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1. Introduction 
The design of innovative objects which equally serve aesthetic and technical principles is a very 
complex process. With respect to automotive design, multiple criteria influence the final shape of the 
object, say shape of a car or of the car’s interior, which are a combination of e.g. human creativity, 
aerodynamic performance, regulation constraints and stability issues. While it is often possible to 
assign an aerodynamic or stability performance index to the currently developed shape, the creative 
process as an interaction between human ideas and technical issues is very difficult to measure. 
Usually, a prototype design is generated iteratively: the designer suggests new concepts based on 
technical regulations and feedback from aerodynamic or stability evaluations of previous designs. 
However, one serious difficulty during the design process is the different times required for the 
different evaluation methods and the different frequency of evaluations. As far as stability or 
aerodynamics is concerned, the evaluation of the design performance is very time-consuming and 
costly. A Computational Fluid Dynamics (CFD) calculation of the flow around a car may take up to 
one or even several days depending on the required accuracy and available computing power. 
Thinking of wind tunnel experiments the costs are even higher and the number of possible 
experiments accordingly very low. As a consequence, providing the human designer with a direct, fast 
and visually understandable feedback on newly applied object modifications in CAE is very difficult.  
As a solution for purely technical design optimizations, i.e., shape optimizations with no or only 
minor aesthetic requirements, it is common to integrate so-called metamodels, like e.g. neural 
networks, for modelling the quality landscape [Jin et al. 2002], [Menzel & Sendhoff 2008]. 
Practically, a neural network is learned on already available data samples each consisting of a 
parameter set and an associated quality value, like e.g. the result of a CFD simulation. Using the 
trained neural network the performance value for a given parameter set can be approximated very 
rapidly, hence, allowing a fast estimation of possible successful parameter variations.  
In the present paper, we suggest an interactive framework which is based on metamodels to achieve a 
powerful designer assistance system. In this context, the term metamodel refers to any kind of 
computational algorithm which allows a fast estimation of the performance landscape for a given 
design space. By a combination and analysis of already existing domain data collected from e.g. wind 
tunnel experiments, CFD or FE (finite elements) calculations adequate metamodels are generated 
which should support (and subliminally influence) the decision making process of the human 
designer. Nevertheless, in our opinion it is important, that the metamodels should be understood as an 
assisting tool, the whole process must be driven by the creativity of the individual designer. However, 
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we believe that if reliable metamodels can be generated for a given problem, e.g. for estimating the 
aerodynamic flow around a car, the human designer may think of various alternatives to achieve both, 
aesthetic quality and a high technical performance at the same time.  

         
Figure 1. Designer Assistance Tool: Geometries a) before and b) after hybrid optimization 

In the following, we describe a simplified model for the assistance system. For the understanding of 
the paper it is very important to notice that we use target shape matching (described in Section 2) as a 
replacement for a costly technical evaluation method like e.g. complex fluid-dynamics or finite 
element computations. Also the design environment is highly simplified as can be seen from Figure 1. 
Nevertheless, the central elements of our interactive framework, namely, the use of metamodels for 
modelling the technical evaluation and the interaction with the designer are already included in the 
described framework. We combine the possibilities of integrating human object manipulation to 
create shape variations and visualizing the feedback given by a feed-forward neural network which we 
use as a metamodel for predicting the technical performance of the created shape. For the realization 
of human object manipulation standard Free-Form Deformation (FFD) algorithms are applied because 
of their intuitive and fast modification capabilities as well as their practical relevance.  
Within the proposed framework, we will evaluate the performance of design development with and 
without neural networks for performance estimation. The experiments show that metamodels are 
capable of improving the development process towards performance increase. Especially in local 
search areas which allow only very small shape modifications to keep an already achieved design it is 
worthwhile to integrate metamodels.  
The paper is organized as follows. In Section 2, the system layout is described which integrates a 
graphical visualizer, an interactive FFD model, neural networks as performance predictor and an 
evolutionary optimizer. FFD is explained in more detail in Section 3, followed by the technical 
description of the evolutionary optimizer in Section 4. In Section 5 neural networks are briefly 
introduced. Experimental results are discussed in Section 6, followed by concluding remarks.  

2. System framework 
To demonstrate the advantage of the proposed framework, a small-scale system has been realized 
which reflects the major characteristics of a comparable real-world application. The system requires a 
combination of several methods from different research fields in a graphical user interface which 
allows the human user to interact with.  
Firstly, it is important to choose an object representation for the geometrical shapes which is 
computationally fast, flexible and whose changes are intuitive. For the presented application, standard 
Free-Form Deformation (FFD) [Sederberg & Parry 1986], [Coquillart 1990] is chosen because it 
allows intuitive design variations while keeping a manageable number of design parameters. As it will 
be described in Section 3 in more detail, shape variations are realized by a repositioning of visible 
control points which are the handles for geometric modifications.  
Secondly, the system maintains a database. In real world applications, the database would contain 
domain knowledge which already exists from prior design studies or which is generated during the 
current ongoing development. Usually, each data sample consists of a set of parameters describing the 
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actual shape and one or more performance values. In our experiments, the parameter set consists of 
the x- and y-coordinates of a subset of points describing the design. Concerning the performance 
indicator it is important for the present study to circumvent time-consuming quality evaluations, like 
e.g. CFD simulations would be, for analyzing the system capabilities. Hence, we decided to indicate 
the technical performance, or so-called quality of each design by a calculation of a target shape match, 
expressed as mean distance f. As it will be explained in Section 3, a target shape is defined for each 
experiment and each quality corresponds to the distance f between the currently visible shape and a 
hidden target shape. 
 
 

 
 
 
 

 
 
  
 

Figure 2. Schematic overview of the system 

To generate new data samples, the system provides two alternative ways. On the one hand the human 
user may modify the currently visible shape via the control point handles. On the other hand an 
evolutionary algorithm may be started which carries out a design optimization to minimize the 
distance between the actual and the target shape, thus, generating a large number of data samples and 
indicating the closest optimal shape. The optimizer is introduced in more detail in Section 4. 
At the heart of the systems is the metamodel which is learned on the data available in the database. 
The model will be discussed in more detail in Section 5. Currently, a  feed-forward neural network is 
used as a metamodel which allows the estimation of the quality landscape. The neural network results 
are displayed in the GUI to support the human user in his/her decision making process.  
Summarizing from the point of view of the human user, the designer interacts with the geometry via 
the GUI as exemplarily depicted in Figure 1. The designer chooses whether the actual visible shape is 
deformed manually using the control point handles or if a computational optimization is carried out. It 
is also possible to iteratively apply manual and computational shape variations (hybrid method). In 
any case, both modifications result in a deformation of the initial geometry and the associated 
technical performance, i.e. the mean distance f, of the actual design is visible in the lower right corner 
of the GUI. Upon request by the designer a neural network is learned on the existing data and used to 
estimate the quality for possible control point movements. The predicted quality values are 
graphically visualized in the GUI, hence, providing the human designer with information on possible 
ways to improve the design technically before actually carrying out the design modification. Thus, the 
human user is free to accept or to ignore the neural network information and is still responsible for 
further design development steps.  

3. Representing design changes by Free-Form Deformation 
The choice of an adequate representation is very important for the performance of the whole system 
and its ability to generalize. We require three important characteristics towards the representation. 
Firstly, it should be able to deal both with rather complex and rather simple geometries to allow a 
good scaling behaviour. Secondly, the human interaction should be intuitive and close to systems 
which may be used for practical applications. Thirdly, the parameter set for the metamodel should be 
easily extractable to evaluate the performance of the model and to allow a fast visualization of the 
prediction results. We have chosen standard Free-Form Deformation (FFD) [Sederberg & Parry 
1986], [Coquillart 1990] as the representation of the shapes. FFD has been originally developed for 
soft object animation in the field of computer graphics. To realize design modifications, in a first step 

GUI Controller Database 

Evolutionary Opt. 

Neural Network 

Quality Evaluation 

Human Designer 
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a chosen base design which can be of any kind of complexity is embedded in a lattice of control 
points which is called control volume. Thereafter, the base design is transferred to the parameter 
space of the control volume, a process which is called freezing. Mathematically, cubic B-splines are 
used as base functions which provide a high degree of locality and flexibility. The deformations are 
achieved by the repositioning of control points and the calculation of the new shape based on the 
frozen parameter coordinates. An example is depicted in Figures 3.a) and 3.b). A simple square is 
initially embedded in a 10x10 grid of equidistantly distributed control points and frozen to the control 
volume. A  movement of the marked control point P5/3 by 1.6 in positive x-direction (Figure 3.b) 
generates the illustrated shape.    

     
Figure 3. a) A square embedded in a standard FFD control volume, b) deformation of a square by FFD,  

c) realization of dynamic FFD by coupling a top and bottom layer control point grid 

Summarizing, FFD allows the realization of interactive and intuitive shape modifications and 
additionally decouples the complexity of a chosen base design from the parameter set on which the 
designer, either a human or a computational algorithm, is working on. Because of these advantages 
FFD has already been applied to the evolutionary design optimization of complex systems in the 
aerodynamic problem domain [Menzel & Sendhoff 2008]. Aerodynamic problems are characterized 
by a non-linear quality landscape, thus making it very difficult for a human designer to technically 
improve an already optimized design. Often shape modifications and performance changes are 
coupled indirectly and, thus, are very difficult to predict. Nevertheless, especially these kinds of 
problems are targeted by our conceptual framework. However, in the simplified set-up we want to 
avoid the time-consuming CFD calculations in the conceptual research phase. Hence, a substitute 
system is suggested which can be used to validate our methods and to demonstrate the performance of 
the outlined framework without costly computational simulations.  
As depicted in Figure 3.c) we propose a system of two coupled FFD control volumes, each one with 
an associated base geometry, to reproduce similar non-linear quality landscapes. One FFD control 
volume which is called top layer is modifiable by the designer, a second control volume which is 
called bottom layer is not modifyable by the designer. Instead, each modification which the designer 
applies to the control points of the top layer is transferred by a set of pre-defined equations to the 
control points of the bottom layer. These pre-defined equations are the key for adjusting the 
complexity of the quality landscape. 
For the experiments presented in this paper the bottom layer is calculated as follows: Given the initial 
absolute positions of the bottom layer control points P,Bi,j and the relative modifications of the top 
layer control points ∆P,Ti,j, the modified absolute positions of the bottom layer control points are 
computed by 
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where ma,b is a factor according to Figure 4.a). The transfer functions and different sizes of control 
volumes have been chosen in such a way to generate local design deformations on the top layer and 
more global ones on the bottom layer.  
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Figure 4. a) Table of multiplier values mi,j , b) Initial top and bottom layer rectangle, c) Coupled 
deformation of top and bottom layer geometry by manual repositioning of control point P,T5,3 

An exemplary system of two coupled FFD volumes is depicted in Figure 4.b) and 4.c). For the 
evaluation scenario presented in this paper, the modifyable top layer consists of 10x10 equidistantly 
distributed control points marked by small black dots, the bottom layer of 4x4 equidistantly 
distributed control points marked by large grey dots. The geometries placed in both layers can be 
chosen arbitrarily. Nevertheless, for the introduction and understanding of the effects of the coupled 
FFD volumes, two rectangles are generated but with varying positions on the grid. The black 
rectangle which is associated with the top layer is positioned at the coordinates (2/2, 5/6) whereas the 
grey rectangle associated with the bottom layer is positioned at (2.5/2, 5.5/6). To demonstrate the 
local influence of the top layer P,T5,3 has been moved by 2.4 in x-direction. Because of the cubic B-
splines the influence on the black rectangle is locally in the lower right corner. Following eq. (1) 
P,B1,1 and P,B2,1 have to be updated. The resulting modification of the grey rectangle is also visible in 
Figure 4.c). Because of the smaller number of control points of the bottom layer the whole rectangle is 
deformed. For calculating the “technical” performance, i.e. the shape matching quality expressed as 
mean distance f, both rectangles are represented by 400 points starting in the lower left corner 
counting clockwise with 100 points lying on each edge. Each point is given by x and y coordinates 
(xT,i/yT,i) and (xB,i/yB,i) respectively. Hence, the quality value f is calculated by the mean distance of 
both shapes in the following way: 
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Thus, the optimal design is found if both shapes are congruent. During the experiments which are 
explained in Section 6 the bottom layer geometry is not visible to the human designer. Furthermore, 
since each top layer modification is transferred to the bottom layer in a way which is also unknown to 
the human designer, it is a rather difficult task to achieve two rather congruent shapes manually. But 
since we are also interested in the comparison between the quality values resulting from manual 
modifications and the maximally achievable quality, an evolutionary optimizer has been integrated 
into the framework which is able to compute the optimal shape for a given initial shape. The 
algorithm is presented in Section 4. 

4. Design optimization using evolutionary algorithms 
The framework which is proposed in the present paper allows two different ways for shape variation. 
On the one hand, the human user can manually reposition the control points to deform the design. 
Hence, the technical performance of the design may or may not improve. On the other hand it should 
also be possible to search for the design which is optimal in a technical sense, i.e. which provides the 
minimal distance to the target shape. One possible way to calculate these designs is the application of 
an evolutionary optimization which can deal with a larger number of optimization parameters and 
non-linear quality landscapes.  
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Evolutionary algorithms belong to the group of stochastic optimisation algorithms. They mimic the 
principles of Neo-Darwinian evolution, see e.g. [Fogel 1995], by applying operators for reproduction, 
mutation and/or recombination and selection. Prominent examples are Evolution Strategies (ES), 
Genetic Algorithms (GA) or Genetic Programming (GP), respectively. Among the advantages of 
evolutionary algorithms are robustness against noisy or discontinuous quality functions, the ability to 
escape from local optima and to enable global search. In the course of optimization a population of 
possible solutions, e.g. a vector of continuous parameters, is adapted to solve a given problem over 
several generations. The adaptation occurs by variation of solutions contained in a population and by 
selection of the best solutions for the next generation. The variations can be classified as purely 
stochastic, usually called mutation, and combinatoric/stochastic, usually called recombination or in 
the context of genetic algorithms crossover.  
In this paper, a special variant of Evolution Strategies, the Covariance Matrix Adaptation-ES (CMA-
ES) [Hansen & Ostermeier 2001], is applied which has the advantage of a high convergence rate for 
real-valued problems compared to other evolutionary algorithms. The successful application of this 
type of algorithm has been shown previously for two- and three-dimensional turbine blade 
optimizations in the aerodynamic domain [Menzel & Sendhoff 2008]. 

      
Figure 5. Hybrid optimization: a) 1. optimized design (f=0.056),  

b) manually modified design (f=1.006), c) optimized design (f=0.049) 

The evolutionary optimization is carried out in four steps. After setting up the FFD system as 
described in Section 3, at first, the current 10x10 x- and y-control point positions of the top layer P,Ti,j 
are stored sequentially in the parents’ chromosome vector. Next, the chromosome vector is copied for 
each newly generated offspring and each value in the vector is slightly modified according to the 
mutation operator. Based on the mutated control point positions P,T*

i,j the deformed top layer shape is 
calculated. At the same time, the control points of the bottom layer P,B*

i,j are updated following eq. 
(1) and the bottom layer shape is deformed. The mean distance f between both shapes is computed by 
eq. (2) and assigned to the offspring. Finally, the selection is carried out based on a quality 
comparison and the chromosome vectors of the successful offsprings are copied to the parents’ 
chromosome. By repeating these steps the distance f between both shapes is minimized over the 
course of generations. Figure 5 depicts an examplary hybrid optimization. Initially, a rectangular 
shape similar to the one shown in Figure 4.b) has been optimized by the evolutionary algorithm 
resulting in design 5.a) with an associated shape matching quality f of 0.056. Secondly, the human 
user has modified the shape by manually introducing a bump on the right side of the design which 
downgrades the quality to 1.006. As it is visible in Figure 5.b), the bottom layer geometry is also 
modified because of the transfer functions as described in Section 3. Thirdly, restarting the 
evolutionary optimization leads to a different optimal design as found in 5.a) with an associated 
quality of 0.049. This example illustrates the existence of different local optima which are dependent 
on the current position in the design space. For aerodynamic problems this effect is very common 
since many spatially distributed design parts interact in the system as a whole.  

5. Performance prediction by Feed-Forward Networks 
Metamodels are widely used in the artificial intelligence domain for substituting costly computations 
which themselves are models simulating mathematical equations like e.g. the Navier-Stokes equations 
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in fluid-dynamics. Therefore, the name metamodel refers to a model of a model. Artificial neural 
networks are one possibility to realize a metamodel for modelling linear or non-linear systems. An 
artificial neural network is given by a composition of single neurons according to a specified 
topological arrangement. The topology is given by the neural connectivity and the connection 
weights.  
In the system proposed in this paper, we chose a standard fully-connected feed-forward network 
[Bishop 1995] as implemented in the Shark library [Shark] with one input, one hidden and one output 
layer to predict the quality. The input layer contains 32 neurons, the hidden layer 4 neurons and the 
output layer 1 neuron, the activation functions of each neuron are sigmoidal. As stated above, the 
technical performance of each system is calculated by the distance between the top layer and the 
bottom layer geometry following eq. (1). The task of the network is to predict the technical 
performance, i.e., to return a quality value without calculating the mean distance explicitely. 
Therefore, the process falls into two steps. In a first step, a set of data samples is collected in a data 
container which is used to train the network. In a second step, the trained network can be used to 
estimate the quality. 
Since the number of input neurons strongly influences the required number of training data, we chose 
a reduced set of 16 points on the top layer geometry, basically each 25th point of the 400 points which 
define the rectangle as depicted in Figure 6.a). For each of the 16 points of each data sample the 
difference of the current top layer geometry to the initial top layer geometry in x- and in y-direction is 
calculated, thus, each data sample in the database consists of 32 input parameters. Additionally, for 
each data sample an associated performance value is available. For the training of the network we 
split the database in a set of training data and a set of validation data and learned the network’s 
weights by backpropagation [Bishop 1995] on the collected data.  
Figure 6.c) illustrates the feedback of the results of a trained neural network to the user. If the user 
selects a control point for possible variation, virtual control point modifications around the current 
position are carried out. Based on these modifications the 16 chosen points on the geometry are 
updated and used for estimating the performance value by the neural net. The results are visualized by 
a color map to the user, bright colors indicate promising control point movement directions whereas 
darker regions should be avoided from a technical viewpoint. Furthermore, if the user points on one of 
the evaluated squares, the predicted technical performance value is displayed providing additional 
information about the gradient of the quality change. 

                
Figure 6. a) Initial experiment set-up (f=2.12), b) user’s manually created circle-like shape D1 (fD1=1.975) 
and user’s manually optimized shape D2 (fD2=1.931), c) shape D1 (fD1=1.975) and user’s optimized shape 

using neural network assistance D3 (fD3=1.949) 

6. Experiment: Metamodel assisted design development  
In several experiments, the difference between manual design development with and without 
metamodel assistance is compared. A set of 36 single experiments has been carried out to study and 
illustrate the differences. The workflow of each single experiment is as follows: At the beginning the 
human user sees the GUI visualizing the initial top layer geometry, a black rectangle with random 
height and width placed at a random position, as depicted in Figure 6.a). In order to understand the 
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set-up of the experiments, the initial bottom layer geometry, a grey rectangle with random height and 
width placed at a random position, is also visible in Figure 6.a), However, note that during all 
experiments the gray shape is not visible to the user, so the user has initially no explicit knowledge on 
possible design optima. The bottom layer geometry is always hidden to keep the user visually unclear 
about where to move the control points to improve the technical performance.  
In a first phase, the user was asked to deform the rectangle to a circle, or circle-like geometry, by 
moving control points. This phase mimics aesthetic design modifications, hence, it was not required to 
minimize the technical performance but to generate a shape according to the users liking (or to the 
specifications give, i.e., a circle). Nevertheless, the user received already a quality value for each 
modification s/he carried out which is displayed in the GUI as absolute quality value according to 
eq. (2). Thus, during this phase the target for the user was to get a feeling for the interaction between 
control point modifications and geometry deformations as well as which modification increased or 
decreased the quality. The result of this phase which consisted of 50 steps was a circle-like geometry 
as it is shown in Figure 6.b) and described as the “user’s aesthetic design” D1 with an associated 
quality value fD1. 
During the second phase, the user was asked to decrease the quality value while still trying to keep the 
D1 shape (i.e., stay circular) for 15 steps. Thus, the user could decide on her/his own on the range of 
control point movements, i.e. s/he could realize smaller or larger shape changes. The result is 
described as the “user’s optimized design” D2 as illustrated in Figure 6.b) with a corresponding 
quality value fD2. 
At the beginning of the third phase the geometry has been reseted to D1. A neural network has been 
trained on the 50 data samples which have been generated in the first phase. During the third phase 
the user was asked to manipulate the control points based on the neural network predictions. After 
selecting a control point for movement, the neural network calculated a quality estimation map for 
possible movements directions. The quality predictions have been graphically visualized as depicted 
in Figure 6.c) and the user moved the control point according to the most promising directions. The 
resulting shape D3 with an associated quality value fD3 is illustrated in Figure 6.c). 
To compare both ways of design development for each experiment the performance differences 
between D2 and D1 as well as D3 and D1 have been recorded as fD2,D1 = fD1 - fD2 and fD3,D1 = fD1 - fD3 
respectively. Furthermore, since the quality change has to be evaluated with respect to the shape 
change, the geometric distances between D2 and D1 as well as D3 and D1, called dD2,D1 and dD3,D1, are  
measured. These geometric distances are calculated by the mean distance analogue to eq. (2) where 
the bottom layer geometry is replaced by D1.  
So far, we have calculated the performance and shape changes for each experiment. Nevertheless, to 
compare all experiments it is necessary to scale both parameters. Thus, we added an additional fourth 
step after each experiment has finished. In this step, the geometry has been reseted to D1 again and an 
evolutionary shape optimization has been carried out to find a shape D4 as depicted in Figure 7.b) 
which corresponds to the closest technical optimum, i.e. a shape D4 with the highest technical quality 
corresponding to the least distance to D1. By D4 it is possible to calculate the maximum distance 
decrease fD4,D1 = fD1 - fD4 which the user could achieve manually and its corresponding shape distance 
dD4,D1. Based on these results for each experiment the quality difference f* and the shape change d* 

have been scaled following eq. (3):  
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The final results are depicted in Figure 7.a). The plot in the upper right corner contains the results of 
two evolutionary optimization runs marked by grey triangles and grey diamonds which have been 
carried out to find the optimal design D4 for two different initial designs D1. Both series were scaled 
according to eq. (3). As it can be seen one series lies directly upon the other illustrating that by scaling 
each experimental result following eq. (3) a good comparison of all single experiments is possible.  
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Figure 7. a) Summary of experimental results, b) Computationally optimized shape D4 (fD4=0.35) 

For reasons of a better understanding we also added an estimated Pareto front (not calculated) shown 
as a black curve. The Pareto front represents all designs which are non-dominated by other ones, i.e. 
each design on the Pareto front is the best one with respect to the trade-off of distance decrease and 
least design variation (from the circle). Such solutions are called Pareto optimal solutions. Naturally, 
it is rather difficult to achieve a Pareto optimal solution by manual design modifications since these 
solutions require correlated movements of a large number of control points. 
The 36 experimental results are in the area ranging between performance values of 0.9 and 1.1. 
Therefore, we enlarged this part of the plot for better visibility. The white circles mark the results 
based on manual design modifications without using a neural network (phase 2) whereas the black 
diamonds mark the results of manual design modifications including neural network support 
(phase 3). The geometric distance expresses the degree of shape variation of D2 and D3. As it can be 
seen, most of the design changes are in a range of 0.1 to 0.6. The technical performance 
improvements are up to approximately 5%. For the example given in Figures 6 and 7.b), the geometric 
distances are dD2,D1 = 0.160, dD3,D1 = 0.079 and dD4,D1 = 0.420, hence, d*

D2,D1 = 0.381 and 
d*

D3,D1 = 0.189, and the scaled quality values following eq. (3) are f*D2,D1 = 0.973 and f*D3,D1 = 0.987.     
As depicted in Figure 7.a) the resulting designs D2 and D3 are sorted into two groups according to 
their geometric distances. The first group R1 contains designs which are characterized by rather small 
shape variations with respect to D1, i.e. d* ≤ 0.3, and the second one, R2, contains designs with rather 
large modifications, i.e. d* > 0.3. For R1, the designs modified using the neural network outperform 
the ones which have been modified without using the neural network. The mean performance over all 
D3,R1 is 0.983 with a standard deviation of 0.012, whereas over all D2,R1 it is 0.993 with a standard 
deviation of 0.025. In R2, the mean performance over all D3,R2 is 0.984 with a standard deviation of 
0.023, whereas over all D2,R2 it is 0.985 with a standard deviation of 0.013. I.e. in R2 both ways for 
design development are similar in the mean performance value, nevertheless the quality variation for 
D2,R2 is smaller.  
Concluding, if small modifications are applied, i.e. D2,R1 and D3,R1 are rather similar to D1, the 
performance of designs developed with neural network support is higher than for the ones which have 
been developed without neural network support. This can be explained by the fact that the neural 
network has been trained on few data with only small variations and as a consequence the prediction 
quality of the network is high if the applied variations are rather local. In contrast, for larger 
modifications the performance of D2,R2 and D3,R2 is similar but the quality variation of D2,R2 is smaller. 
In this range R2, the human user often performed better without the model assistance because if s/he 
detected promising directions that improved the performance it was very likely that these directions 
were followed strategically, i.e. several neighbouring control points have been moved in the same 
directions to increase the effect. At the same time, since the modifications are larger and the collected 
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data did not include design regions which were not within a close distance to D1, the metamodel gets 
more inaccurate decreasing the prediction performance. It is also visible in Figure 7.a) that the human 
user tends to carry out larger modification when s/he does not rely on the neural network. 
Summarizing, especially for the case that a manually optimized design should be similar to a certain 
design idea D1 while still improving the technical performance, the neural network support has been 
very helpful. 

7. Conclusions 
The strict principle of “form follows function” has never been followed in automotive design 
(consider the fate of the Chrysler Airflow). The reason is simple: uniquely brand identifying 
characteristics seem more important for customer satisfaction than technical function like 
aerodynamics. However, times are changing: the collective consciousness towards ecological 
efficiency has dramatically increased. At the same time, safety requirements (European New Car 
Assessment Programme) have become more challenging. Therefore, there is the need to bring the 
technical performance of design back into the focus without losing the individual aesthetic brand 
styling. There is a need for form and function to meet on par. In this paper, we have outlined a 
conceptual framework on how this can be achieved, on how technical information can be fed back to 
the designer taking the current constraints of time consuming quality estimations into account. We 
have outlined a much simplified system of such a conceptual framework. 
To evaluate the benefits of the proposed system, a software application has been implemented which 
includes the possibilities of interactive and intuitive shape modifications with neural network support. 
Using first experimental results the potential benefit of such a system has been demonstrated. The 
inclusion of the neural network prediction capability in the manual design optimization process has 
been advantageous especially for local shape variations. Such designs provided a fair trade-off 
between technical performance increase and small shape variation.    
For real world domains as the automotive field, the utilization of metamodels to integrate a large 
amount of domain knowledge which is already available, e.g. from former CFD simulations or wind 
tunnel experiments, is very promising. A high quality metamodel together with an intuitive user 
interface could provide a fast feedback within seconds on the influence of possible shape variations 
and, hence, stimulate the creative and decision making process of the designer.  
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