
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Dynamic, Task-Related and Demand-Driven
Scene Representation

Sven Rebhan, Julian Eggert

2010

Preprint:

This is an accepted article published in Cognitive Computation. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Dynamic, Task-Related and Demand-Driven Scene
Representation

Sven Rebhan • Julian Eggert

Received: 1 May 2010 / Accepted: 6 October 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Humans selectively process and store details

about the vicinity based on their knowledge about the

scene, the world and their current task. In doing so, only

those pieces of information are extracted from the visual

scene that is required for solving a given task. In this paper,

we present a flexible system architecture along with a

control mechanism that allows for a task-dependent rep-

resentation of a visual scene. Contrary to existing approa-

ches, our system is able to acquire information selectively

according to the demands of the given task and based on

the system’s knowledge. The proposed control mechanism

decides which properties need to be extracted and how the

independent processing modules should be combined,

based on the knowledge stored in the system’s long-term

memory. Additionally, it ensures that algorithmic depen-

dencies between processing modules are resolved auto-

matically, utilizing procedural knowledge which is also

stored in the long-term memory. By evaluating a proof-of-

concept implementation on a real-world table scene, we

show that, while solving the given task, the amount of data

processed and stored by the system is considerably lower

compared to processing regimes used in state-of-the-art

systems. Furthermore, our system only acquires and stores

the minimal set of information that is relevant for solving

the given task.

Keywords Scene representation � Cognitive control �
Attention � Visual search

Introduction

The visual environment of humans is full of details. To

account for a limited computational power and memory

capacity, humans selectively process and store those details

present in the visual scene. Different experiments show that

the selection process is based on the given task and the

subject’s knowledge about the vicinity and the world. The

strong influence of a given task on the way we scan a scene

was shown in Yarbus [40]. There, the observed subjects’

scan pattern for a visual scene varied, dependent on the

given task. Subjects fixated locations containing task-rele-

vant information more frequently, whereas other locations

were not visited at all. The results of this experiment was

also confirmed by others, e.g. [18, 21, 29, 31]. Beside the

task, the knowledge about the current scene and the world in

general plays an important role for the way we process a

visual scene as experiments conducted by e.g. [9, 19, 21, 34]

show. All those experiments suggest, that locations that are

relevant for solving a certain task are preferred in contrast to

locations containing no such information. However, the

attention of humans is not limited to spatial selectivity but

also applies to the details stored about objects in the scene

such as color, size, form, etc. Experiments presented in

Ballard et al. [18, 36] investigate the relation between a

given task and the details stored about objects in the scene.

They suggest that subjects store only those properties of

objects which are relevant to solve a given task. As Triesch

put it ‘‘What we see is what we need.’’ [36]. To summarize,

short- and long-term memory as well as the current task bias

the attention on objects in the current scene. The experi-

ments have also shown that our attention is not only guided

spatially but also in the feature domain.

On the modeling side for visual attention, there exist

quite a few architectures for vision systems. As an unbound

S. Rebhan (&) � J. Eggert

Honda Research Institute Europe, Carl-Legien-Str. 30,

63073 Offenbach/Main, Germany

e-mail: sven.rebhan@honda-ri.de

J. Eggert

e-mail: julian.eggert@honda-ri.de

123

Cogn Comput

DOI 10.1007/s12559-010-9077-9

and data-driven visual search is NP-Complete [37], we here

review only models that are based on a top–down guided

attention schema. One of the first models describing a top–

down guided visual processing was proposed in Bajcsy [4].

The so-called ‘‘Active Vision’’ Aloimonos et al. [2] models

interpret vision as an active process, where sensor param-

eters like zoom, focus, gain or gaze are actively modulated

to disambiguate the visual input in a task-specific manner.

While earlier work focused on the control of sensory

parameters, Ballard [6] and Aloimonos [1] emphasize the

ability to control the gaze and thus the spatially selective

processing and representation of the scene. Another group

of system architectures based on the work of Rensink [28]

concentrate on modeling the top–down influence on

attention processes. In Navalpakkam and Itti [25], infor-

mation about the spatial layout of a scene and the knowl-

edge about the world is used to guide attention to locations

in the image containing objects relevant for a given task.

Here, the knowledge about relevant objects stored in a

long-term memory is used to modulate input feature

channels to render those objects more salient. In doing so, a

coupling of the system’s memory and its sensory apparatus

is achieved, allowing a system to integrate information

about its world over time and reuse it later. Another

attention system incorporating top–down knowledge was

published in Hamker [16]. Here, the author focuses on a

biologically plausible modeling of the top–down influences

by incorporating an expectation about the features that

should be seen at the target location. Similar approaches

using a top–down modulation in the feature space can be

found in e.g. Frintrop et al. [13].

All models of vision systems presented so far incorpo-

rate the task and the knowledge about the scene and objects

in the world. However, the attention in current state-of-the-

art systems (see Frintrop et al. [14] for a comprehensive

review) is only guided spatially. It becomes clear that in

contrast to what psychophysical experiments suggest, those

models lack attention on which properties of an object

should be extracted from the scene. That is, once a certain

object is attended, in state-of-the-art models all properties

of this object are extracted, not only those relevant for the

task. By not selectively processing the features of objects,

these systems neglect potential savings in both the amount

of processing and the used memory capacity, which are

relevant for resource constraint vision systems. For exam-

ple, if the task only requires to determine the color of an

object, state-of-the-art models nevertheless will run a

classifier and store a full-fledged representation of the

object as they are built on static processing pathways. In

such a processing paradigm, higher level information is

computed in pipes from the image pixel up to e.g. an object

ID while modulating the different stages in a top–down

manner. However, due to the static processing pipelines, a

selective extraction of information is not possible as this

would require to run and dynamically concatenate subparts

of the processing pipelines. In the example of extracting

the color of an object, the subparts like saliency compu-

tation, segmentation, and color extraction could form a

color-extraction process, while not running e.g. the clas-

sifier. This example shows that a more flexible and

dynamic system architecture is required, allowing for an

easy combination of different processing modules. Very

early ideas on such a flexible architecture can be found in

Ullman [38]. There, the so-called ‘‘visual routines’’ can be

seen as highly specialized and independent processing

modules like depth computation, color and shape extraction

or segmentation which are combined on demand to extract

more complex information about an object. Unfortunately,

Ullman does not describe how this coupling can be done

dynamically in the system. A control mechanism that

schedules measurements and a comprising system archi-

tecture is missing. However, according to Hayhoe [17], the

scheduling of measurements, i.e. when to extract which

property of an object dependent on the task, is a funda-

mental question.

In this paper, we present a flexible system architecture

along with a control mechanism that allows for a task-

dependent representation of a visual scene. Contrary to

existing approaches, our system is able to acquire infor-

mation selectively according to the demands of the given

task. Our system comprises both a short-term and a long-

term memory, a spatial saliency algorithm and multiple

visual processing modules used to extract visual properties

of a focused object. The different visual processing modules

operate independently and are specialized in extracting only

a particular visual property. However, the dynamic cou-

pling of multiple processing modules allows for the

extraction of specific, more complex features that are rele-

vant for solving the given task. The control mechanism we

present decides which properties need to be extracted and

which processing modules should be coupled. This decision

is based on the knowledge stored in the long-term memory

of the system. Additionally, the control mechanism ensures

that algorithmic dependencies between processing modules

are resolved automatically, utilizing procedural knowledge

which is also stored in the long-term memory. We evaluate

a proof-of-concept implementation of a system constructed

according to the architecture and the control mechanism

presented in this paper. The experimental evaluation using a

real-world table scene shows that while solving the given

task, the amount of data processed and stored by our system

is considerably lower compared to processing regimes used

in state-of-the-art systems. This in turn leads to a noticeable

reduction of the computational load and memory demand.

The presented work contributes to a task-dependent repre-

sentation of visual scenes, because only those pieces of

Cogn Comput

123

information are acquired and stored that are relevant for

solving the given task.

In the next section, we present the flexible architecture

of the system and briefly discuss the visual routines used in

our proof-of-concept implementation. The system’s mem-

ory architecture as well as important relations in this

memory are presented in ‘‘Memory architecture‘‘. The

interplay between the memory and the computation

modules is controlled by the attention control mechanism

presented in ‘‘Attention Control Mechanism’’. This mech-

anism schedules the measurement processes and dynami-

cally compiles processing pipelines using the available

visual routines. We then use a proof-of-concept imple-

mentation to evaluate our ideas. The results of these

experiments are shown in ‘‘Results‘‘. Finally, we discuss

these results in ‘‘Discusson’’.

System Architecture

In the following, we will present our flexible system archi-

tecture and show an example of the information flow in such

a system. Afterward, we briefly discuss important processing

parts, called visual routines, that are used in the proof-of-

concept implementation of the described architecture.

Architecture

The system architecture we propose comprises three major

parts as shown in Fig. 1. On top, there is the relational

memory including both the short-term and long-term

memory (see 1 in Fig. 1). In the short-term memory,

information about the current scene is stored, whereas in

the long-term memory the system’s knowledge about the

world is represented. Here, a relational graph structure is

used to store relations between objects and properties along

with information about the measurement processes of

object properties. More details can be found in ‘‘Memory

Architecture‘‘. Based on the memory and the given task,

the attention control mechanism (see 2 in Fig. 1) deter-

mines which regions and features will be attended in the

scene. To do so, the attention control mechanism is able to

modulate features in a saliency map or in visual routines to

find new object candidates or measure object properties,

respectively. Furthermore, the control mechanism is

responsible for scheduling the internal measurement pro-

cesses and thus the visual routines of the system. Please

refer to ‘‘Attention Control Mechanism’’ for more details.

Once a property is selected for measurement, the corre-

sponding visual routine is triggered. The visual routines

and the saliency map are located in the middle layer of the

architecture shown in Fig. 1. The saliency map (see 3 in

Fig. 1) is dedicated to finding object candidates in the

visual scene that best match the top–down expectations

raised by the memory and the attention control mechanism.

The visual routines marked with 4 and 5 in Fig. 1 are

specialized to compute one selected visual property of an

object each, similar to the concept proposed in Ullman

[38]. Separating the processing into different highly spe-

cialized modules allows an easy extension of the system

and a free combination of those modules in later stages.

Furthermore, it becomes possible to run only those visual

routines required to gather the pieces of information rele-

vant for the task. We can arrange the visual routines into

three different (partly overlapping) groups. On the left-

hand side, there are object-unspecific routines like the

Fig. 1 The system architecture

comprises (1) a relational short-

term and long-term memory, (2)

an attention control mechanism

coordinating the processing and

information flow of the different

visual routines (3–5), (3) object-

unspecific visual routines like a

saliency computation, (4) multi-

object visual routines like multi-

object tracking (not

implemented here but in Eggert

et al. [11]) and (5) object-

specific visual routines like

segmentation and property

measurements

Cogn Comput

123

saliency computation (see 3 in Fig. 1). Those routines are

bottom-up driven and only influenced by modulatory top–

down inputs. The unspecific processing allows parallel

computation with respect to the image location. Routines

of the second group (see 4 in Fig. 1), work in parallel on a

few objects. However, they are tuned to those objects by

top–down information like object features or locations. An

example for such a routine is a multi-object tracker. Cur-

rently, this class of visual routines is not implemented

(grayed-out box in Fig. 1) in our system. However, in

Eggert et al. [11] that kind of processing has been tested

separately in a proof-of-concept system. On the right-hand

side of the middle layer (see 5 in Fig. 1), object-specific

visual routines are grouped. Those algorithms work

sequentially on only one object at a time. The processing

itself is very selective and triggered in a top–down manner,

including a strong top–down bias. Examples are classifi-

cation or segmentation algorithms that include for example

object biases and form priors.

Processing Flow Example

If the task of the system is for example to search for a ‘‘red

object’’, the processing flow would look like the one shown

in Fig. 2. To initiate the search of the requested red object,

the task-related properties are activated in the system’s

long-term memory. The attention control mechanism now

tries to determine which properties have to be measured in

the current visual scene to solve the task. In this case, the

attention control mechanism needs to trigger the mea-

surement of the object color to solve the task. Furthermore,

the attention control mechanism needs to resolve the

elemental processing steps required to measure the color

which comprise finding a suitable object candidate,

extracting an object mask for the found candidate, and

finally measuring the color of the object candidate. In each

step, the acquired information is compared to the properties

known for the searched object. We will describe this part of

the processing in ‘‘Attention Control Mechanism‘‘. The

elemental processing steps

1. Search a suitable object candidate

2. Extract a mask for the object candidate found

3. Extract the color of the object candidate using its mask

to make sure it actually has the searched color

will result in the processing flow shown in Fig. 2.

To locate a suitable object candidate, the attention con-

trol mechanism triggers the saliency computation (see 1 in

Fig. 2). As indicated by the red arrow in Fig. 2, the attention

control mechanism provides modulatory inputs for the

saliency processing. These inputs are constructed using the

knowledge about the searched object. In the example of

finding a red object, the system knows the color to look for

and thus can provide this information as a modulatory input

to the underlying processing. Furthermore, spatial infor-

mation can be incorporated, e.g. the object is on the table or

the object is on the left. Additional to the modulatory color

input, a weight for each saliency feature is provided by the

attention control mechanism. Now the saliency map is

computed using a color map tuned to enhance red objects,

while suppressing objects with other colors. This way, the

saliency map is tuned for the given task. The resulting

saliency map is propagated to the attention control mech-

anism (blue arrow in Fig. 2) together with a map containing

the roughly estimated retinal object sizes at each location

Fig. 2 The processing flow for

the simple task ‘‘find a red

object’’ is shown here. First, a

suitable object candidate is

located (1), then the object

candidate is segmented (2) and

finally the color of the candidate

is measured (3).

(Color figure online)

Cogn Comput

123

(see Rebhan et al. [27] for details). The attention control

now selects the most promising object candidate by per-

forming a maximum selection. The selected candidate is

attended and stored in the short-term memory, together with

its location and rough size. To make sure the attended object

candidate actually is the searched object, the system has to

measure the object’s color. To do so, the attention control

mechanism triggers a segmentation routine (see 2 in Fig. 2).

Again, the attention control provides modulatory informa-

tion about the object candidate to the visual routine (red

arrow in Fig. 2), namely the location and the rough size

previously stored in the short-term memory. The segmen-

tation routine uses this information as a starting condition to

segment the object candidate. The resulting mask is then

returned to the attention control mechanism (blue arrow in

Fig. 2) and stored in the short-term memory together with

the already acquired information. At this point of the

location, the rough size and the mask for the attended object

candidate are known. This is still not enough information to

solve the task of finding a red object. However, it enables

the system to finally measure the color of the object can-

didate to make sure it is red. To do so, the attention control

mechanism triggers the visual routine for extracting the

color of the object candidate (see 3 in Fig. 2). The visual

routine requires the location and mask of the object candi-

date, so the attention control mechanism provides these

information as modulatory inputs (red arrow in Fig. 2). The

visual routine then extracts and returns the measured color

of the object candidate (blue arrow in Fig. 2). The attention

control mechanism stores the color in the short-term

memory along with the other properties of the candidate and

finally compares the measured color with the requested one.

If they match (at least to a specified degree), the task is

solved. Otherwise a new object candidate needs to be found

using the saliency map, while the previous candidate is

suppressed (inhibition of return). The evaluation of the

measured properties against the properties of the searched

object stored in the long-term memory is performed for

each newly acquired information. If a mismatch between

the stored and measured property is detected, the mea-

surement process can be aborted and a new object candidate

will be localized. This whole processing loop will repeat

until the searched object is found or all locations in the

visual scene have been visited.

Visual Routines

In the following, we describe the different types of pro-

cessing modules implemented in our proof-of-concept

system. The first module described here is the saliency

computation, followed by the segmentation module and the

group of feature extraction modules. For the last group, we

only implemented very basic methods to focus on the

attention control mechanism and the system architecture

instead of low-level processing. The mentioned processing

modules are able to extract the dominant color, the coarse

size, and the coarse shape of an object.

Saliency Computation

Our saliency computation incorporates a basic top–down

modulation schema on the color feature, a possibility of

incorporating spatial modulation and the weighting of

different features. Nevertheless, more advanced algorithms

as proposed in Hamker [15], Frintrop et al. [13, 26] or

Michalke et al. [24] can also be used here. Additional to

the saliency map, the processing module computes a rough

size estimate (see Rebhan et al. [27] for details). The

schematic illustration of the saliency processing is shown

in Fig. 3. We can identify three different processing steps:

tuning of one or more channels of the input features F (blue

in Fig. 3), calculation of the center-surround contrast

(yellow in Fig. 3) and computation of the lateral dynamics

(green in Fig. 3).

First, the input features are modulated to enhance the

contrast of a searched object with respect to other regions

in the scene. Here, we use a method similar to the one

proposed in Navalpakkam and Itti [26]. To modulate a

certain pixel in the input image, the distribution of an

object property is assumed to be Gaussian. Hence, the

similarity t between a selected feature fi and the Gaussian

distribution (l, r) of the searched object property can be

calculated for each pixel x, y. In the current implementa-

tion, this kind of feature biasing is used for the depth map

z resulting in a biased map tz with the top–down provided

Gaussian distribution lz, rz, where lz denotes the mean

and rz the standard deviation, so that

tzðx; yÞ ¼ e
� 1

2r2
z
ðzðx;yÞ�lzÞ2

: ð1Þ

For the RGB image IL consisting of the channels iL
r ; i

L
g and

iL
b , we extend the equation above to the multichannel case.

With the Gaussian distribution (lr, lg, lb), (rr, rg, rb), the

biased color map tcolor is calculated as

tcolorðx; yÞ ¼ e
�1

2

P

n

ðiLn ðx;yÞ�lnÞ2

r2
n : ð2Þ

Here, n is the n-th channel of the input features

n = {r, g, b}, ln represents the mean values of the

Gaussian distribution and rn is the standard deviations of

the different channels. By applying this kind of modula-

tion, locations with features similar to the searched ones

are enhanced, while regions with different features are

suppressed. The Gaussian distribution describing features

of the searched object is provided by the attention control

mechanism based on object knowledge and the given task.

Cogn Comput

123

Using the biased and unbiased features, we can construct

the feature matrix Fsaliency for the saliency computation

consisting of the RGB image, the saturation value s and the

biased color channel tcolor

Fsaliency ¼ iLr ; i
L
g ; i

L
b ; s; tcolor

� �
: ð3Þ

The resulting feature matrix Fsaliency is weighted using a

top–down weight vector w giving the weighted feature

matrix ~Fsaliency

~Fsaliency ¼ Fsaliency � w; ð4Þ

where Fsaliency � w denotes the weighting of each feature

channel with the corresponding scalar weight.

After biasing and weighting the input features, the

center-surround contrast ci(x, y) for each pixel x, y and

center-surround combination i must be computed. Here,

i denotes a certain combination of the Gaussian filters

gcenter
i and gsurround

i with rcenter
i and rsurround

i respectively.

Contrary to other saliency implementations like [20], we

use the Euclidean distance between the center and surround

feature vector. The contrast ci is calculated within one

combination i as

c2
i ¼

X

n

gcenter
i � gsurround

i

� �
� ~fn

� �2
: ð5Þ

The * operator denotes a convolution of the center-sur-

round filter with a single feature channel ~fn. We choose the

sigmas for the center and surround of the filter combination

according to the schema proposed in [20].

The resulting contrast maps ci are biased using a spatial

modulation map m, provided in a top–down manner

~ciðx; yÞ ¼ ciðx; yÞ � mðx; yÞ: ð6Þ

The top–down spatial modulation map integrates multiple

information. First, the modulation map allows a three-

dimensional spatial biasing by using the biased distance

map tz described in Eq. 1. Second, the attention control

mechanism can inhibit locations of known objects based on

the memory content using the modulation map mior. This

process is known as inhibition of return (IOR) [20]. The

multiplicative combination of both maps leads to

mðx; yÞ ¼ miorðx; yÞ � tzðx; yÞ: ð7Þ

Another important difference to other saliency implemen-

tations is the fact that in our approach, the spatial modu-

lation is done before the lateral dynamics. The implications

of this slight change become clear when we look at the

effect of the lateral dynamics, which act as strong non-

linearities in the spatial domain. That is, while different

peaks compete with each other, their positions get shifted

across the map. When the spatial modulation is applied

after that non-linearity, one has to take these shifts into

account, which is impossible. By applying the spatial

modulation map before the lateral dynamics, we can cir-

cumvent this problem.

The next stage of the processing is to perform a lateral

spatial competition on the contrast maps ~ci (see Fig. 3).

Currently, we apply Amari field dynamics [3] to enhance the

signal-to-noise ratio (SNR) in those maps. Finally, the maps

of different scales i are combined into one single saliency

map s, containing locations of object candidates. Figure 4

shows some results for an unbiased, a feature biased and a

feature and location biased saliency map. It can be seen that

the more knowledge is included in the processing, the less

object candidates remain in the map. Less object candidates

also mean a faster visual search time (see e.g. [26]).

Segmentation

In our system, the object mask plays a major role in the

further processing, as it is required to calculate all other

object properties. To calculate this mask, we use the multi-

cue Level-Set method presented in Weiler and Eggert [39].

Fig. 3 The input features F are

modulated and weighted

according to the top–down

modulatory inputs (bottom).

After computing the contrast

computation, spatial modulation

and lateral dynamics, the result

is integrated into a final saliency

map s. All these computations

work on spatial resolution

pyramids. Additionally to the

saliency map, the center-

surround contrast is used to

roughly estimate object sizes

Cogn Comput

123

The mask itself is a function of the retinal object location

x = (x, y)T, the low-level feature vector F and potential

feature modulations Fmod

pmask ¼ f ðx;F;FmodÞ: ð8Þ

Currently, the segmentation is solely based on the color

input image. However, it is possible to employ more fea-

tures like depth or texture which can improve the seg-

mentation results. Furthermore, alternative segmentation

algorithms like region-based segmentation Sonka et al.

[33] or Graph-cut Boykov and Jolly [8] can be used in our

system.

Feature Extraction

Our proof-of-concept system currently comprises four

processing modules to extract the dominating color, the

distance, a coarse shape and the coarse size of an object.

The color and distance properties, pcolor and pz are

approximated using the k-means clustering algorithm [23].

This algorithm estimates the cluster centers l in the feature

space of a property p within the given object mask pmask. In

the following, we express the k-means clustering method as

kmeansð�; pmaskÞ, where � is replaced by one or more fea-

ture maps F. The second argument is always the binary

object mask pmask

pcolor ¼ lcolor ¼ kmeansðIL; pmaskÞ ð9Þ
pz ¼ lz ¼ kmeansðz; pmaskÞ: ð10Þ

Here, IL is the left RGB image of the stereo camera system

and z is the computed depth map. For color and depth, only

the dominating cluster, containing the most elements, is

passed on to the system’s memory. This leads to an esti-

mation of the dominating color or depth while at the same

time outliers and locations in the mask, which potentially

belong to the background, are ignored.

To determine the size and shape of an object, we cal-

culate the minimal bounding box pBB for the object mask

utilizing the algorithm described in Toussaint [35]. The

bounding box is expressed by its width w and height

h following the convention w C h. In the following, the

estimation method is denoted with boundingbox(�) and

only gets one argument, the object mask pmask

w; hð ÞT¼ boundingboxðpmaskÞ: ð11Þ

Using the normalized bounding box parameters w and h,

we can calculate the size psize and shape pshape properties as

psize ¼ h � w ð12Þ
pshape ¼ h=w: ð13Þ

In doing so, we define the size as the area and the shape as

the aspect ratio of the bounding box. The resulting coarse

shape identifies ‘‘compact’’ objects with pshape &1 and

‘‘elongated’’ objects with pshape �1. Using the pixel size

psize and the depth pz of an object, we can approximate the

physical size by

pphysicalsize / psize � p2
z : ð14Þ

If a visual routine is triggered by the attention control

mechanism, all processing results are passed to the sys-

tem’s short-term memory.

Memory Architecture

To be able to decide which properties of an object should

be measured, the system needs to incorporate both the

current task and the knowledge about the world. For the

visual search tasks we aimed at here, this world knowledge

not only comprises information about the object to be

found, but also about other objects in the scene. Therefore

in this section, we describe our graph-based relational

memory, the relations between nodes and the overall

memory architecture used in the proof-of-concept system.

Relational Memory

In our approach, the system’s memory does not just serve

as a ‘‘data store’’ for the world knowledge. More impor-

tantly, it constitutes a suitable representation for a control

mechanism deciding which properties need to be measured

for different objects in order to fulfill a given task. A suited

flexible and general memory was proposed in Röhrbein

et al. [30]. This memory is capable of representing and

operating on large object ontologies. Even though we base

our work on this graph-based structure, we present major

Fig. 4 This shows an example of an unbiased, color biased (white) and a color and spatially biased (distance bias at 70 cm) saliency map

Cogn Comput

123

improvements like representation of procedural knowledge

and the memory architecture itself in this paper.

The basic structure of the memory is a graph. Figure 5

shows an exemplary representation of an object in the

graph structure of the memory. In Fig. 5, the graph struc-

ture on the right-hand side is the system’s internal repre-

sentation of the object on the left. Nodes in the graph

represent both properties and the object itself. Edges con-

necting the nodes specify a ‘‘hasProperty’’ relation between

the object and its properties. Importantly, the property

nodes are anchored in the sensory representations as shown

in Fig. 5. That is, each property node stores the sensory

value or distribution it stands for. As an example, the object

obj1 in Fig. 5 has a property color1. The color node itself

stores a Gaussian distribution of the object’s color, in this

case the color red (see Fig. 5). In a more formal way, the

memory is a graph G = (V, E) where V is the set of ver-

tices or nodes and E is the set of edges connecting these

nodes. The nodes V can be further separated into object

nodes O and property nodes P where V = O [P. The

sensory information is stored in the property nodes. An

object node is then interpreted as a combination of its

properties. In this interpretation, the nodes carry the

information and the edges represent relations between the

different nodes and thus between the different information.

It is not only possible to represent a single relation between

nodes, but the proposed memory architecture is capable of

representing an arbitrary number of relations. That is, we

can express relations between objects, between an object

and property nodes and between property nodes. These

relations are described in more detail below.

Relations

The role of a node is determined by the incoming and

outgoing edges, i.e. its graph structure, rather than by an

artificial definition. In the same way, we do not define the

meaning of an edge, but we rather define a pattern in the

memory and its algorithmic interpretation. Here, the edges

are bidirectional and implemented as two oppositely

directed edges. When applying this schema consequently,

we can interpret the memory structure as a bunch of

interconnected graphs (one for each relation or edge type).

This interpretation allows us to apply well-known graph

algorithms. The relations currently used in the system can

be seen in Fig. 6. In the following, we define relations

between nodes that are necessary to represent both the

semantic and procedural knowledge of the system.

Representing Knowledge

The probably most common relation is the ‘‘hasProperty’’

relation. As edges are bidirectional, there also exists an

edge into the other direction called ‘‘isPropertyOf’’. Using

this relation, properties can be assigned to an object. For

example, if we want to express that an object o has a

certain color pcolor, we generate an object node o [O and

a property node pcolor [P. Then we define an edge

between o and pcolor as

o�������!hasProperty
pcolor: ð15Þ

At the same time also a relation in the inverse direction

called

pcolor�������!
isPropertyOf

o ð16Þ

will be generated. In the following examples, only the

definition in one direction will be mentioned for readabil-

ity. However, an edge for the inverse direction is always

created simultaneously. As it is common in graphs, one

object can have arbitrarily many properties and a property

can belong to arbitrarily many objects.

The second type of relation that should be described in

more detail here is the ‘‘inheritsFrom’’ and the corre-

sponding inverse ‘‘specializesTo’’ relation. This relation

can be established both between two objects or between

Fig. 5 A duck is represented in the memory graph of the system.

Internally its properties are described by nodes, connected by edges

that express a ‘‘hasProperty’’ relation. Each node stores a link to the

sensory representation

Fig. 6 The relation between the objects o1 and o2 (1) denotes an

inheritance of information between the two objects. Edges between

object o1 and the properties p1...p3 as well as between object o2 and

the properties p4, p5 (2) specify visual properties of those objects.

Interdependencies of the processing in the system are expressed as

edges between e.g. the property p1 and p4 (3). For further explanations

of these relations, please refer to the text

Cogn Comput

123

two properties. When defining the relation o1�������!
specializesTo

o2,

object o2 will have exactly the same structure and prop-

erties as o1. The same is true for a pair of properties p1, p2,

which then share the same values and relations. However,

based on these inherited properties or values, specializa-

tions can take place. That is, inherited properties can be

removed or overwritten, new properties can be added or

values can be modified. Here is an example: imagine an

object o1 with the color property pcolor attached

(o1�������!
hasProperty

pcolor) and an object o2 without property nodes

attached. When writing

o1�������!
specializesTo

o2; ð17Þ

o2 inherits the color of o1 and is also assumed to have the

color pcolor. As soon as we attach another property node

like the size psize to o2

o2������!
hasProperty

psize; ð18Þ

the second object is specialized. That is, it inherits all

properties from o1 but defines additional or modified

properties.

Additional to the edges in the graph, property nodes

store a link to sensory representation. This is necessary to

avoid the so-called ‘‘grounding’’ problem found in classical

AI approaches. Here, the difficulty is to relate an abstract

sensory node like ‘‘red’’ to a sensory experience of the

system, as this information is not stored in the node itself.

Contrary to this, by keeping a link to the sensory repre-

sentation in the property nodes, we do not introduce an

artificial abstraction between the sensory side and the

memory. Furthermore, the resulting anchoring of the node

allows for an easy conversion of the node information back

to the sensory representation. This is very important when

modulating input features of visual routines as described in

‘‘System Architecture‘‘. To avoid an excessive usage of

memory by storing very detailed sensory representations in

the property nodes, we approximate the representations

using a k-means clustering. To summarize, by storing a

link to the sensory representation, we anchor the property

nodes in these representations and thus avoid the

‘‘grounding’’ problem classical AI approaches face. Fur-

thermore, the measurement of an object property can be

triggered using the connection of the property node to the

actual visual routine (through the sensory representation).

Representing Functional Aspects

Another relation type, the relation ‘‘dependsOn’’ and its

inverse relation ‘‘influencedBy’’, accounts for technical

aspects of the system and the sequential processing. This

relation represents knowledge about the correct ordering of

information acquisition processes which is crucial to keep

the system functional. If for example a visual routine for

acquiring the color pcolor of an object requires information

about the retinal location px,y of the object, it is important

to acquire the location before the color routine is called. In

current state-of-the-art systems, this is ensured by manually

constructing processing pipelines in a static processing

regime. By doing so, the whole processing apparatus

including e.g. saliency, segmentation, and classification is

executed even though for example only the color of an

object needs to be determined. The ordering of the visual

routines becomes even more important when breaking this

static processing as done in this paper. When defining the

relation

p1������!
dependsOn

p2; ð19Þ

we express that the processing of p1 can only take place if

p2 has already been processed. Currently, the direct

dependencies between the different property nodes are

defined manually. We will see later that by using these

direct definitions a canonical dependency graph can be

created automatically. The problem here is very similar to

problems found in compiler construction. Even though

Ballance et al. state in their paper that ‘‘neither switches

nor control dependence are required for a demand driven

interpretation’’ Ballance et al. [5, p. 261], some modifiers

for dependency relations are required to account for the

algorithmic needs of visual routines. Figure 7 shows those

required modifiers.

They cover the cases:

a) The operation of node C is optional and not absolutely

required for measuring node A, but would improve the

result of the measurement. For example a spatial

modulation map could constrain the search space for

an object, but is not mandatory. If the map is not

available, the whole space has to be searched for the

object (see Fig. 7a). The type of a dependency is then

type(e [EdependsOn) = {‘‘optional’’, ‘‘mandatory‘‘}.

b) Property nodes can execute two operations. Each

property node can potentially send its information to

another node/sensory representation or receive infor-

mation from another node/sensory representation. The

A

B

A

B

A

C

and/or

C

mandatory optional
send /

receive

B

Fig. 7 Different modifiers are required for dependency relations:

a dependencies can be optional or mandatory, b target nodes can

execute send and receive operations and c all dependencies can be

required to be fulfilled or only one dependency needs to be fulfilled

Cogn Comput

123

modifier shown in Fig. 7b specifies which operation

node B has to execute in order to fulfill the dependency

of node A. The operation requested by a depen-

dency is then operation(e [EdependsOn) = {‘‘send’’,

‘‘receive‘‘}, corresponding to the modulation and

measurement of sensory representation by visual

routines.

c) There might be alternative ways to measure a certain

property, so the system needs to fulfill only one of

several dependencies. Think of different segmentation

algorithms for estimating the shape of an object, where

only one of those algorithms is required to get a shape

(see Fig. 7c). A dependency can take one of the

following logical modes mode(e [EdependsOn) =

{‘‘and’’, ‘‘or’’}. If no mode is given, the ‘‘and’’ mode

is assumed by default.

Based on the dependency relations along with the modifiers,

we are able to model functional dependencies between

property nodes and thus also between the visual routines

bound to those nodes. This distinguishes the memory we use

in this paper from other architectures that do not explicitly

model relations between processing modules.

Architecture

Using the relational memory described above, we define a

memory architecture. This architecture consists of four

parts as shown in Fig. 8. At the bottom of Fig. 8, the

prototypical structure of the memory is shown. In this part,

we define the object structure as ‘‘hasProperty’’ relation

patterns between property nodes P and object nodes O. In

the example shown in Fig. 8 an object can have the prop-

erties shape, color, mask, weight, etc.

We then construct the sensory prototype layer, which

inherits the structural definition of the layer below as

denoted by ‘‘inheritsFrom’’ edge in Fig. 8. By doing so, the

relations between the property nodes P and the object

nodes O are transferred to the sensory prototype layer

without the need to redefine them. Additionally, relations

between nodes and the sensory representations are defined,

‘‘binding’’ those nodes to their corresponding sensory

representations. The sensory representations themselves

are bound to the visual routines that compute the sensory

values. That way, we also bind the property nodes to the

visual routines of the system. Furthermore, dependency

relations between property nodes P are defined in the

sensory prototype layer (shown as red edges in Fig. 8) to

represent the measurement process as described in ‘‘Rela-

tions‘‘. By binding the property nodes to the sensory rep-

resentations, the system can use the knowledge about its

own measurement apparatus to estimate costs and infor-

mation gain of different visual actions.

The long-term memory then inherits both the sensory

binding along with the dependency structure and the

structural definition of the sensory prototype layer. Note

that the structural definition of the sensory prototype layer

is itself inherited from the structural prototype layer.

Contrary to the layers described before, in the long-term

memory multiple instances of the prototypical object def-

inition are created. Each of these objects is a specialization

of the prototypical one and thus has individual properties

bound to the object. These individual property nodes rep-

resent for example the color or the shape of an object found

obj25

obj1

ShapeColor Size

"green" "red"
"elongated" "compact"

size3

"large"

size5

"medium"

size18

"tiny"

obj9

"Ball"

"Bottle"

"ToyCar"

location1

weight1

shape1

size1

Sensory
Representation

Location

Sensory
Prototypeslocation

weightcolor

size

Structure
Prototypes

mask
location

weightcolor

sizeshape
obj

mask

shape
obj

color9 color5
shape3 shape7

obj12

Fig. 8 Top row: The long-term

and short-term memory store

world knowledge and scene

information respectively.

Second row: Sensory

information computed by the

visual routines. Third row:

Sensory Prototypes that define

the binding of the object

property nodes to the

corresponding sensor.

Furthermore, dependencies

between property computations

are defined (red edges). Objects

in the long- and short-term

memory inherit information

from this layer. Last row: The

structure prototype definitions

express the relations between an

object and its properties.

(Color figure online)

Cogn Comput

123

in the visual world. Looking at Fig. 8, we see that only

persistent properties are attached to the object node in the

long-term memory. Volatile properties like the objects

position are not stored. Furthermore, we see that the nodes

in the long-term memory do not contain ‘‘names’’. This

illustrates that property nodes and object nodes are only

anchored in the sensory representations and are not defined

by a label. However, we merge those labels (gray nodes in

Fig. 8) in the following illustrations to increase the lucidity

and allow for a more intuitive use of the system by humans.

The fourth and last part of the memory architecture is the

short-term memory. This part of the system stores knowledge

about the current scene. While doing so, information can be

inherited both from the sensory prototype layer and the long-

term memory. If an object is not yet known or identified, the

object inherits its information from the sensory prototype

object. As soon as the object is identified, the object in the

short-term memory inherits information from the long-term

memory. By doing so, the system is able to predict properties

that are not yet measured. Here, the identical structure of an

object in both the long-term and short-term memory eases the

transfer of information between these two memory instances.

Figure 8 shows an example, where obj1 in the short-term

memory is identified to correspond to obj9 of the long-term

memory (dashed line in Fig. 8). That is, an object (obj1) was

found in the current scene, having similar properties to a

known object (obj9) in the long-term memory. As illustrated

by the solid outlines of the nodes, size, location and saliency

weights of obj1 are measured or sent respectively. However,

the shape of obj1 was not yet measured, but can be predicted

from the knowledge about obj9. We can use this mechanism

to establish a prediction-confirmation loop, where the long-

term memory provides the predictions and the measurement

apparatus tries to confirm the properties using the visual

routines.

To summarize, we propose an architecture that uses

multiple layers to separate the structural, procedural,

semantic, and sensory definition of an object. A similar

separation into procedural (skills) and semantic knowledge

is also proposed in Langley et al., 2009 , which uses a rule-

based representation. However, this approach misses an

anchoring of the object properties in the sensory repre-

sentation. By splitting the memory architecture, it can be

easily adapted to different systems or underlying algo-

rithms by only changing the sensory layer. Here, the

structural definition accounts for the sensor pathways and

the variety of information available in a system. The sen-

sory definition accounts for the concrete implementation of

a sensory pathway and the underlying algorithms. Addi-

tionally, the dependencies between different visual routines

and thus the dependencies between the underlying algo-

rithms is consistently defined in the sensory prototype

layer. Both the long-term and the short-term memory

inherit from the sensory prototype layer, which leads to an

identical object structure in both parts. This identical

structure later eases the transfer of information between the

two memory instances. By doing so, a prediction-confir-

mation loop can be established where the long-term

memory predicts properties of objects in the scene and the

system tries to confirm these predictions using its visual

routines. The question of which properties to measure

when is subject of the next section.

Attention Control Mechanism

The attention control mechanism is the key aspect of our

system, as it selects the elements of the scene that are per-

ceived. For humans, this process is both selective in the

spatial as well as in the feature domain according to the

experiments reviewed in the related work. The process of

guiding attention spatially is well researched. In this paper,

we focus on the guidance of attention in the feature domain,

i.e. which properties of a focused object should be measured.

Along with the question of which properties to measure, the

question on how to organize the acquisition process arises. In

this section, we will show how the system’s procedural

knowledge is used to organize the measurement process and

determine the execution order of visual routines.

Information Flow Example

Figure 9 illustrates the process of searching for a ‘‘tiny’’

object and the process of searching for the ‘‘toy car’’. To

start the search process, the searched properties or objects

are activated in the long-term memory. If a property node

is activated directly (as in the ‘‘tiny’’ object example), the

visual routine bound to this property node is called on each

object candidate in the image. However, for finding a

specific object the procedure is more complex. In order to

keep the computational and storage demand low, our goal

is to find a small subset of measurements ensuring that the

attended object is the searched one. This way, the amount

of information that needs to be stored in the short-term

memory as well as the computation time are kept low. As

mentioned earlier, the approach we propose in this paper

uses the system’s long-term memory to determine charac-

teristic properties of the searched object. Please note that

the discriminative power of a certain property strongly

depends on concurrently active object hypotheses. In

Fig. 9, the ‘‘toy car’’ object has attached the property nodes

‘‘green’’, ‘‘medium’’ and ‘‘compact’’ (see red arrows in

Fig. 9). To search for the object, first a suited object can-

didate needs to be found in the current scene. The saliency

computation is triggered, using the properties of the sear-

ched object like color and size to bias the input features.

Cogn Comput

123

After finding an object candidate, the system must decide

on which property it wants to focus. Given that it actually

measures the color ‘‘green’’, there are two valid hypotheses

(‘‘bottle’’ and ‘‘toy car’’), for the size ‘‘medium’’ only one

hypothesis remains (‘‘toy car’’) and for the shape ‘‘com-

pact’’ two hypotheses (‘‘ball’’ and ‘‘toy car’’) remain (see

Fig. 9). So the information gain is highest for the size

measurement, as it reduces the set of possible interpreta-

tions to only one. In other examples, the measurement of

more than one property is necessary to solve the task.

Nevertheless, this example shows the principle of the

algorithm: Find the property of the searched object os that

minimizes the set of remaining interpretations or hypoth-

eses for the attended location. If more than one measure-

ment minimizes the set of hypotheses, the cost of a certain

measurement (currently the computation time) is used to

decide which measurement to execute first.

Dependency Resolving

The memory we propose is able to represent functional

dependencies and modifiers that account for algorithmic

needs of the visual routines bound to property nodes. How-

ever, in memory, only direct dependencies are modeled. To

trigger arbitrary visual routines on demand, the overall

information acquisition process needs to be organized. By

parsing the direct dependencies stored in memory, an unrolled

dependency graph as shown in Fig. 10 is constructed. The

unrolling can be achieved by applying a depth-first search

algorithm [32] on the graph constructed using the direct

dependency definitions. However, this algorithm assumes

that the parsed graph is a tree, i.e. it does not contain cycles.

For doing so, we introduce a node state marking a node as

either ‘‘resolving’’, ‘‘visited’’, ‘‘invalid data’’ or ‘‘valid data’’.

The first state means that the node is currently resolving its

dependencies. The second state means that the resolving

process of the node’s dependencies is finished. The third state

means that the node has not been visited yet and does not

contain up-to-date data. The last state means that the node has

not been visited yet, but its data are up-to-date, which is

required to reuse already acquired data (state ‘‘valid data’’).

When looking at the edges two, three and four of Fig. 10, one

can see that these relations form a circular dependency, as

receiving the retinal location depends on sending the spatial

modulation map (2), which depends on receiving the object

mask first (3). However, receiving the object mask in turn

depends on receiving the retinal location (4). This circular

dependency violates the tree assumption that was made to be

able to unroll the dependency graph. The circular dependency

can be detected by marking the nodes as ‘‘resolving’’ when

entering them. As soon as the operation on the node is com-

pleted, the state is changed to ‘‘visited’’. When entering a node

which is already in the state ‘‘resolving’’, a circular depen-

dency is detected. Once detected, the circular dependency

needs to be removed to ‘‘treeify’’ the graph. This is possible if

one of the edges leading to the circle is cut. But which edge

can be cut without breaking the underlying algorithms? Here,

the mandatory and optional modifiers introduced earlier come

into play. Edge number two of the graph shown in Fig. 10 is

optional, denoting that this dependency is not absolutely

necessary for the underlying algorithm. By cutting the graph

at edge two, the underlying algorithm is still functional, the

circular dependency is resolved and the graph is converted to a

tree. The depth-first search algorithm can be used. If no

optional edge exists, the dependency resolving fails. How-

ever, typically this case does not exist as it would imply an

iterative algorithm without initial condition.

By combining the depth-first search and the cyclic

dependency handling, the following update procedure for

nodes applies. As the resolving is a recursive problem, we

have chosen a recursive algorithm working on the subgraph

Gdepend = (P, EdependsOn). Here, the property nodes P are

P [V and the dependency edges EdependsOn are

obj25

obj12

color5color9

"green" "red"

shape3

"elongated"

shape7

"compact"

size3

"large"

size5

"medium"

size18

"tiny"

obj9

"Ball"

"Bottle"

"ToyCar"

Fig. 9 The system searches for a ‘‘tiny’’ object and the ‘‘toy car’’,

triggered by the activation of the corresponding nodes in the long-

term memory (nodes marked red). (Color figure online)

world
location

retinal
location

saliency
weights

depth depth
mask

object
mask

A B

A B

A B

A B

A B

4

spatial

2

1

3

Fig. 10 Unrolled dependency graph for receiving the three dimen-

sional location of an object. Only ‘‘dependsOn’’ relations are shown

here. Dashed lines are optional dependencies, nodes marked in red

and green need to perform a send or receive operation, respectively.

Edge 4 leads to a circular dependency. (Color figure online)

Cogn Comput

123

EdependsOn�E. When triggering the measurement of a certain

property node the following update procedure is executed:

Procedure UpdateNodeValue:

(a) Check the ability of the node to run

(1) Check the current node pself [P for valid data

stateðpselfÞ ¼? ‘‘valid data’’. If pself already has valid data, skip any

operation and return success.

(2) Check if the current node pself was already visited and thus

indicates a cyclic dependency stateðpselfÞ ¼? ‘‘resolving’’. If a

cyclic dependency is detected, return the corresponding error.

(3) Set the state for the current node pself to ‘‘resolving’’

state(pself) = ‘‘resolving’’.

(b) Updating dependencies

(1) Get the list with all dependencies for the current node

Pdepend ¼ fp 2 Pjðpself ; pÞ 2 EdependsOng.
(2) For each dependency (child node) pc [Pdepend do:

(2.1) Call the update procedure on the child node

UpdateNodeValue(pc).

(2.2) If the return code contains a cyclic dependency error

and the dependency is mandatory

typeððpself ; pcÞ 2 EdependsOnÞ ¼? ‘‘mandatory’’, return the received

error.

(2.3) Remove the child node from the dependency list

Pdepend ¼ Pdependnpc and process the next dependency in the list

Pdepend.

(c) Execute current node’s operation

(1) call the requested operation operation((pself, pc)

[EdependsOn) on the current node pself. If a receive operation was

requested operationððpvself ; pcÞ 2 EdependsOnÞ ¼? ‘‘receive’’, store

the sensor data locally.

(2) Mark the data of the current node as valid

state(pself) = ‘‘valid data0’’.

(3) Return success.

In the pseudo-code algorithm, the node’s state is set to

‘‘valid data’’ when the data of the node is updated. This is

done to reduce the computational demand and reuse as

much information as possible. When entering a node with

the state ‘‘valid data’’, the dependency graph shrinks as the

subgraph of this node is not processed. The ability of

dynamic pruning distinguishes the algorithm proposed here

from similar approaches used in the domain of compiler

construction such as [12] and Ballance et al. [5] or the rule-

based approach proposed in Langley et al. [22].

Property Selection

As mentioned above, the basic principle of selecting a

property is to execute the measurement that reduces the set of

remaining hypotheses most. We now mathematically for-

mulate this principle. Our algorithm works on a subgraph of

the memory Gscheduling ¼ ðV ;EhasPropertyÞ consisting of the

object nodes O, property nodes P with V = O [P and

‘‘hasProperty’’ edges EhasProperty�E. The measured value v is

then compared to the value ci = value(pt) of all property

nodes Pt ¼ fp 2 Pj9ðp; ptypeÞ 2 EinheritsFromg in memory

having the same type ptype ¼ fp 2 Pj9ðpi; pÞ 2 EinheritsFromg
as the measured property pi, in this example the type is size.

The following function is used to determine the node acti-

vation a(pt)

ciðptÞ ¼ valueðptÞ ð20Þ

âðptÞ ¼ e�
1

2r2kciðptÞ�vk2

ð21Þ

aðptÞ ¼
0; for âðptÞ\n

âðptÞ; else

�

; 8pt 2 Pt; ð22Þ

where n is the threshold for the activation. After resetting

all activations in memory to zero, the scheduling of the

visual routines works as follows:

Procedure SearchObject:

(a) Locate an object candidate

(1) Activate the searched object os [O and collect its

attached properties Ps ¼ fp 2 Pjðos; pÞ 2 EhasPropertyg.
(2) Locate an object candidate oc using the saliency map

and initialize the set of remaining hypotheses to all objects

Or = O.

(b) Schedule visual routines

(1) While Ps 6¼ ø:

(1.1) Find all remaining competing object hypotheses Oh

sharing properties with the searched object

Oh ¼ fo 2 Or j9p 2 Ps : ðo; pÞ 2 EhasPropertyg.
(1.2) Calculate the discriminative power di ¼ jDij�1

against

the remaining hypotheses where Di = {o [Oh | A (o, pi)

[EhasProperty}, V pi [Ps.

(1.3) Trigger the visual routine on the object candidate oc

for the most discriminative property pi : di� dj8j by calling

UpdateNodeValue(pi). If multiple properties minimize the set,

select the one with the least cost. Note that at this point, the

dependency parsing described in ‘‘Dependency Resolving‘‘ is

used. Remove the selected property from the set Ps ¼ Psnpi.

(1.4) Find all property nodes Pt ¼ fp 2 Pj9ðp; ptypeÞ 2
EinheritsFromg in memory having the same time ptype = {p [P |A
(pi, p) [EinheritsFrom} as the measured property pi.

(1.5) Calculate the activation a(pt [Pt) for all property

nodes of the same kind ptype (e.g. size) using the activation

function shown in Eq. 22.

(1.6) Propagate the activation a of all activated property

nodes pm: a(pm) C n to the attached objects Om ¼ fo 2
Oj9ðo; pmÞ 2 EhasPropertyg by calculating

aðOmÞt ¼ aðOmÞt�1 � aðpmÞ. Calculate the remaining objects

Or ¼ Oh \ Om : aðOmÞt 	 n. If the searched object is rejected

os 62 Or , locate the next object candidate (step (a)). If Or = {os},

the object is found. Continue with step (c). Otherwise continue

with the next property as the object candidate is still ambiguous.

(c) Link the object to the long-term memory

(1) If the object os was found, link it to the remaining

hypothesis or: or !specializesTo
os.

Cogn Comput

123

It is obvious that the number of required measurements

strongly depends on the task, the searched object itself, the

knowledge stored in the long-term memory and the scene.

However, in a worst-case scenario the system measures all

available properties of an object, which is equivalent to the

behavior of state-of-the-art vision systems.

Results

In this section, we evaluate the proposed attention control

mechanism including the scheduling of visual actions

experimentally. To do so, we give different tasks to the

system, while investigating the internal decision processes

concerning which properties should be measured when.

Finally, we evaluate the system performance by comparing

our system to the state-of-the-art system behavior with

respect to savings in memory load and number of required

measurements to solve a given task.

Task: Find the Cube

The first task we give to the system is to find the ‘‘cube’’ in

the image. Now the system has to find out which property

to measure in which temporal order by employing the

algorithm proposed in the previous section. To start the

search process, we activate the cube (object_36) in the

long-term memory as shown on the left hand side of

Fig. 11. The activated object is marked red, while the

attached properties are marked yellow. The attention con-

trol mechanism in each step determines which property

reduces the set of hypotheses for the focused object most.

On the right hand side of Fig. 11 the number of remaining

object hypotheses (top) and the combined cost-gain mea-

sure (bottom) is shown as determined by the system. Based

on the cost-gain measure (bottom), the minimum is selec-

ted, which in this case is the color property. This is due to

the fact that the system does not know any further object

with the color (orange) of the cube (compare Fig. 11 left).

To measure the color, the system first has to locate an

object candidate. The saliency map, the spatial modulation

map and the segmentation of the focused object are shown

in Fig. 12. Using the known color (orange), the system

biases the color feature of the saliency map. As the saliency

map and the segmentation in Fig. 12 show, the first fixation

is already on the searched cube. After locating the object,

the color of the focused candidate is measured. The pre-

dicted object properties, the measured color, the distribu-

tion of the color cluster activation and the activation of the

objects in the long-term memory are shown in Fig. 13.

The predicted color of the cube matches the actually

measured color of the object candidate very well, as can be

seen in Fig. 13. The color cluster of the cube (marked

green) is strongly activated (0.85), which in turn leads to an

equally strong activation of the cube object (right hand side

of Fig. 13). Because there is no support for any other

hypothesis, the system identifies the currently focused

object as the searched cube.

color_0

color_1

color_2

color_3

color_4

color_5

color_6

color_7

color_8

color_9

size_0

size_1

size_2

size_3

size_4

shape_0

shape_1

shape_2shape_3

object_23

object_24

object_27

object_28

object_36

object_48

object_50

object_63

object_91

object_110

object_112

object_124object_258

object_259

object_260

Scissors

Stapler

Dredger

Bottle

Cube

Asimo

Car

Tux

YellowBall

RedBall

GreenBall

Football

FantaCan

ColaCan

Puncher

Fig. 11 Task: Find the cube. By activating the cube in memory (red
node) the features corresponding to that object are activated (yellow
nodes). The attention control mechanism determines the number of

attached nodes (upper right) and thus the costs of the measurement

(lower right) for each property. The property with the least cost (red bar),
in this case color, is selected to be measured first. (Color figure online)

Cogn Comput

123

Task: Find the Bottle

In the previous task the object could be identified using a

single property. To increase the difficulty for the system in

this experiment a search of the bottle is requested, which is

not identifiable with a single property. As Fig. 14 shows, at

least two hypotheses remain for each single property.

Again, the searched object is marked red, the corresponding

property nodes are marked yellow. When we look at the

long-term memory, we see that at least two hypotheses

remain, so the system needs to perform at least two mea-

surements to disambiguate the focused object candidate.

However, the system first selects the property that mini-

mizes the set of remaining hypotheses. In this case, again

the color is the best property to start with, as only two

hypotheses will remain, given that the focused object can-

didate belongs to the predicted color cluster. The mea-

surement process starts again with localizing a suited object

candidate in the visual scene. Figure 15 shows the scanpath

of the system. Due to multiple peaks in the saliency map, a

‘‘wrong’’ object is focused first (blue cross in Fig. 15).

Please note that this object (part of the table) is not even

known to the system, i.e no object with corresponding

properties exists in the long-term memory. Nevertheless,

the system measures the color of the object candidate. The

measured color matches the predicted color and five object

hypotheses remain (not shown). This is an example that

shows that the predicted number of hypotheses not always

matches the actual number of remaining hypotheses. To

disambiguate, the system selects another property to be

measured for the object candidate. According to Fig. 14, the

physical size is the property that is supposed to reduce the

set of remaining hypotheses best. The measured physical

size of the object candidate exceeds the predicted physical

size to a great extent. As the part of the table is unknown to

the system, no size cluster exists that is activated by the

measurement. In turn, all object hypotheses are rejected by

the system (activation of all objects equals zero). At this

point, the system rejects the currently focused object can-

didate and tries to locate a new candidate. Again the color

feature biased by the predicted color of the searched object

is measured. Additionally, all locations of previously

focused objects are inhibited using the spatial modulation

map. This time the system focuses on the searched object

(red cross in Fig. 15) and measures the color of the object

candidate. Even though this measurement activates the

color cluster of the searched object most, competing object

hypotheses remain. To disambiguate those, the system

Fig. 12 Task: Find the cube. The input image (first column) is biased

using the color of the cube known to the system and stored in the

long-term memory. Together with the spatial modulation map (third

column), the saliency map (second column) is calculated. The

segmentation of the object is shown in the last column

Fig. 13 Task: Find the cube. On the left, the predicted properties of

the cube as stored in the long-term memory, the activation distribu-

tion in the different property clusters and the actually measured

properties are shown. The measured color activates only the predicted

color cluster. On the right: the remaining color cluster only activates

the cube in the long-term memory because it is the only one that is

known to be orange. Thus the system assumes that the currently

focused object is the cube. (Color figure online)

Cogn Comput

123

performs a physical size measurement, which still does not

lead to a clear identification of the object. As Fig. 15 shows,

even after a third and last measurement (shape), multiple

hypotheses remain. However, after exhausting all its pos-

sible visual actions, the system identifies the object candi-

date as bottle, because the bottle has the strongest activation

of the remaining hypotheses.

Task: Find the Toy Robot

In the two previous examples, the color was always the

most discriminating property for the searched object. When

we look at the representation of the toy robot in the long-

term memory it becomes clear that the color is not the most

discriminating property for this object. In Fig. 16 one can

Fig. 14 Task: Find the bottle. The searched object is activated in the

long-term memory (red node) with its corresponding features (yellow
nodes). The attention control mechanism determines the number of

attached nodes (upper right) and the cost of the measurement (lower

right) for each property. For the measurement with the least cost (red
bar), in this case color, two hypotheses will remain, which indicates

that multiple measurements are required. (Color figure online)

Fig. 15 Task: Find the bottle. The first fixation in the scanpath (left) is marked with a blue cross, while the final fixation is marked green. Due to a

size mismatch, the object focused first is rejected, while the bottle is correctly detected after measuring all properties (right). (Color figure online)

Cogn Comput

123

see that the shape is much better to identify the toy robot.

Again, the searched object is marked red, the correspond-

ing properties are marked yellow. The system schedules the

measurement of the shape feature first, because only one

hypothesis will remain, given that the focused object has

the predicted property. The known color of the object is

used to localize a suited object candidate, which is difficult

as multiple ‘‘white’’ objects exist. According to this pre-

diction, four fixations are necessary to locate the searched

object as can be seen in Fig. 17.

At each fixation the shape of the focused object candi-

date is measured. For the first three fixations, the shape

differs too much from the predicted shape. This leads to no

activation of the shape cluster attached to the searched

object and in turn, the toy robot object hypothesis does not

get any support (zero activation). The system interprets this

zero activation as a rejection of the object candidate and

triggers the location of a new one. Finally in the forth

fixation (green cross in Fig. 17), the toy robot shape cluster

remains activated. However, another shape cluster also

remains activated, creating the need for the system to

measure another property to disambiguate the object can-

didate. The system decides to measure the physical size of

the object next, as this is the best choice after the shape

measurement according to Fig. 16. By combining the

shape and the physical size measurement, the object can-

didate can be clearly identified as toy robot.

System Performance

In this section we want to cover the overall system perfor-

mance. These performance measures especially focus on the

savings in terms of memory and computational load of our

system compared to state-of-the-art systems. Those systems

do not selectively process object properties but rather

Fig. 16 Task: Find the toy robot. The searched object is activated in

the long-term memory (red node) with its corresponding features

(yellow nodes). The attention control mechanism determines the

number of attached nodes (upper right) and the costs of the

measurement (lower right) for each property. The shape is most

discriminative for the toy robot (red bar). (Color figure online)

Fig. 17 Task: Find the toy robot. Four fixations are required before

the searched toy robot is located (green cross). At each fixation the

shape is measured (the measured value is shown in the image).

Additionally, a physical size measurement was required to confirm

that the final object candidate is the toy robot. (Color figure online)

Cogn Comput

123

measure all those properties at each fixation point. In the

following, all objects in the long-term memory are triggered

to evaluate the savings in memory space and computational

load. Figure 18 shows the number of nodes stored in the

short-term memory for each object, which gives an overview

of the memory load for each search process. The experiment

is conducted for a system with and without the attention

control mechanism proposed in this paper. All other respects

(preprocessing, visual routines, etc) are identical. As Fig. 18

shows, the number of stored nodes and thus the memory load

is reduced for all objects when employing the attention

control mechanism. On average 18% less nodes need to be

stored per object compared to the full measurement of all

properties. The saving of memory capacity here ranges from

5.9% for the bottle up to 35.3% for the cube.

Additionally, we recorded the number of measured

properties during the experiments, which reflects the com-

putational load of the system. The results are shown in

Fig. 19. The comparison shows that the number of mea-

surements is reduced by about 44% when using the proposed

attention control mechanism. Please note that all state-of-

the-art systems lack such a mechanism. To ease the com-

parison across different objects, Fig. 20 shows the number of

saved measurements normalized by the number of fixations.

Fig. 18 This shows the number of nodes stored in the short-term

memory with the attention control mechanism and without. On

average, the system we propose stores about 18% less nodes

compared to a system that does not schedule its visual actions but

measures all properties at each fixation (orange). (Color figure online)

Fig. 19 This shows the number of properties (color, shape, physical size) measured for each search process. On average, our system (blue)

measures about 44% less properties than a system that measures all properties at each fixation (orange). (Color figure online)

Fig. 20 This shows the reduction in measurements per fixated location when comparing our system to a state-of-the-art system that measures all

three properties at each fixation. In nearly all cases at least one measurement per fixation can be saved, on average the saving is about 42%

Cogn Comput

123

In nearly every fixation, the system is able to save at

least one measurement to decide if an object candidate

should be rejected or accepted. Even for the worst case in

this scene (Bottle) the average saving is 0.5 measurements

per fixation. In general, the worst case scenario for the

system would be no saving. For objects with discriminative

properties like the cube or yellow ball (color), the toy robot

(shape) or the scissors (shape) the number of saved oper-

ations is much higher. Please note that the saving also

depends on the number of possible properties and the

number of objects. If more properties are available the

potential saving increases, while more known objects will

decrease the savings. However, the gain coming from the

number of properties will outbalance the loss coming from

the objects because objects are usually only defined by a

small subset of properties.

Discussion

In this section, we first discuss the different aspects of the

work presented in this paper. We start by discussing details

of the presented work like visual routines and the memory

of the system concerning on the scalability of the sched-

uling algorithm. Afterward, we review our approach with

respect to its relation to biological findings, before we

eventually summarize the main contributions of our work.

Visual Routines

As stated before, the visual routines used in this paper are

only very basic. In more complex environments containing

e.g. light changes or low contrast these routines will

probably yield to insufficient results. However, they can

easily be replaced with more advanced state-of-the-art

methods and will thus produce more robust results in dif-

ficult environments. Additional to the increase in robust-

ness, the color channel should be extended to allow for

multicolor objects. This can be done by e.g. additionally

transferring the n-largest k-means clusters to memory. In

general, the precision of the algorithms used for feature

extraction determine the smallest quantization steps of the

feature space. That is, it limits the maximal number of

property nodes in this sensor modality and in turn has an

influence on the memory capacity (see section ‘‘Memory

Architecture and Scheduling‘‘). This means, that high

precision in a visual routine allows for small quantization

steps leading to a high potential number of property nodes

for this modality. A high number of property nodes then

results in a high memory capacity (see section ‘‘Memory

Architecture and Scheduling’’).

Due to the basic nature of the algorithms all feature

extraction routines for color, size and shape strongly

depend on a good segmentation. Missegmentations leading

to a strong deformation of the bounding box are especially

critical for the size and shape estimation. However, a

robust segmentation can be achieved by using additional

features (e.g. texture and depth) or object specific knowl-

edge. This knowledge might for example consist of form

priors, which mitigates the effects of multicolor objects.

Memory Architecture and Scheduling

When looking at a system’s memory, one interesting

question is how many distinct objects can be stored. To

estimate this number for our memory architecture we need

to determine the number of possible combinations of

property nodes. Each object in our memory connects to one

property node of each sensory pathway. In the example

implemented here, one object connects to one color node,

one size node and one shape node. Here, each property

node is connected to its corresponding sensory prototype

node, representing the different sensory pathways, with a

‘‘specializedTo’’ edge, e.g.

pcolor�������!
specializesTo

pred: ð23Þ

We denote the set of sensory prototype nodes with T and

the set of property nodes with P. Now, the maximal

number of possible connection patterns w can be calculated

as

w ¼
Y

t2T

jfp 2 Pjðt; pÞ 2 EspecializesTogj: ð24Þ

The calculated number w also represents the maximal

number of distinct objects that can be stored in memory.

The optimal set of properties the system has to measure

would be the minimal set while still being able to discriminate

the searched object t [O from all stored objects in memory

O. The set of property nodes Smax, which is connected to

the searched object t, can be formulated as Smax ¼
fp 2 Pj9ðt; pÞ 2 EhasPropertyg. The degree of discrimination

d(S) of a property set S�Smax can be calculated as

dðSÞ ¼ jDðSÞjjO n tj ð25Þ

with

DðSÞ ¼ fo 2 Oj9s 2 S : ðo; sÞ 62 EhasPropertyg: ð26Þ

The degree of discrimination d(S) depends on the size of

the object set O, the size of the selected property set

S and the connectivity patterns in memory represented by

EhasProperty. Knowing this, we can discuss the worst-case

scenario for our scheduling algorithm and the expected

scalability of the memory system as a whole. Please note

that for large sets of Smax finding the optimal subset S will

be computationally expensive. Therefore, we have chosen

Cogn Comput

123

to implement the greedy scheduling algorithm presented in

this paper. However, the following estimations will still be

valid.

In the worst-case for our scheduling algorithm the subset

S = Smax. In this case our system behavior (full measure-

ment of all properties) is identical to current state-of-the-art

systems. S equals Smax in case of two indistinguishable

objects in memory and approaches Smax with a large

number of objects that can only be distinguished by mea-

suring all properties. If the memory contains n = |O|

objects, the probability p(n) of two objects sharing identical

connections can be calculated as

pðnÞ ¼ 1� w!

wnðw� nÞ! ð27Þ

with w being the maximal number of connection patterns

according to Eq. 24.1 As you can see, the probability for a

collision increases with the number of objects n, but

decreases with the number of property nodes as w increa-

ses. This also shows the scalability of our approach, as an

increasing number of objects can be compensated by

increasing the number of property nodes. This increase in

property nodes can be achieved by a finer quantization of

the sensory representation or by adding more sensory

pathways. However, the quantization is limited by the

algorithmic precision. The number of sensory pathways is

also limited. Another possibility to reduce the collision

probability is to reduce the number of competing objects by

grouping objects with respect to co-occurrence, spatial

context and temporal context. To implement this, the cur-

rent memory architecture has to be hierarchically struc-

tured by adding further edge types.

Biological Plausibility

In the current system implementation the required features

are measured sequentially. This to a certain degree inter-

feres with findings in neurobiology, where the human brain

is assumed to process data in a massively parallel manner.

Even though the proposed dependency resolving mecha-

nism is only necessary in technical systems, the actual

resolving of the dependency tree can be parallelized by

simultaneously resolving all subtrees and leaf nodes. Fur-

thermore, the scheduling process of our system is not nec-

essarily of sequential nature. Once the feature set which is

required to solve the task is determined, the measurement of

those features can be executed in parallel. If we furthermore

assume that in the brain all features of the currently focused

location are measured in parallel, we can interpret the

suggested selection mechanism as an information filter.

This information filter only selects the measurement for the

required features and passes them to the memory system.

Features that do not contribute in solving the given task are

discarded. This view conforms to the findings in Corbetta

et al. [10], where only task-relevant features influence the

attentions process. The strong filtering results in a reduced

reaction time, as the human vision system only needs to

wait until all required information is measured to either

reject or validate a hypothesis for the current location. In

case the hypothesis is rejected, the system can saccade

instantaneously to the next location. The retention time is

thus reduced for locations containing objects not conform-

ing to the current task. As a result, we here predict, that

during a correlation between the number of discriminating

target features and the search time will be measurable. An

additional effect of attending only relevant features for a

location is the reduction in required memory capacity. By

only passing a few important features, information about

more locations can be held in memory compared to the

unfiltered case. According to [10] a low memory load is a

prerequisite for a high search performance.

Summary

The goal of our work is to build-up a scene representation

in a task-driven way utilizing the knowledge of the system

about the world and the current scene. We propose the idea

to only acquire those pieces of information about the cur-

rent visual scene that are needed to solve the given task. Up

to now, state-of-the-art systems do not consider this kind of

selective processing in the feature space. Instead, all these

systems rather focus on the selective processing of loca-

tions in the image. That is, once fixating a certain object

candidate, they measure all information about this candi-

date regardless of the task. To selectively process infor-

mation in both the feature and spatial domain as described

before, flexible processing pathways are required. There-

fore, we split the fixed saliency-segmentation-classification

processing pipeline found in most systems into functional

parts that can be flexibly combined. This is required to be

able to selectively trigger visual routines for a selective

acquisition of information. In turn this also requires a

dynamical and flexible system architecture that allows for a

demand-driven combination of processing modules. We

proposed such an architecture in ‘‘System Architecture‘‘ of

this paper along with highly specialized visual routines that

only measure a single property of an object. To acquire

more complex information, the system needs to combine

those routines in a suitable way.

The combination of visual routines requires the knowl-

edge of which routines have to be executed in order to extract

certain information from the scene (e.g. segmentation before

color measurement, etc). We propose to store procedural

1 This estimation assumes an equal connection probability of an

object node over all property nodes.

Cogn Comput

123

knowledge in the long-term memory in ‘‘Memory Archi-

tecture’’. This procedural knowledge is represented consis-

tently as a graph along with the knowledge of the system

about the world. We then present an algorithm that allows to

parse the graph containing the procedural knowledge,

enabling the system to combine visual routines in the correct

temporal order to process information in a sensible way.

Furthermore, the memory architecture stores a link between

sensory nodes of the memory graph and the corresponding

sensory representations. This anchors the nodes of the long-

term memory in the sensor space, allowing for an easy

biasing of visual routines in these spaces. This is also a major

difference to classical AI approaches that only work on

symbolic information. Beside the ability to order the visual

routines temporally, the system needs to decide which

properties it has to measure for solving the current task. We

present an attention control mechanism in 4 that bases its

decision on the long-term knowledge of the system. Here, a

subset of measurements is selected that is sufficient to solve

the given task. The experiments in ‘‘Results‘‘ involving

visual search tasks of different complexity show that the

application of the proposed algorithms leads to a reduction of

both the computational and memory load compared to state-

of-the art algorithms. We predict that when increasing the

number of possible properties in the system, the savings will

also increase. The resulting representation is task-related, as

only the pieces of information to solve the task is acquired.

Furthermore, the complexity of the given task in a certain

scene determines the number of measurements and thus the

computational load.

To summarize, the main contributions of this paper are

the flexible system architecture, the graph-based memory

architecture with anchored sensory nodes and the attention

control mechanism. Those contributions allow to build a

system that flexibly combines its processing pathways in a

task- and demand-driven way. The experiments we con-

ducted show that the selective processing of visual infor-

mation beyond the spatial domain results in a considerable

reduction of both computational (44%) and memory load

(18%) while solving the given task. That way, a task-driven

scene representation can be realized serving as a founda-

tion for learning new objects and interpretation of the

current scene.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Aloimonos Y. Active vision revisited, chapter introduction.

Hillsdale: Lawrence Erlbaum Associates; 1993. p. 1–18.

2. Aloimonos Y, Weiss I, Bandyopadhyay A. Active vision. Int J

Comput Vision. 1988;1(4):333–56.

3. Amari S. Dynamics of pattern formation in lateral-inhibition type

neural fields. Biol Cybern. 1977;27:77–87.

4. Bajcsy R. Active perception vs. passive perception. In: Pro-

ceedings of the IEEE workshop on computer vision: representa-

tion and control. 1985. p. 55–62.

5. Ballance RA, Maccabe AB, Ottenstein KJ. The program depen-

dence web: a representation supporting control-, data-, and

demand-driven interpretation of imperative languages. In: Pro-

ceedings of the ACM SIGPLAN 90 conference on programming

language design and implementation. 1990. vol. 25, p. 257–71.

6. Ballard DH. Animate vision. Artif Intell. 1991;48(1):57–86.

7. Ballard DH, Hayhoe MM, Pelz JB. Memory representations in

natural tasks. Cogn Neurosci. 1995.

8. Boykov YY, Jolly MP. Interactive graph cuts for optimal

boundary & region segmentation of objects in n-d images.

In: Proceedings of the 8th IEEE international conference on

computer vision. 2001, vol. 1, p. 105–12.

9. Chun MM, Nakayama K. On the functional role of implicit visual

memory for the adaptive deployment of attention across scenes.

Visual Cogn. 2000;7(1):65–81.

10. Corbetta M, Patel G, Shulman GL. The reorienting system of the

human brain: from environment to theory of mind. Neuron.

2008;58(3):306–24. pdf.

11. Eggert J, Rebhan S, Körner E (2007) First steps towards an

intentional vision system. In: Proceedings of the 5th international

conference on computer vision systems.

12. Ferrante J, Ottenstein K, Warren JD. The program dependence

graph and its use in optimization. ACM Trans Program Lang

Syst. 1987;9(3):319–49.

13. Frintrop S, Backer G, Rome E. Goal-directed search with a top–

down modulated computational attention system. In: Proceedings

of the 27th annual meeting of the German association for pattern

recognition, vol. 3663 of LNCS. 2005. p. 117–24.

14. Frintrop S, Rome E, Christensen HI. Computational visual

attention systems and their cognitive foundations: a survey. ACM

Trans Appl Percep. 2010;7(1):1–46.

15. Hamker FH. Visuelle Aufmerksamkeit und lebenslanges Lernen

im Wahrnehmungs-Handlungs-Zyklus. PhD thesis, Technical

University of Ilmenau. 1998.

16. Hamker FH. The emergence of attention by population-based

inference and its role in distributed processing and cognitive

control of vision. Comput Vision Image Understand. 2005;100:

64–106.

17. Hayhoe M. Vision using routines: a functional account of vision.

Visual Cogn. 2000;(7):43–64.

18. Hayhoe M, Bensinger D, Ballard D. Task constraints in visual

working memory. Vision Res. 1998;38(1):125–37.

19. Henderson JM, Weeks PA, Hollingworth A. The effects of

semantic consistency on eye movements during complex scene

viewing. Exp Psychol Human Percep Perform. 1999;25(1):

210–28.

20. Itti L, Koch C. A saliency-based search mechanism for overt and

covert shifts of visual attention. Vision Res. 2000;40(10–12):

1489–06.

21. Just MA, Carpenter PA. Eye fixations and cognitive processes.

Cogn Psychol. 1976;8(4):441–80.

22. Langley P, Choi D, Rogers S. Acquisition of hierarchical reactive

skills in a unified cognitive architecture. Cogn Syst Res. 2009.

23. Lloyd SP. Least squares quantization in pcm. IEEE Trans Inform

Theory. 1982;28(2):129–37.

24. Michalke T, Fritsch J, Goerick C. Enhancing robustness of a

saliency-based attention system for driver assistance. In: Pro-

ceedings of the 6th international conference on computer vision

systems. 2008. p. 43–55.

Cogn Comput

123

25. Navalpakkam V, Itti L. Modeling the influence of task on

attention. Vision Res. 2005;45(2):205–31.

26. Navalpakkam V, Itti L. Search goal tunes visual features opti-

mally. Neuron. 2007;53:605–17.

27. Rebhan S, Röhrbein F, Eggert J, Körner E. Attention modulation

using short- and long-term knowledge. In: Proceedings of the 6th

international conference on computer vision systems, vol. 5008 of

LNCS. 2008. p. 151–60.

28. Rensink RA. The dynamic representation of scenes. Visual Cogn.

2000;7(1–3):17–42.

29. Rensink RA, O’Regan JK, Clark JJ. To see or not to see: The

need for attention to perceive changes in scenes. Psychol Sci.

1997;8(5):368–73.

30. Röhrbein F, Eggert J, Körner E. Prototypical relations for cortex-

inspired semantic representations. In: Proceedings of the 8th

international conference on cognitive modeling. 2007. p. 307–12.

31. Rothkopf CA, Ballard DH, Hayhoe MM. Task and context

determine where you look. J Vision. 2007;7(14):1–20.

32. Sedgewick R. Algorithms. USA: Addison-Wesley; 1988, 2nd edn.

33. Sonka M, Hlavac V, Boyle R. Image processing, analysis and

machine vision, Chap. 5. PWS Publishing; 1998, 2nd edn,

p. 176–90.

34. Soto D, Hodsoll J, Rotshtein P, Humphreys GW. Automatic

guidance of attention from working memory. Trends Cogn Sci.

2008;12(9):342–48.

35. Toussaint GT. Solving geometric problems with the rotating

calipers. In: Proceedings of IEEE MELECON. 1983.

36. Triesch J, Ballard DH, Hayhoe MM, Sullivan BT. What you see

is what you need. J Vision. 2003;3(1):86–94.

37. Tsotsos JK. On the complexity of active vs. passive visual search.

Int J Comput Vision. 1992;7(2):127–41.

38. Ullman S. Visual routines. Cognition. 1984;18:97–159.

39. Weiler D, Eggert J. Multi-dimensional histogram-based image

segmentation. In: Proceedings of the 14th international confer-

ence on neural information processing, vol. 4984 of LNCS. 2007.

p. 963–72.

40. Yarbus AL. Eye movements and vision. New York: Plenum

Press; 1967.

Cogn Comput

123

