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1. Introduction

The design of innovative objects which equally seaesthetic and technical principles is a very
complex process. With respect to automotive desigiitiple criteria influence the final shape of the
object, say shape of a car or of the car’s intesidrich are a combination of e.g. human creativity,
aerodynamic performance, regulation constraints stadility issues. While it is often possible to
assign an aerodynamic or stability performancexrdethe currently developed shape, the creative
process as an interaction between human ideasemhital issues is very difficult to measure.
Usually, a prototype design is generated iterativéie designer suggests new concepts based on
technical regulations and feedback from aerodynamnistability evaluations of previous designs.
However, one serious difficulty during the desigmogess is the different times required for the
different evaluation methods and the different @reacy of evaluations. As far as stability or
aerodynamics is concerned, the evaluation of ttsigdeperformance is very time-consuming and
costly. A Computational Fluid Dynamics (CFD) caktibn of the flow around a car may take up to
one or even several days depending on the requ@icedracy and available computing power.
Thinking of wind tunnel experiments the costs arene higher and the number of possible
experiments accordingly very low. As a consequepa®/iding the human designer with a direct, fast
and visually understandable feedback on newly egpdbject modifications in CAE is very difficult.

As a solution for purely technical design optimiaas, i.e., shape optimizations with no or only
minor aesthetic requirements, it is common to irdty so-called metamodels, like e.g. neural
networks, for modelling the quality landscape [&t al. 2002], [Menzel & Sendhoff 2008].
Practically, a neural network is learned on alreagdhgilable data samples each consisting of a
parameter set and an associated quality value,eligethe result of a CFD simulation. Using the
trained neural network the performance value fgiven parameter set can be approximated very
rapidly, hence, allowing a fast estimation of pbkssuccessful parameter variations.

In the present paper, we suggest an interactivedinark which is based on metamodels to achieve a
powerful designer assistance system. In this contée term metamodel refers to any kind of
computational algorithm which allows a fast estimatof the performance landscape for a given
design space. By a combination and analysis oadjrexisting domain data collected from e.g. wind
tunnel experiments, CFD or FE (finite elements)kekdtions adequate metamodels are generated
which should support (and subliminally influencédie tdecision making process of the human
designer. Nevertheless, in our opinion it is impott that the metamodels should be understood as an
assistingtool, the whole process must be driven by thetiiigaof the individual designer. However,



we believe that if reliable metamodels can be gaedrfor a given problem, e.g. for estimating the
aerodynamic flow around a car, the human desigragrthink of various alternatives to achieve both,
aesthetic quality and a high technical performaatabe same time.

Fitness: 0,042086

Figure 1. Designer Assistance Tool: Geometries agtore and b) after hybrid optimization

In the following, we describe a simplified model the assistance system. For the understanding of
the paper it is very important to notice that we tesget shape matching (described in Section 3) as
replacement for a costly technical evaluation methike e.g. complex fluid-dynamics or finite
element computations. Also the design environmehighly simplified as can be seen from Figure 1.
Nevertheless, the central elements of our interadiamework, namely, the use of metamodels for
modelling the technical evaluation and the inteosctvith the designer are already included in the
described framework. We combine the possibilitiésinbegrating human object manipulation to
create shape variations and visualizing the feddgaen by a feed-forward neural network which we
use as a metamodel for predicting the technicdbpaance of the created shape. For the realization
of human object manipulation standard Free-Fornobeétion (FFD) algorithms are applied because
of their intuitive and fast modification capabii§ as well as their practical relevance.

Within the proposed framework, we will evaluate grexformance of design development with and
without neural networks for performance estimati®he experiments show that metamodels are
capable of improving the development process tosvarelformance increase. Especially in local
search areas which allow only very small shape fivadions to keep an already achieved design it is
worthwhile to integrate metamodels.

The paper is organized as follows. In Section 2, siistem layout is described which integrates a
graphical visualizer, an interactive FFD model, naéwnetworks as performance predictor and an
evolutionary optimizer. FFD is explained in moretailein Section 3, followed by the technical
description of the evolutionary optimizer in Seot#h In Section 5 neural networks are briefly
introduced. Experimental results are discussecatié 6, followed by concluding remarks.

2. System framework

To demonstrate the advantage of the proposed frankewa small-scale system has been realized
which reflects the major characteristics of a corapke real-world application. The system requires a
combination of several methods from different resedields in a graphical user interface which
allows the human user to interact with.

Firstly, it is important to choose an object repreation for the geometrical shapes which is
computationally fast, flexible and whose changesiratuitive. For the presented application, staddar
Free-Form Deformation (FFD) [Sederberg & Parry 1986oquillart 1990] is chosen because it
allows intuitive design variations while keepingnanageable number of design parameters. As it will
be described in Section 3 in more detail, shapeawans are realized by a repositioning of visible
control points which are the handles for geometadifications.

Secondly, the system maintains a database. Inwedtl applications, the database would contain
domain knowledge which already exists from priosige studies or which is generated during the
current ongoing development. Usually, each datgpkanonsists of a set of parameters describing the



actual shape and one or more performance valuasurlexperiments, the parameter set consists of
the x- and y-coordinates of a subset of points rild@ag the design. Concerning the performance
indicator it is important for the present studyctocumvent time-consuming quality evaluations, like
e.g. CFD simulations would be, for analyzing theteyn capabilities. Hence, we decided to indicate
the technical performance, or so-called qualitgath design by a calculation of a target shapetmatc
expressed as mean distarficds it will be explained in Section 3, a targeth is defined for each
experiment and each quality corresponds to thamlisf between the currently visible shape and a
hidden target shape.

Human Designer Neural Network
A
GUI < > Controller — Database
Quality Evaluation Evolutionary Opt.

Figure 2. Schematic overview of the system

To generate new data samples, the system providealternative ways. On the one hand the human
user may modify the currently visible shape via toatrol point handles. On the other hand an
evolutionary algorithm may be started which carrgeg a design optimization to minimize the
distance between the actual and the target shapg, denerating a large number of data samples and
indicating the closest optimal shape. The optimizéntroduced in more detail in Section 4.

At the heart of the systems is the metamodel wiidkearned on the data available in the database.
The model will be discussed in more detail in SBth. Currently, a feed-forward neural network is
used as a metamodel which allows the estimatigheofjuality landscape. The neural network results
are displayed in the GUI to support the human imskis/her decision making process.

Summarizing from the point of view of the humanruskee designer interacts with the geometry via
the GUI as exemplarily depicted in Figure 1. Theigieer chooses whether the actual visible shape is
deformed manually using the control point handlef a computational optimization is carried out. |

is also possible to iteratively apply manual anchpotational shape variations (hybrid method). In
any case, both modifications result in a defornmataf the initial geometry and the associated
technical performance, i.e. the mean distdnog the actual design is visible in the lower tigbrner

of the GUI. Upon request by the designer a newrtlork is learned on the existing data and used to
estimate the quality for possible control point miments. The predicted quality values are
graphically visualized in the GUI, hence, providithg human designer with information on possible
ways to improve the design technically before dbtuzrrying out the design modification. Thus, the
human user is free to accept or to ignore the hewwtavork information and is still responsible for
further design development steps.

3. Representing design changes by Free-Form Deforian

The choice of an adequate representation is veppritant for the performance of the whole system
and its ability to generalize. We require three ém@nt characteristics towards the representation.
Firstly, it should be able to deal both with rateemplex and rather simple geometries to allow a
good scaling behaviour. Secondly, the human intieracshould be intuitive and close to systems
which may be used for practical applications. Tlirthe parameter set for the metamodel should be
easily extractable to evaluate the performancéiefnhodel and to allow a fast visualization of the
prediction results. We have chosen standard Frem-Hoeformation (FFD) [Sederberg & Parry
1986], [Coquillart 1990] as the representationtwd shapes. FFD has been originally developed for
soft object animation in the field of computer dnas. To realize design modifications, in a firtys



a chosen base design which can be of any kind wiptaxity is embedded in a lattice of control
points which is called control volume. Thereaftdre base design is transferred to the parameter
space of the control volume, a process which ikeddreezing. Mathematically, cubic B-splines are
used as base functions which provide a high degiréecality and flexibility. The deformations are
achieved by the repositioning of control points dhe calculation of the new shape based on the
frozen parameter coordinates. An example is degitteFigures 3.a) and 3.b). A simple square is
initially embedded in a 10x10 grid of equidistandigtributed control points and frozen to the cohtr
volume. A movement of the marked control pdi by 1.6 in positive x-direction (Figure 3.b)
generates the illustrated shape.
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Figure 3. a) A square embedded in a standard FFD otrol volume, b) deformation of a square by FFD,
c) realization of dynamic FFD by coupling a top andottom layer control point grid

Summarizing, FFD allows the realization of intenaetand intuitive shape modifications and
additionally decouples the complexity of a chosasebdesign from the parameter set on which the
designer, either a human or a computational alyorits working on. Because of these advantages
FFD has already been applied to the evolutionasigdeoptimization of complex systems in the
aerodynamic problem domain [Menzel & Sendhoff 20@8rodynamic problems are characterized
by a non-linear quality landscape, thus makingeitywifficult for a human designer to technically
improve an already optimized design. Often shapadlifications and performance changes are
coupled indirectly and, thus, are very difficult ppedict. Nevertheless, especially these kinds of
problems are targeted by our conceptual framewddwever, in the simplified set-up we want to
avoid the time-consuming CFD calculations in th@asptual research phase. Hence, a substitute
system is suggested which can be used to validatmethods and to demonstrate the performance of
the outlined framework without costly computatiosmhulations.

As depicted in Figure 3.c) we propose a systenwofdoupled FFD control volumes, each one with
an associated base geometry, to reproduce sindladimear quality landscapes. One FFD control
volume which is called top layer is modifiable thetdesigner, a second control volume which is
called bottom layer is not modifyable by the desiginstead, each modification which the designer
applies to the control points of the top layerrensferred by a set of pre-defined equations to the
control points of the bottom layer. These pre-dadinequations are the key for adjusting the
complexity of the quality landscape.

For the experiments presented in this paper thetdayer is calculated as follows: Given the aliti
absolute positions of the bottom layer control poR,B; and the relative modifications of the top
layer control pointsAP,T;;, the modified absolute positions of the bottom lagentrol points are
computed by

2 2
P,B, =P,B,+> > m, P Ty Ui i0[03]. 1)
a=-2 b=-2
wherem, , is a factor according to Figure 4.a). The tranéfieictions and different sizes of control
volumes have been chosen in such a way to geneckedesign deformations on the top layer and
more global ones on the bottom layer.
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Figure 4. a) Table of multiplier values m;, b) Initial top and bottom layer rectangle, c) Copled
deformation of top and bottom layer geometry by manal repositioning of control point P,Ts 3

An exemplary system of two coupled FFD volumes épicted in Figure 4.b) and 4.c). For the
evaluation scenario presented in this paper, thdifgable top layer consists of 10x10 equidistantly
distributed control points marked by small blackisjothe bottom layer of 4x4 equidistantly
distributed control points marked by large greysddthe geometries placed in both layers can be
chosen arbitrarily. Nevertheless, for the introtuttand understanding of the effects of the coupled
FFD volumes, two rectangles are generated but wdtying positions on the grid. The black
rectangle which is associated with the top laygrasitioned at the coordinates (2/2, 5/6) wherbas t
grey rectangle associated with the bottom layegpasitioned at (2.5/2, 5.5/6). To demonstrate the
local influence of the top layd?,Ts 3 has been moved by 2.4 in x-direction. Becausé@fcubic B-
splines the influence on the black rectangle isllgcin the lower right corner. Following eq. (1)
P,B;;andP,B;; have to be updated. The resulting modificatiothefgrey rectangle is also visible in
Figure 4.c). Because of the smaller number of cbpivints of the bottom layer the whole rectangle i
deformed. For calculating the “technical” perforroani.e. the shape matching quality expressed as
mean distancd, both rectangles are represented by 400 pointsingtain the lower left corner
counting clockwise with 100 points lying on eaclgedEach point is given by andy coordinates
(xriyr;) and &si/ys) respectively. Hence, the quality valties calculated by the mean distance of
both shapes in the following way:

400
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Thus, the optimal design is found if both shapes angruent. During the experiments which are
explained in Section 6 the bottom layer geometmyasvisible to the human designer. Furthermore,
since each top layer modification is transferreth®bottom layer in a way which is also unknown to
the human designer, it is a rather difficult taskathieve two rather congruent shapes manually. But
since we are also interested in the comparison detvithe quality values resulting from manual
modifications and the maximally achievable qualdy, evolutionary optimizer has been integrated
into the framework which is able to compute theiropt shape for a given initial shape. The
algorithm is presented in Section 4.

4. Design optimization using evolutionary algorithns

The framework which is proposed in the present papews two different ways for shape variation.
On the one hand, the human user can manually teposhe control points to deform the design.
Hence, the technical performance of the design onagyay not improve. On the other hand it should
also be possible to search for the design whidpisnal in a technical sense, i.e. which provides t
minimal distance to the target shape. One possibieto calculate these designs is the applicatfon o
an evolutionary optimization which can deal witHaager number of optimization parameters and
non-linear quality landscapes.



Evolutionary algorithms belong to the group of s@stic optimisation algorithms. They mimic the
principles of Neo-Darwinian evolution, see e.g.gebl1995], by applying operators for reproduction,
mutation and/or recombination and selection. Premtirexamples are Evolution Strategies (ES),
Genetic Algorithms (GA) or Genetic Programming (GRspectively. Among the advantages of
evolutionary algorithms are robustness againstynmisliscontinuous quality functions, the ability t
escape from local optima and to enable global sedincthe course of optimization a population of
possible solutions, e.g. a vector of continuousupeters, is adapted to solve a given problem over
several generations. The adaptation occurs byti@riaf solutions contained in a population and by
selection of the best solutions for the next geimma The variations can be classified as purely
stochastic, usually called mutation, and combinetstochastic, usually called recombination or in
the context of genetic algorithms crossover.

In this paper, a special variant of Evolution Sigigs, the Covariance Matrix Adaptation-ES (CMA-
ES) [Hansen & Ostermeier 2001], is applied which tie advantage of a high convergence rate for
real-valued problems compared to other evolutiorsdgprithms. The successful application of this
type of algorithm has been shown previously for -tvand three-dimensional turbine blade
optimizations in the aerodynamic domain [Menzel &h8hoff 2008].

/ 1"” e
. “,;#'q,,...-.r'*'-": . - . . é”,f"
b) ' ; : c)

Figure 5. Hybrid optimization: a) 1. optimized desgn (f=0.056),
b) manually modified design (f=1.006), c) optimizedesign (f=0.049)

The evolutionary optimization is carried out in fosteps. After setting up the FFD system as
described in Section 3, at first, the current 10x18nd y-control point positions of the top lay&eT;;

are stored sequentially in the parents’ chromosees¢or. Next, the chromosome vector is copied for
each newly generated offspring and each value envittor is slightly modified according to the
mutation operator. Based on the mutated controitgmsitionsli’,fi,j the deformed top layer shape is
calculated. At the same time, the control pointshef bottom IayeP,B*i,j are updated following eq.
(1) and the bottom layer shape is deformed. Thenmdestancd between both shapes is computed by
eg. (2) and assigned to the offspring. Finally, #edection is carried out based on a quality
comparison and the chromosome vectors of the ssfttesffsprings are copied to the parents’
chromosome. By repeating these steps the disthtetween both shapes is minimized over the
course of generations. Figure 5 depicts an examgigbrid optimization. Initially, a rectangular
shape similar to the one shown in Figure 4.b) hesnboptimized by the evolutionary algorithm
resulting in design 5.a) with an associated shaateimng qualityf of 0.056. Secondly, the human
user has modified the shape by manually introdueirimmp on the right side of the design which
downgrades the quality to 1.006. As it is visibheHigure 5.b), the bottom layer geometry is also
modified because of the transfer functions as dssdrin Section 3. Thirdly, restarting the
evolutionary optimization leads to a different opdl design as found in 5.a) with an associated
quality of 0.049. This example illustrates the eetge of different local optima which are dependent
on the current position in the design space. Fooddmamic problems this effect is very common
since many spatially distributed design parts adem the system as a whole.

5. Performance prediction by Feed-Forward Networks

Metamodels are widely used in the artificial ingghce domain for substituting costly computations
which themselves are models simulating mathemagigahtions like e.g. the Navier-Stokes equations



in fluid-dynamics. Therefore, the name metamodétreeto a model of a model. Artificial neural
networks are one possibility to realize a metamddeimodelling linear or non-linear systems. An
artificial neural network is given by a compositiaf single neurons according to a specified
topological arrangement. The topology is given bg heural connectivity and the connection
weights.

In the system proposed in this paper, we choseamdatd fully-connected feed-forward network
[Bishop 1995] as implemented in the Shark libré8idrk] with one input, one hidden and one output
layer to predict the quality. The input layer canga32 neurons, the hidden layer 4 neurons and the
output layer 1 neuron, the activation functionseath neuron are sigmoidal. As stated above, the
technical performance of each system is calculatedhe distance between the top layer and the
bottom layer geometry following eq. (1). The task the network is to predict the technical
performance, i.e., to return a quality value withaalculating the mean distance explicitely.
Therefore, the process falls into two steps. lirst tep, a set of data samples is collecteddata
container which is used to train the network. Isegond step, the trained network can be used to
estimate the quality.

Since the number of input neurons strongly inflesnthe required number of training data, we chose
a reduced set of 16 points on the top layer gegmiessically each 35point of the 400 points which
define the rectangle as depicted in Figure 6.a). daxh of the 16 points of each data sample the
difference of the current top layer geometry toittigal top layer geometry in x- and in y-direatids
calculated, thus, each data sample in the datatmassists of 32 input parameters. Additionally, for
each data sample an associated performance vahwilable. For the training of the network we
split the database in a set of training data arstaof validation data and learned the network’s
weights by backpropagation [Bishop 1995] on théectéd data.

Figure 6.c) illustrates the feedback of the resofta trained neural network to the user. If therus
selects a control point for possible variationtuat control point modifications around the current
position are carried out. Based on these modificatithe 16 chosen points on the geometry are
updated and used for estimating the performanaesvay the neural net. The results are visualized by
a color map to the user, bright colors indicatempsing control point movement directions whereas
darker regions should be avoided from a technigavpoint. Furthermore, if the user points on one of
the evaluated squares, the predicted technicabmpesihce value is displayed providing additional
information about the gradient of the quality chaing
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Figure 6. a) Initial experiment set-up (f=2.12), buser’'s manually created circle-like shape P(fp;=1.975)
and user’s manually optimized shape B(fp,=1.931), ¢) shape P(fp;=1.975) and user’s optimized shape
using neural network assistance P(fps=1.949)

6. Experiment: Metamodel assisted design developmien

In several experiments, the difference between wmlamiesign development with and without
metamodel assistance is compared. A set of 36esggberiments has been carried out to study and
illustrate the differences. The workflow of eachgie experiment is as follows: At the beginning the
human user sees the GUI visualizing the initial layer geometry, a black rectangle with random
height and width placed at a random position, gsctied in Figure 6.a). In order to understand the



set-up of the experiments, the initial bottom lageometry, a grey rectangle with random height and
width placed at a random position, is also visilileFigure 6.a), However, note that during all
experiments the gray shapenist visible to the user, so the user has initiallyemplicit knowledge on
possible design optima. The bottom layer geomeatiglways hidden to keep the user visually unclear
about where to move the control points to imprdwetechnical performance.

In a first phase, the user was asked to defornrdhtangle to a circle, or circle-like geometry, by
moving control points. This phase mimics aesth#gisign modifications, hence, it was not required to
minimize the technical performance but to genesashape according to the users liking (or to the
specifications give, i.e., a circle). Nevertheletb® user received already a quality value for each
modification s/he carried out which is displayedtie GUI as absolute quality value according to
eg. (2). Thus, during this phase the target foruber was to get a feeling for the interaction leetw
control point modifications and geometry deformasicas well as which modification increased or
decreased the quality. The result of this phasehvbonsisted of 50 steps was a circle-like geometry
as it is shown in Figure 6.b) and described as“tiser's aesthetic design”Dwith an associated
quality valuefp;.

During the second phase, the user was asked teagecthe quality value while still trying to kebp t

D, shape (i.e., stay circular) for 15 steps. Thus,uber could decide on her/his own on the range of
control point movements, i.e. s/he could realizealtan or larger shape changes. The result is
described as the “user’s optimized desigry’ &3 illustrated in Figure 6.b) with a corresponding
quality valuefp,.

At the beginning of the third phase the geometry Ib@en reseted to,DA neural network has been
trained on the 50 data samples which have beerragedein the first phase. During the third phase
the user was asked to manipulate the control pdiased on the neural network predictions. After
selecting a control point for movement, the nemetwork calculated a quality estimation map for
possible movements directions. The quality predittihave been graphically visualized as depicted
in Figure 6.c) and the user moved the control pagtording to the most promising directions. The
resulting shape Dwith an associated quality val@gis illustrated in Figure 6.c).

To compare both ways of design development for eaqteriment the performance differences
between R and O as well as Band O have been recorded &s p; = fp1 - for @andfps ps =y - fos
respectively. Furthermore, since the quality chahge to be evaluated with respect to the shape
change, the geometric distances betwegarid O as well as Band O, calleddp; p; anddps pi, are
measured. These geometric distances are calcigtdte mean distance analogue to eq. (2) where
the bottom layer geometry is replaced hy D

So far, we have calculated the performance andesblagnges for each experiment. Nevertheless, to
compare all experiments it is necessary to scale pparameters. Thus, we added an additional fourth
step after each experiment has finished. In thig,ghe geometry has been reseted; tadain and an
evolutionary shape optimization has been carrigdtodind a shape Pas depicted in Figure 7.b)
which corresponds to the closest technical optiniana shape Pwith the highest technical quality
corresponding to the least distance tp By D, it is possible to calculate the maximum distance
decreasép, p; = fp1 - fps Which the user could achieve manually and itsesponding shape distance
dosp1. Based on these results for each experiment théty}laiifferencef* and the shape chandé
have been scaled following eq. (3):

f* =1- fDZ,Dl * — dD2,Dl f* =1 fD3,Dl d* —_ dD3,Dl
D2,D1 1¥Dp2,D1 T d ' 'D3 D1 T 1 ¥Dp3D1 T d
D4,D1 D4,D1

3)
fD4,D1 D4,D1

The final results are depicted in Figure 7.a). plat in the upper right corner contains the resofts
two evolutionary optimization runs marked by greiangles and grey diamonds which have been
carried out to find the optimal desigrn, Br two different initial designs D Both series were scaled
according to eq. (3). As it can be seen one sbegslirectly upon the other illustrating that makng
each experimental result following eq. (3) a goodhparison of all single experiments is possible.
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Figure 7. a) Summary of experimental results, b) Qmputationally optimized shape O (fp,=0.35)

For reasons of a better understanding we also aaldedtimated Pareto front (not calculated) shown
as a black curve. The Pareto front representsesigds which are non-dominated by other ones, i.e.
each design on the Pareto front is the best orfe neipect to the trade-off of distance decrease and
least design variation (from the circle). Such sohs are called Pareto optimal solutions. Natyrall

it is rather difficult to achieve a Pareto optinsalution by manual design modifications since these
solutions require correlated movements of a largalrer of control points.

The 36 experimental results are in the area ranbetgeen performance values of 0.9 and 1.1.
Therefore, we enlarged this part of the plot fottdrevisibility. The white circles mark the results
based on manual design modifications without usingeural network (phase 2) whereas the black
diamonds mark the results of manual design modifina including neural network support
(phase 3). The geometric distance expresses thheadefjshape variation of,and 3. As it can be
seen, most of the design changes are in a rang6.lofto 0.6. The technical performance
improvements are up to approximately 5%. For trargde given in Figures 6 and 7.b), the geometric
distances aredpyp; = 0.160, dpzp;=0.079 and dpsp; = 0.420, hence,d*Dz,D1=O.381 and
d'pspr = 0.189, and the scaled quality values following (@) aref pyp; = 0.973 and ps p; = 0.987.

As depicted in Figure 7.a) the resulting designsabd 3 are sorted into two groups according to
their geometric distances. The first groupd@ntains designs which are characterized by ratme|
shape variations with respect tg, Re.d < 0.3, and the second one,, Rontains designs with rather
large modifications, i.ed” > 0.3. For R, the designs modified using the neural networlpedorm

the ones which have been modified without usingnngral network. The mean performance over all
D31 is 0.983 with a standard deviation of 0.012, whsrever all Dg; it is 0.993 with a standard
deviation of 0.025. In R the mean performance over alj 2 is 0.984 with a standard deviation of
0.023, whereas over all,R, it is 0.985 with a standard deviation of 0.018. in R both ways for
design development are similar in the mean perfoo@avalue, nevertheless the quality variation for
D, r2is smaller.

Concluding, if small modifications are applied,.iB,r, and Qr; are rather similar to D the
performance of designs developed with neural ndtwapport is higher than for the ones which have
been developed without neural network support. Thais be explained by the fact that the neural
network has been trained on few data with only bralations and as a consequence the prediction
quality of the network is high if the applied vdites are rather local. In contrast, for larger
modifications the performance ot R and B r»is similar but the quality variation of;[R, is smaller.

In this range R the human user often performed better withoutntioglel assistance because if s/he
detected promising directions that improved thdquerance it was very likely that these directions
were followed strategically, i.e. several neighliogrcontrol points have been moved in the same
directions to increase the effect. At the same teimce the modifications are larger and the ctdléc



data did not include design regions which werewithin a close distance to;Pthe metamodel gets
more inaccurate decreasing the prediction perfoomalt is also visible in Figure 7.a) that the hama
user tends to carry out larger modification whehestHoes not rely on the neural network.
Summarizing, especially for the case that a mapugitimized design should be similar to a certain
design idea Pwhile still improving the technical performanchetneural network support has been
very helpful.

7. Conclusions

The strict principle of “form follows function” hasever been followed in automotive design
(consider the fate of the Chrysler Airflow). Theasen is simple: uniquely brand identifying
characteristics seem more important for customeisfaation than technical function like
aerodynamics. However, times are changing: theectle consciousness towards ecological
efficiency has dramatically increased. At the samee, safety requirements (European New Car
Assessment Programme) have become more challentiregefore, there is the need to bring the
technical performance of design back into the fogithout losing the individual aesthetic brand
styling. There is a need for form and function teemon par. In this paper, we have outlined a
conceptual framework on how this can be achievadhaw technical information can be fed back to
the designer taking the current constraints of tsoasuming quality estimations into account. We
have outlined a much simplified system of suchraceptual framework.

To evaluate the benefits of the proposed systesoftavare application has been implemented which
includes the possibilities of interactive and itiud shape modifications with neural network suppor
Using first experimental results the potential bi#naf such a system has been demonstrated. The
inclusion of the neural network prediction capapiln the manual design optimization process has
been advantageous especially for local shape i@rgat Such designs provided a fair trade-off
between technical performance increase and siegblestariation.

For real world domains as the automotive field, tiidization of metamodels to integrate a large
amount of domain knowledge which is already avé#lab.g. from former CFD simulations or wind
tunnel experiments, is very promising. A high gualinetamodel together with an intuitive user
interface could provide a fast feedback within selsoon the influence of possible shape variations
and, hence, stimulate the creative and decisioringadtocess of the designer.
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