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Abstract. In the conceptional phases of design optimization tasks it is
required to find new innovative solutions to a given problem. Although
evolutionary algorithms are suitable methods to this problem, the search
of a wide range of the solution space in order to identify novel concepts
is mainly driven by random processes and is therefore a demanding task,
especially for high dimensional problems. To improve the exploration of
the design space additional criteria are proposed in the presented work
which do not evaluate solely the quality of a solution but give an estima-
tion of the probability to find alternative optima. To realize these crite-
ria, concepts of novelty and interestingness are employed. Experiments
on test functions show that these novelty guided evolution strategies
identify multiple optima and demonstrate a switching between states of
exploration and exploitation. With this we are able to provide first steps
towards an alternative search algorithm for multi-modal functions and
the search during conceptual design phases.
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1 Introduction

Evolutionary algorithms have various properties which make them suited to solve
complex real world problems. One of these properties is the ability to identify
multiple solutions in multi-modal quality functions. The importance of this prop-
erty lies in the fact that very often conceptually different solutions can be found
in real world applications which offer alternative realizations for the design of
a system. The selection of the best suited solution can only be done by experts
in the related field due to the complexity of the overall problem or due to the
non-technical nature of the criteria, for example aesthetic arguments or the nec-
essary distinctiveness to other available solutions used in other products.
In order to enhance this behavior various improvements of the algorithms are
described in the literature. A common way is to strengthen the ’exploratory’ be-
havior by increasing the mutation rate. Although this requires a low dimensional
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search space in order to find solutions within an acceptable number of gener-
ations, successful examples of this approach can be found in the field termed
creative evolutionary search [1] and in the early phases of design optimisation in
which new concepts for a solution have to be identified on simplified models.
Another strategy is followed by Niching Algorithms which identify multiple op-
timal solutions by maintaining diversity within a population [2–4]. The simplest
niching approach is fitness sharing where the fitness of individuals is reduced if
they are located close together within a niching radius. Various improvements
of these ideas are available like the dynamic niche sharing which uses a dynamic
peak identification (DPI) algorithm to recognize the forming of niches and the
fitness is shared among individuals within one niche. The dynamic niching al-
gorithm [2] introduces mating restrictions instead of changing the fitness. While
these methods require an a-priori estimation of the size of the niches, the de-
randomized CMA-ES implements an adaptive niche radius [4]. Although, niching
algorithms provides the potential for identifying several distinct optimal solu-
tions, the possible number of optima which can be discovered has to be specified
in advance and remains limited by the population size.
An alternative way to guide the search towards new and innovative solutions
is the integration of human creativity into the process [5, 6] in which a human
user is involved in the generation of variations or alternatively in the selection
process. Although this process turned out to be very powerful it is limited to
problems for which a solution can be found within a small number of evaluations,
in which a human operator is able to judge the solutions by their intuition or
knowledge of the process.
In this work we outline an alternative method for the determination of optima
in a multi-modal fitness landscape which is fundamentally different to existing
methods. We propose to guide the search by an additional criterion which di-
rectly relates to new and unexplored areas of the search space. This criterion is
based on novelty or interestingness measures. Although the concept of novelty
exists in the subjective perceptions of individuals and is generally difficult to
describe, various attempts to define the concept can be found in different fields
of science like psychology, active learning or evolutionary robotics which allow
to formulate measures suitable for a numerical calculation.
Silberschatz and Tuzhilin’s [7] for example state that interestingness depends on
the user who is examining a pattern. They point out that something that is in-
teresting for one user might not be interesting for another one. Schmidhuber [8]
argues that if something is too unexpected it appears random and is no longer in-
teresting. Along this line, Saunders [9] refers to the Wundt curve and writes: “...
the most interesting experiences are those that are similar-yet-different to those
that have been experienced previously”. Based on these works it becomes already
obvious that novelty as well as interestingness can only be evaluated based past
experience. In the field of active learning, Risi et all. [10] evaluates novelty simply
by measuring the similarity to existing solutions stored in an archive. Similar to
the work of Risi, Lehman at all. [11] defined novelty through sparseness that is
evaluated based on already generated solutions. In the domain of developmental
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robotics, motivated by the concept of intrinsic motivation, Oudeyer and Kaplan
[12] provide a comprehensive summary on alternative techniques for quantifying
interestingness and novelty. Most of the different attempts share the idea that
a model that builds up a compact representation of the search space is used to
produce an indicator for novelty or interestingness and allow the identification
of parameter regimes which should be sampled. In this work a mechanism for
the detection of novelty or interestingness is utilized to actively guide the search
to alternative optima in a multi-modal search problem using evolutionary algo-
rithms. The novelty measure provides an additional criteria besides the original
quality function. The target is to guide the search by the newly added crite-
ria towards currently unexplored regions of the search space and additionally
to start new exploration phases after temporary convergence of the population.
It is demonstrated on simple test functions that a combination of both criteria
allows the algorithm to guide the population towards alternative local optima
after the localization and convergence of the population to a formerly identified
optimum. In the next section we describe the novelty metrics used here and their
integration into the algorithm in more detail. In section 3 first experimental re-
sults are presented where the proposed algorithm is compared to the niching and
standard evolutionary algorithm. The paper concludes with a discussion on the
results and an outline for future work in section 4.

2 Novelty Guided Evolution Strategy

2.1 Overall Framework

The schematic view of the proposed algorithm is depicted in Fig. 1. After the
reproduction, recombination and mutation of the parent population, the fitness
is assigned to each individual of the produced offspring population. A second
criteria is introduced evaluating the individual’s novelty based on a model of the
quality function which is adapted by newly evaluated individuals. The selection
incorporates at least two criteria, the novelty and the quality function.

2.2 Novelty Evaluation and World Model Adaptation

An individual is said to be novel if it does not meet the expectations derived from
the accumulated knowledge about the search space. Therefore, the implemented
novelty metric is defined as follows. If the expected quality value, estimated
by the world model, differs from the calculated one, a high novelty value is
assigned to the individual. As depicted in Fig. 2 the implemented novelty metric
is calculated as,

ε(xt
i) = |f(xt

i) − f̂(xt
i)|, i ∈ [1 . . . λ] (1)

where λ defines the size of the offspring population, t the current generation, xt
i

is the design vector and f(xt
i), f̂(xt

i) defines the calculated and the predicted
quality function value respectively. ε(xt

i) reflects the prediction error of the world
model and is used for the quantification of the novelty. This formulation of the
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Fig. 1. Flowchart of the novelty guided optimization framework.

novelty metric equals the Predictive novelty motivation concept described by
Oudeyer and Kaplan [12]. Solutions with a high prediction error assign a high
novelty value to the individual.
The world model is adopted to predict the quality function value by means of
estimating f̂(xt

i). Since multilayer feed-forward neural networks have successfully
been employed as universal function approximators they are implemented for the
world model. As already shown by Bishop [13], the neural network model is well
suited to estimate the novelty of a solution. Given a pre-defined model structure,
the network is updated in each generation t− 1 using RProp [14], a variation of
the back-propagation algorithm, together with cross-validation to prevent over-
fitting. Data from generation t − γ to generation t − 1 that is added to the
knowledge base during evolution is used for training. The parameter γ controls
whether more global or localized model of the search space is generated.

Individual
Quality

Function

World 

Model

-
ix  ixf

 ixf̂

 ix

Fig. 2. Estimation of the prediction error which defines the novelty of a solution. The
world model builds a compact representation of the search space and is adopted to
predict the target function value.
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2.3 Selection Strategy

During the fitness evaluation a fitness vector is assigned to each offspring,

f(xt
i) = [f(xt

i), ε(xt
i)]

T , (2)

containing the actual quality value and the prediction error estimating the nov-
elty. It has to be noted that the additional criteria is dynamic in the sense
that each time the world model is updated the estimated novelty value changes
for one and the same solution. The multi objective optimisation problem can be
transformed into a single objective optimisation by a linear weighted aggregation.
This method leaves us with the problem of choosing an adequate weight. A high
weight on the novelty objective would result in an extensive explorative behavior
while a high weight on the actual quality function would result in an intensive
exploitation of a single optimal solution. The desired behavior of the evolution
strategy is a process that identifies successively several optima in regions with
high fitness values but which does not exploit only one optimal solution. Aside
the linear weighted aggregation, we employ a Pareto optimal selection criterion.
The implemented strategy is derived from the crowded tournament selection
suggested in the NSGA-II algorithm [15].

3 Experimental Results

The following experiments target the study of the basic characteristic of the
novelty guided ES. The proposed evolution strategy is compared to three existing
strategies, namely standard ES, dynamic niche sharing and open-ended ES.

3.1 Characteristics of the novelty guided evolution strategy

In the first experiments, the behavior of the introduced novelty guided ES is
studied on a two dimensional multi-modal test function in which the design
vector covers two variables, xt

i = [xt
1i, xt

2i]
T or in short x = [x1, x2]T . The test

function is constructed by a superposition of NG = 6 2D Gauss functions and is
mathematically defined as follows:

f(x) = −
NG∑
j=1

e−
1
2 (x−µj)Σ

−1·(x−µj)+1, (3)

where µj is the center and Σ−1 the covariance matrix of the Gauss kernel. Each
center µj of the different Gauss functions defines approximately the location of
one local optima. The Gauss kernels are inverted, simply to transfer the task
from a maximization into a minimization task. The resulting quality function
is depicted in Fig. 3 a). All runs were calculated for N = 500 generations with
a parent population size of µ = 20 and an offspring population size of λ =
100. The standard evolution strategy is a (µ, λ) strategy with global step size
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a) b)

c) d)

e) f)

Fig. 3. a) the test function with 6 optima, b) results of the standard ES, c) niching
with optimal niching radius, d) niching with an improper niching radius, e) open-ended
evolution, targeting the generation of novel designs only and f) the results of the novelty
guided ES.

control. Recombination as well as mutation are applied to produce the offspring
population. For the niching algorithm a niching radius ρ is defined according to
Shir [3]. It has to be noted that the calculation of an adequate niching radius
requires knowledge about the number of optima, which is usually not available.
The world model that is needed for the calculation of the novelty metric is
realized using a multi-layer network with 10 hidden neurons and with sigmoidal
activation function. The data of the offspring population from 5 generations
is used for the training of the network weights. The dominance based ranking
with crowding distance is used as selection operator in the novelty guided ES.
The results of the different experiments are summarized in Fig. 3. For each
experiment, the contour plot of the fitness landscape together with the generated
solutions is shown. The fill color of the dots indicate the generation number
at which the solution has been produced. Dark indicates early and bright late
generations. Fig 3 b) shows the result of a standard ES. The algorithm converges
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Fig. 4. Progress of quality and novelty in novelty guided ES. The selection of solutions
with high degree of novelty allows to escape from optimal solutions.

directly (within about 20 generations) into the next local optimum. After that
the algorithm is converged. Fig. 3 c) and d) present the result of the dynamic
niching algorithm. While in c) an optimal niching radius has been used, in d) the
niching radius is over-estimated (twice the optimal radius) what easily happens
if no knowledge about the number of optima is given. In the case of a correct
estimation of the niching radius the individuals distribute well between all the
optima. If the niching radius is wrong or the population size too small, the niching
algorithm might get stuck in a limited number of optimal solutions. In Fig. 3 e)
results of a novelty driven evolutionary search are shown in which the search is
only based on the novelty criterion neglecting information given by the quality
function (open ended evolution). The algorithm does not exploit one of the six
optima and diverges towards the boundaries of the search space as expected.
Thus, a pure novelty driven optimization is quite inefficient and should be used
for the exploration of the search space only. As can be seen from Fig. 3 f) the
proposed novelty guided ES is able to locate all optimal solutions. Compared
to the niching algorithm the optima are not exploited in parallel but rather
sequentially. This sequential exploitation of the optima comes from the interplay
between the two objectives, the quality function and the novelty metric. Fig. 4
shows the development of the quality and novelty value of the best offspring in
the first 50 generations. In early generations the algorithm starts to exploit a
nearby optimal solution exactly as it is done in the standard ES. After about 10
generations the influence of the novelty measure on the selection increases. Novel
but worse solutions are selected. This allows the optimizer to escape from one
optimum and exploit another one. This interplay between quality and novelty
repeats until the algorithm is stopped. Since, a local model is used here, the
algorithm visits optima multiple times due to a limited memory of the model.

3.2 Comparative study on a high dimensional test function

To carry out experiments on higher dimensional quality functions the multivari-
ate Gauss kernel is used for the construction of an n dimensional multi-modal
test function. Instead of the superposition of the Gauss kernels the max opera-
tor is applied to prevent the shift of the optima from the Gauss center. The n
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a) b)

Fig. 5. Illustration of the minimal distance of the produced individuals to each of the
20 optimal solutions (x-axis). Only the closest solutions are shown. a) shows the results
on the 5 dimensional and b) on the 10 dimensional fitness landscape.

dimensional test function is defined as follows:

f(x) = − max
j∈[1...NG]

{e− 1
2 (x−µj)Σ

−1·(x−µj)+1}. (4)

An n = 5 and an n = 10 dimensional variant of f(x) have been constructed. The
number of Gauss kernels and thus the number of optima is set to NG = 20. The
Gauss centers are distributed randomly in the search space but remain the same
for the different strategies. The minimal distance of all generated individuals
to each optima is used to evaluate the strategies. If the distance runs below
a threshold of τ = 1.0, an optima is classified as being identified. The novelty
guided ES has been compared to niching and standard ES. Since, the open-ended
ES does not tend to exploit any of the optimal solutions it is skipped from
the comparison in these experiments. Related to the preceding experimental
setup, the number of hidden neurons of the world model has been increased
to 25. For the niching algorithm, the correct number of optima has been used
to estimate the radius ρ. Each optimization has been performed 5 times with
different random seeds in order to retrieve a first idea on the reliability of the
different strategies.

The results of the experiments are summarized in Fig. 5 and Tab. 1. Fig. 5
visualizes the evaluation of a typical run a) on the 5 and b) on the 10 dimen-
sional quality function. The index of the optima is mapped onto the x-axis while
the y-axis shows the distance of the closest solution to each optima. The dotted
line indicates the threshold applied for counting the number of approached local
optimal solutions. In Tab. 1 the mean g and the variance σ2 of the number of ap-

a)

ES g σ2

Standard ES 1.4 0.3

Niching 2.2 0.7

Novelty Guided ES 5.6 1.3

b)

ES g σ2

Standard ES 1.0 0.0

Niching 1.0 0.0

Novelty Guided ES 1.2 0.2

Table 1. Summary of the results on the a) 5 and b) 10 dimensional multi-modal Gauss
function. g, σ2 are mean and variance of the number of approached optimal solutions.
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proached optimal solutions over 5 runs is summarized. Again, it can be observed
that the standard ES exploits one single optimal solution only independent of
the search space dimension. The distance to the remaining 19 optima remains
large. Concerning the number of approached optima, the novelty guided ES out-
performes niching on the 5 dimensional test function. The proposed strategy
approaches from minimal 4 to about 7 out of 20 optima, while niching reaches
only about 3 optima at maximum. As can be seen from Tab. 1 b), none of the
strategies is performing well on the 10 dimensional test function. However, the
novelty guided ES is at least able to approach 2 optima in one out of the five
optimization runs.

4 Discussion

The experiments on the test functions show the general feasibility of the pro-
posed method. Evolutionary Strategies allow, combined with the concept of nov-
elty measures, the determination of multiple optima on a multi-modal quality
function. In contrast to other algorithms, novelty guided evolution strategies al-
low a sequential process of alternating phases of exploration and exploitation
on multi-modal quality functions in which the exploration is guided by novelty
or interestingness measures instead of randomly sampling the search space. In
the presented initial experiments the additional criteria, which is introduced to
guide the search to alternative solutions, is based on a novelty measure, purely
relying on the prediction error of a model. The generation of purely novel solu-
tions is usually a simple task solved easily by e.g. generating sufficiently large
mutations in a unconstrained search space. Preferably, the new direction should
be an estimation of the most likely area for new optima or at least an area from
which to sample in order to increase the chance to determine a new optima. In
this sense the utilization of a novelty measure cannot be the final answer which
was already stated in [12]. In order to determine useful search directions, mea-
sures of interestingness are required which guide the search towards areas which
are interesting in the sense that knowledge about the design space is generated
in order to finally determine areas with high probability of high fitness values.
Therefore the evaluation of measures based on the learning rate of a model
will be the next step to tackle more realistic problems for example in the field
of aerodynamic design in which areas of high noise or even chaotic parameter
regimes are expected. In general, models of the quality functions are necessary to
determine the novelty or the interestingness of design areas. Assuming that ap-
proximation models are generally more simple than the original quality function
all approximation models can only realize local models, valid in a limited area
of the design space. Therefore a second step in our future efforts in the develop-
ment of the algorithm is the integration and the adaptation of model ensembles
in which each single model represent a different area of the global search space.
Utilizing model ensembles also avoids the oscillation of the optimization process
between to optima which can be observed in the presented results. The reason
is that the sampling of one optimum results in an adaptation of the model in
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a way that old information in the model is removed. Keeping an ensemble of
models allows us to avoid the overwriting of former acquired information of the
global search space. In this sense the presented work has to be seen as a starting
point for the research of novelty guided evolution strategies.
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