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Abstract: Belief Propagation (BP) is an efficient approximate inference technique both for Markov Random Fields
(MRF) and Dynamic Bayesian Networks (DBN). 2D MRFs provide aunified framework for early vision prob-
lems that are based on static image observations. 3D MRFs aresuggested to cope with dynamic image data.
To the contrary, DBNs are far less used for dynamic low level vision problems even though they represent se-
quences of state variables and hence are suitable to processimage sequences with temporally changing visual
information. In this paper, we propose a 3D DBN topology for dynamic visual processing with a product of
potentials as transition probabilities. We derive an efficient update rule for this 3D DBN topology that unrolls
loopy BP for a 2D MRF over time and compare it to update rules for conventional 3D MRF topologies. The
advantages of the 3D DBN are discussed in terms of memory consumptions, costs, convergence and online
applicability. To evaluate the performance of infering visual information from dynamic visual observations,
we show examples for image sequence denoising that achieve MRF-like accuracy on real world data.

1 INTRODUCTION

Probabilistic graphical models like 2D grid-based
Markov Random Fields (Szeliski et al., 2008) com-
bined with approximate inference techniques like Be-
lief Propagation (Pearl, 1988) are successfully used
for several kinds of early vision tasks like image de-
noising, stereo vision and optical flow computation.
The main ability of a MRF is to robustly infer hidden
states of a visual scene like pixel depth or movement
based on local noisy image measurements. The core
of a 2D MRF for low level visual processing is the res-
olution of estimation ambiguities via incorporation of
models describing the spatial context between neigh-
boring pixels. At the moment the vision community
investigates in extending these models to improve ro-
bustness and estimation accuracy (Roth, 2007; Rama-
lingam et al., 2008; Komodakis and Paragios, 2009)
and develops fast approximate inference techniques to
head for realtime applications (Szeliski et al., 2008;
Felzenszwalb and Huttenlocher, 2006; Petersen et al.,
2008). Another important aspect concerning online
visual knowledge extraction is the dynamics of visual

scenes. Hence, temporal changes in the observed vi-
sual data and the fact that future observations cannot
be accessed have to be considered. To keep all the
properties of a 2D MRF but also model a whole se-
quence of images, the 3D MRF was introduced by
(Williams et al., 2005) and has further been investi-
gated by several researchers (Yin and Collins, 2007;
Larsen et al., 2007; Chen and Tang, 2007; Huang
et al., 2008). Here, 2D MRFs like in figure 1 a) that
model the spatial relations within a single time slice
are stacked into a 3D spatiotemporal MRF as shown
in figure 1 b). To impose spatiotemporal constraints
usually each node of the 2D MRF in the current frame
is connected to its four image neighbors and addition-
ally to the nodes with the same grid coordinates in the
previous and next frames. This results in a graph of
cardinality six on which the basic BP algorithm can
be used without modifications (Williams et al., 2005).

Whenever visual observations with moving ob-
jects or taken from a moving camera system are
processed, then the temporal correspondences be-
tween image coordinates of consecutive time slices
are changing (Chen and Tang, 2007; Huang et al.,
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Figure 1: a) A 2D grid-like pairwise MRF with four neighboring nodes (fat black lines) in the Markov blanket of a hidden
node p (white circles). b) A 3D grid-like pairwise MRF with 6 nodes in the Markov blanket. c) A 3D DBN with directed links
between spatiotemporal neighboring nodes (5 node Markov blanket) indicated by black arrows (only one connection pattern
is shown for clarity). All observable nodes are omitted.

2008). Hence, knowledge abouton which coordinates
is projected the same scene content between two time
sliceshas to be incorporated into the temporal tran-
sitions. As acorrespondence fieldthe optical flow
can be used. This leads to a spatially and temporally
adaptive neighborhood connection between nodes of
consecutive time slices. Since in most cases the op-
tical flow cannot be estimated unambiguously for ev-
ery pixel in an image sequence special care has to be
taken for the integration of such an uncertain corre-
spondence information.

Instead of extending MRFs from a 2D grid to a 3D
grid structure, another class of probabilistic graphical
models could be used to modelspatiotemporaldepen-
dencies, called Dynamic Bayesian Networks. They
generalize coupled hidden Markov models (HMM)
(Brand, 1997) by representing the hidden state in
terms of state variables with complex interdependen-
cies and are suitable foronline filtering and prediction
(Murphy and Weiss, 2001).

The main aim of this paper is to answer the ques-
tion: What kind of connectivity is the most efficient
one if both spatial and temporal information should be
fed into every node of a 3D grid-like graph? The ques-
tion is motivated by finding an efficient solution to
early vision problems with visual observations being
dynamic. To do so, we compare belief propagation
for different MRF graph topologies with DBN graph
topologies. We propose to use a special connectivity
in a 3D DBN topology that allows to come as close as
possible to the basic BP algorithm for MRFs. Hence,
for the 3D DBN we assume the same 3D grid-like
structure as for 3D MRFs but different node connec-
tions.

The main differences between the conventional
3D MRF topology and the proposed 3D DBN topol-
ogy are: (I) The conventional 3D MRF has several
undirected links between neighboring nodes within a

time slice but usually only two temporal neighbors
(see figure 1 b)) for an example with 4 spatial neigh-
bors). (II) The proposed 3D DBN has no undirected
links between neighboring nodes within a time slice
but directed links between one node at current time
and several neighboring nodes of an arbitrary number
from the past time slice (see figure 1 c)) for an exam-
ple with 4 spatiotemporal neighbors).1 Introducing
a factorised transition probability for DBNs, we are
able to compare BP in 2D MRFs and 3D MRFs to BP
in 3D DBNs. We show that inference in a 3D DBN
with the proposed topology and connectivity is less
memory consuming, less computationally expensive,
and better suited for online filtering than their MRF
counterpart.

To cope with a temporally changing image content
because of moving objects and therefore with tempo-
rally adaptive correspondences between image pixels
of consecutive frames, we use optical flow as a cor-
respondence field for adaptation of the node connec-
tions of the 3D DBN as it was already proposed in
(Chen and Tang, 2007) and (Huang et al., 2008) but
for 3D MRFs.

2 MRF AND DBN DEFINITIONS

For early vision problems usually a pairwise MRF
is used that is based on a 2D grid-like graph struc-
ture as shown in figure 1 a). Following the notation in
(Felzenszwalb and Huttenlocher, 2006), letP be the
set of pixelsp∈ P in an image. Each pixel is assigned
two nodes - one for a hidden random variablexp ∈ X
and one for an observed random variableyp ∈ Y . X
denotes a finite set of variable values andY a finite

1In principle, the connections and the number of neigh-
boring nodes can vary but we restrict ourselves to equal con-
nection patterns for every node on the image grid.



set of observations2. Further on, let(p,q) ∈ N be
an edge between the hidden random variablesxp and
xq from the setN of all edges in the graph. A hid-
den stateX consists of an amount of state variables
{xp}p∈P for each pixelp and the observationY com-
prises all pixel observations{yp}p∈P . The joint dis-
tribution of a pairwise 2D MRF is given by

P(X,Y) =
1
Z ∏

p∈P

φ(xp,yp) ∏
(p,q)∈N

ψ(xp,xq) , (1)

whereφ(xp,yp) denotes thenode potentialthat de-
fines the similarity between the observed pixel mea-
surement and the hidden labels andψ(xp,xq) corre-
sponds to theedge potentialsthat encode the similar-
ities of spatially neighboring labels. The quantityZ
is a normalization constant, called thepartition func-
tion.

Extending the 2D MRF to a 3D MRF leads to
an increase in the number of state variables with an
additional time indext ∈ T for a sequence ofT =
(1,2, . . . ,T) time slices. The hidden and observed
states,Xt = {xt

p}
t∈T
p∈P andYt = {yt

p}
t∈T
p∈P , are repre-

sented in terms of hidden and observed state variables,
xt

p∈ X andyt
p∈ Y . This allows for temporally chang-

ing observations. Thus, the joint distribution of a pair-
wise 3D MRF for a sequence of image observations
Y1:T is given by

P(X0:T ,Y1:T) =
1
Z ∏

(p,q)∈N

ψ(x0
p,x

0
q)×

∏
t∈T

∏
p∈P

φ(xt
p,y

t
p)ψ(xt

p,x
t−1
p )×

∏
(p,q)∈N

ψ(xt
p,x

t
q) . (2)

Here, the edge potentialsψ(x0
p,x

0
q) at timet = 0 intro-

duce some initial state conditions.
To transfer the spatiotemporal properties of a 3D

MRF to a 3D DBN, we restrict ourselves toregu-
lar 3DBNs (Murphy and Weiss, 2001) with a spe-
cial topology like depicted in figure 1 c). The
generative model of a DBN is precisely defined
by the specification of theobservation likelihood
P(Yt |Xt) = ∏pP(yt

p|x
t
p) and thetransition probabil-

ity4 P(Xt |Xt−1) = ∏pP(xt
p|{x

t−1
q }) with q ∈ N (p)

2Without loss of generality, the observations can be dis-
crete or continuous.

3Within one time slice the hidden and observable nodes
are arranged like the 2D pixel-grid of an image. Directed
connections are only allowed from hidden nodesxt

p to ob-
servablesyt

p at the same time or to neighboring hidden
nodesxt−1

q from the past time slice. Intra-slice connections
between neighboring hidden nodesxt

p and xt
q at the same

time are forbidden.
4Sometimes also called conditional probability tables.

andN (p) being a neighborhood of grid positionp
including a set of neighboring hidden nodes{xt−1

q } at
grid positionsq in the past time slice. The joint like-
lihood of a DBN up to timeT is given by

P(X0:T ,Y1:T) = ∏
p∈P

P(x0
p)P(x1

p|{x
0
q})×

∏
t∈T

∏
p∈P

P(yt
p|x

t
p)P(xt

p|{x
t−1
q }) , (3)

whereP(x0
p) are the priors of the state variables that

serve as initialisation.

3 BELIEF PROPAGATION

Now, we focus on comparing inference in MRFs
and in DBNs for online applications. The strategy
is to select an approximate inference technique for
MRFs that is closely related to forward filtering in
DBNs and to choose the transition of a DBN such that
the differences between inference on the MRF and the
DBN get as small as possible. This allows to discuss
the advantages of the remaining differences in the in-
ference algorithms.

3.1 Belief Propagation for a 2D MRF

Using loopy BP in a 2D MRF at each iteration
stepn, an approximation for the marginal probabil-
ity P(xp,Y) called the belief for each nodep can be
computed

bn(xp) ∝ φ(xp,yp) ∏
q∈N (p)

mn
q→p(xp) . (4)

Here,mn
q→p(xp) are the incoming messages to node

p within the spatial neighborhoodN (p) where the
proportionality∝ considers∑xp mn

q→p = 1. Applying
the sum-product algorithm (Bishop, 2006) the mes-
sage update visualised in figure 2 a) is given by

mn
q→p(xp) ∝ ∑

xq∈X

ψ(xp,xq)φ(xq,yq) ∏
s∈N (q)\p

mn−1
s→q(xq)

∝ ∑
xq∈X

ψ(xp,xq)
bn−1(xq)

mn−1
p→q(xq)

, (5)

wheremn−1
s→q(xq) are the incoming messages to nodeq

other thanp: N (q)\p. For initialisation all messages
are set to be uniformm0

q→p = 1, ∀(p,q).

3.2 Belief Propagation for a 3D MRF

For an online application with temporally changing
observations we can apply a forward BP on a 3D MRF
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Figure 2: Message passing schedules for a) a pairwise 2D Markov random field b) a pairwise 3D Markov random field and c)
a 3D DBN. For the 3D DBN the spatiotemporal information flow isnot restricted to the five neigbors from past time slice but
can be an arbitrary number of node connections. Observationnodes are omitted for clarity. Hidden nodes being operated on
for a message update are shown white with the message flow indicated by arrows; other hidden nodes are displayed black.

with a message update schedule that does not access
future observations (Yin and Collins, 2007). Now the
forward belief for each nodep for each timestept is
defined as

bn(xt
p) ∝ φ(xt

p,y
t
p) mp→p(x

t
p) ∏

q∈N (p)

mn
q→p(x

t
p) . (6)

The messages have to be updated according to the fol-
lowing defined order if we do not want to go back-
wards in time. First, the messages for the temporal
transition (see figure 2 b)) are calculated as given by

mq→q(x
t
q) ∝ ∑

xt−1
q ∈X

ψ(xt
q,x

t−1
q )φ(xt−1

q ,yt−1
q )×

mq→q(x
t−1
q ) ∏

s∈N (q)

mn
s→q(x

t−1
q )

∝ ∑
xt−1
q ∈X

ψ(xt
q,x

t−1
q )bn(xt−1

q ) , (7)

which is recurrent over timet in mq→q(xt
q) ←

f (mq→q(xt−1
q ))5. Second, the spatial messages within

a time slice are calculated (see figure 2 b)) as follows

mn
q→p(x

t
p) ∝ ∑

xt
q∈X

ψ(xt
p,x

t
q)φ(xt

q,y
t
q)×

mq→q(x
t
q) ∏

s∈N (q)\p

mn−1
s→q(x

t
q)

∝ ∑
xt
q∈X

ψ(xt
p,x

t
q)

bn−1(xt
q)

mn−1
p→q(xt

q)
, (8)

which are dependent on the temporal transitions
mq→q(xt

q) and the spatial transitionsmn−1
s→q(x

t
q) that

can be iteratively refined alongn = 1...N iterations
anew for each time slicet. Here, all the speed-ups
proposed for message passing in 2D MRFs like in
(Felzenszwalb and Huttenlocher, 2006; Tappen and
Freeman, 2003) can be applied.

5 f denotes the function that transfersmq→q(xt−1
q ) to the

next timet.

3.3 Belief Propagation for a 3D DBN

For the forward BP on a 3D DBN we use an ef-
ficient approximate inference algorithm called fac-
torised frontier algorithm (Murphy and Weiss, 2001).
It assumes that the posterior probabilityP(Xt |Y1:t) :=
∏pP(xt

p|Y
1:t) is approximated as a product of

marginals which is equivalent to loopy BP assuming
that the messages coming into a node are indepen-
dent. For inference, we define the observation likeli-
hood as the product of the node potentials used for the
3D MRF

P(Yt |Xt) = ∏
q∈P

P(yt
p|x

t
p) = ∏

p∈P

φ(xt
p,y

t
p) , (9)

and the transition as the normalised product of the
edge potentials

P(xt
p|{x

t−1
q }) ∝ ∏

q∈N (p)

ψ(xt
p,x

t−1
q ) , (10)

where∝ denotes that∑xt
p
P(xt

p|{x
t−1
q }) = 1. It is fur-

ther assumed that everyψ(xt
p,x

t−1
q ) is equivalent to

ψ(xt
p,x

t−1
p ), ∀q∈ N (p) of the 3D MRF. With the be-

forehand mentioned assumption of a fully factorised
posterior each factor of the posteriorP(xt

p|Y
1:t) is

equivalent to the beliefb(xt
p) when applying forward

BP on the 3D DBN

P(xt
p|Y

1:t) = b(xt
p) ∝ φ(xt

p,y
t
p) ∏

q∈N (p)

mq→p(x
t
p) .

(11)
The corresponding forward message update rule (see
figure 2 c)) reads

mq→p(x
t
p) ∝ ∑

xt−1
q ∈X

ψ(xt
p,x

t−1
q )φ(xt−1

q ,yt−1
q )×

∏
s∈N (q)

ms→q(x
t−1
q )

∝ ∑
xt−1
q ∈X

ψ(xt
p,x

t−1
q )b(xt−1

q ) . (12)



Inserting the message update (12) into (11) we arrive
at a temporal recurrent belief update

b(xt
p) ∝ φ(xt

p,y
t
p) ∏

q∈N (p)
∑
xt−1
q

ψ(xt
p,x

t−1
q )b(xt−1

q ) ,

(13)
which is recurrent over timet only in the beliefs
b(xt

p)← f ({b(xt−1
q )}). Here, f denotes the function

that transfers past beliefs at timet−1 to beliefsb(xt
p)

at current timet. This is a nice advantage compared
to the belief update in the 3D MRF according to (6)
which is not recurrent over time in the beliefs only.

4 QUALITATIVE COMPARISON

Now the advantages of the recurrent belief update
of the 3D DBN (13) compared to the belief updates
of a 2D MRF (4) and a 3D MRF (6) along with the
message updates are discussed.

Inference The forward BP in a 3D DBN as pro-
posed in (13) is equivalent to theα-expansion of the
forward-backward-algorithm for Bayesian networks
(Bishop, 2006) as can be seen by the following con-
version

b(xt
p) = P(xt

p|Y
1:t)

∝ P(yt
p|x

t
p) ∑

Xt−1

P(xt
p|X

t−1)P(Xt−1|Y1:t−1)

∝ P(yt
p|x

t
p) ∑

Xt−1
∏

q∈N (p)

ψ(xt
p,x

t−1
q ) ∏

z∈P

P(xt−1
z |Y

1:t−1)

∝ P(yt
p|x

t
p)

︸ ︷︷ ︸

φ(xt
p,yt

p)

∏
q∈N (p)

∑
xt−1
q

ψ(xt
p,x

t−1
q )P(xt−1

q |Y
1:t−1)

︸ ︷︷ ︸

b(xt−1
p )

×

∑
Xt−1

\xt−1
q

∏
z6=q

P(xt−1
z |Y

1:t−1)

︸ ︷︷ ︸

=1

, (14)

assuming the transition probability to be a product of
potentials as defined in (10) and the approximation of
a fully factorised marginal distribution (11) within a
time slicet. Of course, all the derivations also hold for
the max-product algorithm by simply replacing the
marginal sums with the max-operator (Bishop, 2006)
to estimate the most probable sequence of states. Ob-
viously, the DBN update rule (12) looks pretty much
the same as the 2D MRF update rule (5). The only
three differences are that

1. indexn is now an iteration through timet and for
each timestep a new state variablext

p is defined,

2. hence the past nodext−1
s at positions= p is also

allowed to send a messagems=p→q(xt−1
q ) to con-

tribute to the update of messagemq→p(xt
p) (which

means the beliefb(xt−1
q ) does not have to be di-

vided by the messagemp→q(xt−1
q ))

3. and all observationsyt−1
q are allowed to change

over time.

As a result, the proposed forward filter for the 3D
DBN unrolls the standard loopy BP for a 2D MRF
that iteratesn-times within a time slice along the
physical timet and thus can deal with temporally
changing observations. Vice versa, this relation can
be used to define a more approximative but less mem-
ory consuming BP for 2D MRFs simply by replacing
physical timet in (13) with iteration indexn which
reads

bn(xp) ∝ φ(xp,yp) ∏
q∈N (p)

∑
xq

ψ(xp,xq)b
n−1(xq) ,

(15)
where the beliefs are initialised equally distributed for
n = 0. To compare it with the standard belief update,
we insert (5) into (4). This leads to

bn(xp) ∝ φ(xp,yp) ∏
q∈N (p)

∑
xq∈X

ψ(xp,xq)
bn−1(xq)

mn−1
p→q(xq)

,

(16)
which is dependent on the past beliefs{bn−1(xq)} and
the past messages{mn−1

p→q(xq)}. The simpler update
rule (15) is much more efficient because it is recursive
in the belief only.

Comparing the belief update of a 3D DBN (13)
with the update of a 3D MRF (6) we have seen in
section 3.2 that (6) is not recurrent in the beliefs only
but is (13). Thus, for the 3D MRF all the messages
have to be stored which is not the case for the belief
update of the 3D DBN.

Memory Loopy BP methods that do not explic-
itly compute and store messages but directly update
the belief recurrently as in (13) and (15) require
less amount of memory than state-of-the-art mes-
sage passing update rules as in (5) and (7,8). The
space complexityfor storing beliefs in (13) and (15)
is P × X . Whereas for storing messages using (5)
or (7,8) the space complexity isP × X × N (p) or
P ×X × (N (p)+1), respectively.

5 QUANTITATIVE COMPARISON

Costs The time complexityfor one message update
step in MRFs increases quadratically in the number
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Figure 3: Denoising results for applying (16) and (15) to thepenguin benchmark.
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Figure 4: CostsC for different update rules and label num-
bersL with C = 1 equals a processing time of 0.27s

u sec-
onds per update. The y-axis is square-root-scaled because
the time complexity increases quadratically with the num-
ber of labelsX .

of state values and linearly in the number of pixels
and messagesO (P × X 2×N ) whereas for the DBN
update the order reduces toO (P ×X 2). A quantitative
comparison that confirms the time complexity is given
in figure 4. Here, the times needed to compute one
update of all beliefs or messages for an image with
120× 180 pixels for different numbers of labels and
different BP methods are visualized6. It confirms the
quadratic increase of the costs with linear increase in
labels and the computational advantage of (13) or (15)
compared to (5) or (7,8).

Accuracy To compare the accuracy of the differ-
ent BP methods, we start by applying (16) in com-
parison to (15) on the penguin denoising example

6The algorithms are implemented in matlab and have
been run on an Intel Core2 2.4GHz with 2GB RAM.

(Szeliski et al., 2008). For the denoising test we add
staticGaussian noise with a variance of 30 to the im-
age with a size of 120× 180 pixels. The state val-
uesxp and observablesyp are intensities withX =
(1, . . . ,256). For the node potentials we use quadratic
costsφ(xp,yp) = exp(−lφ(xp−yp)

2) and for the edge
potentials we use truncated absolute costsψ(xp,xq) =

exp(−lψmin(tψ, |xp− xq|))
7. Figure 3 shows the de-

noising results aftern = 30 iterations for applying
(16) and (15) to the penguin benchmark. The Peak-
Signal-To-Noise-Ratio (PSNR) which quantifies the
denoising quality is slightly better for (15) than for
(16) although the computational effort for (15) is
much less as already shown in Fig. 4.

6 DYNAMIC DENOISING

Temporal correspondence If the visual scene
moves, then the temporal pixel correspondencesct

p
between image coordinates of consecutive time slices
are changing. This requires a spatially adaptive neigh-
borhoodN (q+ct

q) for the temporal message passing
schedule already proposed in (Chen and Tang, 2007;
Huang et al., 2008). Now, in (7) the temporal mes-
sagesm(q+ct

q)→q(x
t
q) adapt dependent on the corre-

spondencesct
q and in (13) the belief update gets adap-

tive in the product over spatiotemporal neighboring
beliefsq∈ N (p+ct

p).
To demonstrate the real world applicability of the

proposed BP in 3D DBNs (13) we apply them to solve
an image sequence denoising task and compare the
result to BP in 3D MRFs (7,8). For the 3D MRF,
we restrict the iterations within a time slice (8) to
n = 1 to get a fair comparison to the 3D DBN re-
sults. If then-iterations are increased the convergence

7The parameters are fixed to−lφ = 0.01, −lψ = 0.1,
tψ = 20.
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Figure 5: Denoising results for the car sequence.
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Figure 6: PSNR and Mean Motion EnergyE.

gets faster per temporalt-iteration but also the com-
putation time increasesn-times. Figure 5 shows the
denoising result for BP in a 3D DBN compared to a
3D MRF applied to thecar sequence and using opti-
cal flow for estimating the pixel correspondencesct

p
8.

We used the same node and edge potentials as for
the penguin example but now the noise is adynamic
additive Gaussian noise with a variance of 16. The
corresponding course of the PSNRs is shown in Fig.
6a. The DBN (∗) always outperforms the denoising
quality of the MRF (+) (the PSNR of the noisy se-
quence is shown with the dotted line). To judge the
dependency of the denoising quality on the amount of
movements in the sequence also the mean motion en-
ergy E

t
= 1/P ∑p ||c

t
p||

2 is plotted. With increasing
motion energy the denoising quality decreases. Fig-
ure 7 shows another denoising example with a detail
for better visual inspection of the results. Although,
the variance of the noise varies between 14−16 and
the motion energy increases, the denoising quality
follows quite stable.

8All sequences and optical flows are taken from
http://people.csail.mit.edu/celiu/motionAnnotation/index.html.

We would like to mention that if the number of
intra-time iterationsn ≥ 1 is increased it is likely
that the MRF- result could surpass the accuracy of
the DBN but with the disadvantage of increasing the
computing timen-times. Further on, more temporal
neighbors could be used in the MRF, a choice that is
also likely to improve the quality of the MRF-result
but again leads to additional computing time.

7 SUMMARY AND CONCLUSION

We introduce a special 3D DBN topology with
an efficient class of transition probabilities as a basic
framework for low level vision applications suited for
active vision systems. It provides promising results in
terms of memory amount, computational costs, and
robustness. Applications for image denoising show
that for static scenes with static noise the proposed
approximate BP achieves similar or better accuracy
for denoising than standard BP in 2D MRFs. For
dynamic scenes an efficient spatiotemporal node con-
nection for a DBN topology is introduced that allows



frame 52 noisy frame 52 3D DBN denoising

detail PSNR= 28.1 PSNR= 32.7

Figure 7: Denoising results for the fish sequence.

for fast BP with less memory load than standard 3D
MRF approaches and more accurate denoising results
on noisy real world image sequences.
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