance values, a grid-

based approximation of the belief is chosen. Thus, assuming

that N distances are evaluated, the state space at time t can

be written as Xt = {x1,t, x2,t, . . . , xN,t} which leads to the

following Bayesian filter recursion:

Bel−(xk,t)=

N∑

l=1

p(xk,t|xl,t−1)Bel(xl,t−1) (7)

Bel(xk,t)=
p(zt|xk,t)Bel−(xk,t)∑N
l=1

p(zt|xl,t)Bel−(xl,t)
(8)

When operating in noisy conditions a subsequent backward

pass on the already obtained filtering distributions Bel(xk,t)
is recommended since it significantly enhances the noise ro-

bustness of the algorithm. Bayesian smoothing provides such

a mechanism. It aims to recursively estimate a smoothed ver-

sion B̂el(xk,t) of the belief, thereby depending on both past

and future observations. Its essence is the application of the fil-

tering equations from Eqs. 7 in a given time window in reverse

time direction.

The final calculation of exact pitch values P (t) can easily

be done by picking the peaks of the smoothed beliefs (see [6] for

more details). In Fig. 2 the result of the Bayesian tracking are

overlaid in blue on the spectrogram (the two other curves result

from the two other setups explained in detail in the following

section). During the tracking we model the a priori distribu-

tion p(xk,0) and the pitch dynamics p(xk,t|xl,t−1) with normal

distributions.

5. Evaluation

To asses the performance of our algorithm we evaluated it in a

human-robot interaction scenario. Different people spoke to the

Honda humanoid robot at a natural interaction distance of 1.5 m

in a 4 m × 7 m room with RT20 = 300 ms1. 2 female and 6

male speakers were uttering a total of 90 utterances with 10-16

utterances per speaker. The speech signals was captured by an 8

channel microphone array mounted on the head of the robot. We

compared the performance of our algorithm to the two publicly

available and commonly used pitch tracking frameworks get f0

from ESPS in the implementation of the WaveSurfer toolkit

[9, 10] and praat [11]. Both frameworks are based on an au-

tocorrelation calculated from the full-band signal. They also

include a voicing detection and output pitch only for voiced

segments. Because the voicing detection is rather unreliable

for noisy speech we changed the parameterization such that the

whole segment was classified as voiced and hence pitch was

continuously calculated.

For the evaluation we also simultaneously recorded the

speech signals with a headset and used this signal to calcu-

late the ground truth information for the fundamental frequency.

The following results are given as deterioration of the tracking

results relative to this assumed ground truth. Hence the validity

of the results partially depends on the correctness of the pitch

extracted from the headset signal. However, visual inspection

of the extracted pitch showed that it is extracted very accurately

from the headset signal. As pitch is only present in voiced re-

gions of speech an additional voiced/unvoiced detection is nec-

essary for the performance evaluation. To detect voiced regions

we use the voicing detection algorithm included in get f0. In

order to increase the robustness of the detection we additionally

rejected segments with very low energy (≈ 0.5% of the mean

energy). We applied this algorithm on the headset signal and

used this information also for the noisy signals recorded on the

robot. Consequently pitch tracking results were only evaluated

in regions where voicing was detected in the headset signal.

After application of the GSS signals were downsampled to

1
RT20 is better suited for measurements in noisy environments. It

gives the decay measured at 20 dB extrapolated to 60 dB decay



16 kHz. For the pitch tracking we used a 100 channel Gamma-

tone filter bank in the implementation according to [12] with

frequencies in the range from 80-5000 Hz. The range of pos-

sible fundamental frequencies was set to 80-500 Hz. We cal-

culated zero crossing distances up to the order 7 and used a

comb filter with 15 teeth. The Bayesian smoothing operated on

a 100 ms time window.

To differentiate the impact of the multi-channel signal en-

hancement from the pitch extraction and tracking algorithm we

compared two different setups. In the first setup we use the

microphone signal with the highest SNR. As all speakers were

speaking approximately from the front to the robot the SNR

was always highest for the microphone mounted on the front

(referred to in the following as best mic). A typical SNR value

for this setup is ≈ 15 dB (compare to ≈ 35 dB for the head-

set).2 In the second setup we evaluate the pitch tracking after

the application of the GSS algorithm. The GSS improved the

SNR ≈ 4 dB compared to the best mic condition.

In Table 1 the tracking errors relative to the headset sig-

nal are shown. The tracking performance of each algorithm in

the noisy conditions is evaluated against the headset condition

extracted by the same algorithm. Tracking errors are ceiled to

100%, i. e. errors larger than 100% are set to 100%.

Table 1: Pitch tracking errors relative to the headset signal in %.

best mic GSS GSS+Post Filter

get f0 2.6 7.1 7.2

praat 2.6 3.5 4.6

proposed 2.1 1.5 2.2

Additionally, we also evaluated the so called Gross Pitch

Error (GPE) [13]. It measures how much of the pitch track

deviates more than et from the true pitch. In our case we set

et = 20%. The corresponding values are given in Table 2.

Table 2: Gross pitch errors ( > 20%) relative to the headset

signal in %.

best mic GSS GSS+Post Filter

get f0 1.8 2.7 2.9

praat 1.0 1.3 2.5

proposed 0.7 0.3 1.0

The results show that the tracking errors already for the

best mic configuration are very good for all algorithms. The

GSS preprocessing notably reduces the errors for our algorithm.

However, the results for get f0 and praat were deteriorated by

the GSS. When using the GSS as preprocessing combined with

our algorithm the errors are very small and only very little gross

pitch errors occur.

The GSS based signal enhancement proposed in [1] also

includes a multi-channel post filtering step. The post filter is

applied after the GSS and has as its purpose to reduce the noise

still present after the GSS step. In addition to the stationary

components of the noise it also estimates non-stationary com-

ponents and subtracts them from the signal. We investigated

a setup where we included the post filter as described in [1].

When comparing Table 1 and 2 one can see that the post filter-

ing is not beneficial for the pitch tracking for all algorithms.

2We calculated the SNR as the ratio of the energy of the segments

containing only speech to those containing only noise. Signal distor-

tions due to reverberations are hereby not taken into account.

6. Conclusion

The evaluation showed that the pitch extraction already yields

good results without the preprocessing for all algorithms. The

combination of GSS and our pitch tracking algorithm further

improved the results significantly. For get f0 and praat it dete-

riorated the results. The phase changes resulting from the GSS

might be the reason for this behavior. In contrast our algorithm

is insensitive of the phase of the different harmonics. The ap-

plication of an additional post filter decreased performance in

all cases. This might be due to distortions resulting from the

post filtering, e. g. musical tones due to incorrect estimation of

either noise or signal energy.

In the best case, i. e. using the GSS but without post fil-

tering and our pitch extraction framework, we obtain relative

errors averaged over all speakers below 2% and gross pitch er-

rors of only 0.3%. From this we conclude that the system we

propose robustly extracts the fundamental frequency and hence

lays the foundation for a prosodic analysis of the speech signal.

7. Acknowledgments

We want to thank Dr. Shun’ichi Yamamoto for support with the

GSS algorithm and for designing and performing the record-

ings.

8. References
[1] S. Yamamoto, K. Nakadai, J.M. Valin, J. Rouat, F. Michaud,

K. Komatani, T. Ogata, and HG Okuno, “Making a robot recog-
nize three simultaneous sentences in real-time,” in Proc IEEE/RSJ
Int. Conf. on Robots and Intell. Syst. (IROS), Edmonton, Canada,
2005, pp. 4040–4045.

[2] D.H. Brandwood, “A complex gradient operator and its appli-
cation in adaptive array theory,” IEE Proc., vol. 130, no. 1, pp.
251–276, 1983.

[3] M. Heckmann, F. Joublin, and C. Goerick, “Combining rate and
place information for robust pitch extraction,” in Proc. INTER-
SPEECH, Antwerp, 2007, pp. 2765–2768.

[4] A. de Cheveigne, “Pitch perception models,” in Pitch, C. Plack
and A. Oxenham, Eds. Springer, Cambridge, U.K., 2004.

[5] C. Kaernbach and L. Demany, “Psychophysical evidence against
the autocorrelation theory of auditory temporal processing,” Jour-
nal of the Acoustic. Soc. of America, vol. 104, pp. 2298–2306,
1998.
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