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Learning Flexible Full Body Kinematics for
Humanoid Tool Use

Matthias Rolf, Jochen J. Steil and Michael Gienger

Abstract—We show that inverse kinematics of different tools
can be efficiently learned with a single recurrent neural network.
Our model exploits all upper body degrees of freedom of the
Honda’s humanoid robot research platform. Both hands are
controlled at the same time with parametrized tool geometry.
We show that generalization both in space as well as across tools
is possible from very few training data. The network even permits
extrapolation beyond the training data. For training we use
an efficient online scheme for recurrent reservoir networks uti-
lizing supervised backpropagation-decorrelation (BPDC) output
adaptation and an unsupervised intrinsic plasticity (IP) reservoir
optimization.

Index Terms—Full Body Kinematics, Neural Networks, Tool
Use, Humanoid Robots

I. INTRODUCTION

The flexibility in which humans use and extend their motor
repertoire is still outstanding compared to those of humanoid
robots. Humans can control their hands with enormous flex-
ibility in order to manipulate objects, for instance by using
different fingers or the complete palm to manipulate objects.
While using tools humans can even control and utilize e.g. the
tip of a screwdriver. A remarkable example of tool control is
the use of laser pointers, where a held object is used to control
the position of a light point on a wall.

The learning of tool use has been increasingly studied in
robotics research over the last decade. Behavioral aspects have
been investigated by Stoytchev et al. under the notion of tool
affordances [1], [2]. Also the important problem of visual
recognition and control of tool-tip points has been subject to
several studies [3], [4]. However, it is hardly understood how
humans are able to voluntary control not only one particular
tool, but many different tools in a flexible way – and how
robots can do so. In this study, we focus on the kinematics
perspective of flexible tool control: how does a robot need to
coordinate its body in order to use and control tools? Different
tools, as well as the use of different fingers, must each be
described by different kinematic functions. When, for instance,
a button is pressed with the tip of the index finger, this requires
a joint configuration different from pressing it with the thumb
or even hitting it with a tool. Each of these scenarios must be
described with a separate inverse kinematic function in order
to control the actual position of the effector.

In the forward kinematic case, this scenario can be analyti-
cally described by a variable geometric offset from the robots
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Fig. 1: Honda’s humanoid robot with a tool in the right hand.
The position of the tool-tip is modeled as an offset from the
wrist, that is specified in wrist-centered coordinates.

wrist (see Fig. 1). This offset describes where the current
tool-tip is located in relation to the wrist. Each tool has a
specific offset due to its geometry and length, and how it
is held in hand. Within that notion, also the own finger is
seen as “tool”, as the finger tip has a specific geometric offset
from the wrist. Although feedback-based control laws can be
formulated based on the forward kinematics equation, a direct
inverse function is not trivially to get.

A. Related Machine Learning Approaches

The learning of such motor skills has been identified as
one of the key ingredients to intelligent behavior in both
robotics and computational neuroscience [5]. Machine learning
techniques have been very successfully applied to specific
inverse kinematics problems [6]. Several approaches have
been used in order to increase flexibility in such learning
systems. Under the notion of extendable or adaptive body
schemata, several studies investigated how motor and control
knowledge can be re-learned for the case of tool use [7],
[8]. This approach does justice to the fact that tools are
apparently “integrated” into human body schemata [9]. An
obvious drawback of the re-learning approach is that only one
kinematic function can be represented at a time. Therefore
even the own body model is forgotten once a tool is learned.
Representing different kinematic functions becomes possible
with modular approaches. The MOSAIC model for instance
has been discussed as a model for human cerebellar motor
learning [10]. Each single module can represent the kinematic
function of a particular finger or tool. Alternatively, it was
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proposed to use parametric models. One module is responsible
for several mappings, a particular mapping is selected by
parameters, which are externally given to the system. Such
models have been successfully applied to the problem of
autonomous behavior generation [11]. Parametrized models
provide a straight forward way to generalization. New pa-
rameters can be fed to the network in order to generate new
behavior [12].

B. Approach

We apply this parametrization approach to the problem of
tool kinematics. We train a single neural network to represent
inverse kinematics. The geometry of the tool is parametrized,
such that different tool-tip offsets can be fed into the network,
invoking the corresponding inverse kinematic function. In
order to learn and represent the parametrized kinematics, we
use a recurrent neural network model, developed under the
notion of reservoir computing [13], [14]. It has been argued
that this learning architecture can serve as model for learning
in the human cerebellum [15]. Physiologic evidence shows that
inverse models of the body [16] and even tool control [17] are
located and also learned in cerebellum. Hence, our model is
biologically highly plausible.

In contrast to local learning approaches [6] reservoir com-
puting provides a rather holistic approach to tool and full body
kinematics. This approach has been shown previously to allow
excellent generalization across different target positions of the
effector [18]. The holistic scheme is very efficient, both in
terms of samples needed for the training and efficiency of com-
putation. In this paper we show that, using the parametrization
approach, also generalization across different tools is possible,
whereas the generalization in space is maintaned. As platform,
we use the Honda’s full body humanoid robot [19]. We apply
bi-manual target motions with variable tools, utilizing whole
body motion.

II. KINEMATIC PROBLEM

Forward and inverse kinematics describe the relation be-
tween the joint angles ~q ∈ Rn of a robot and the corresponding
position of the effector ~e ∈ Rm, e.g. the position of a tool-
tip. We denote the forward kinematic function with ~e = F (~q),
which uniquely determines the tool-tip position given the joint
angles. When the effector must be moved to some desired
position, the inverse function F−1 is needed. However, that
function is not unique in the case of redundancy (n > m)
which is the standard case for humanoid robots.

On the humanoid robot, we currently control n=15 degrees
of freedom. Five joint angles are controlled in each arm: three
rotational joints in the shoulder, one in the ellbow, and the
rotation of the hand around the forearm axis. Four virtual joints
are controlled in the hip: its orientation around all three spatial
axes and the height over ground. The hip degrees of freedom
are realized by means of leg motion [20]. As additional (not
task-relevant) degree of freedom, the head-pan direction is
controlled. The target positions are the 3D tool-tip positions
for both hands ~el,r = ~e ∈ R6 in world coordinates. We use
the wrist positions ~wl,r = ~w ∈ R6 (see Fig. 1) as reference

(a) The same target position is applied for different tool-tip offsets (red).

(b) The offset (red) is kept constant, while the tool-tip is moved along a straight
line (blue). The position of the wrist point during that motion in green.

Fig. 2: Examples of humanoid and tool kinematics.

vector for the tool-tip position. We denote the forward wrist
kinematics by: ~w = F ~w(~q). The tool-tip position is defined
by adding a tool-tip offset ~ol,r = ~o ∈ R6 in wrist centered
coordinates W . Since the orientation of the wrist in space
changes when the limbs are moving, also the orientation of
the offset vector ~o in world coordinates changes. We denote
the orientation transformation from wrist to world coordinates
by T 0

W (~q). The forward kinematics equation for the tool-tip
position is:

~e = F~e(~q, ~o) = F ~w(~q) + T 0
W (~q)·~o (1)

The offset ~o now acts as parameter to describe various forward
kinematic functions.

Interesting about the humanoid’s kinematics, and a chal-
lenge for the learning, is that both arms are coupled by the
upper body motion. If the hip is moved, both arms change their
position in space. If one arm shall be moved utilizing the hip
degrees of freedom, the other arm also changes its position,
except the upper body motion is actively compensated by the
other arm to maintain its position. If upper body motion is
utilized, no separate kinematic function for left and right arm
exist. They must be considered together. The additional re-
dundancy allows smoother movements and a better avoidance
of joint limits due to more flexibility in the system. Also, the
upper body widens the total range of operation for the hands.
Targets that are out of range without upper body motion can
be reached, for instance, by leaning forward or backward.

Figures 2a and 2b show several ground truth examples of
the inverse kinematics. Figure 2a shows an overlay of three
different tool-tip offsets (see Table II, right), while the tool-tip
position in world coordinates is identical. This corresponds to
fulfilling the same task (e.g. pressing a button) with various
tool or also fingers. When the tool is e.g. elongated along the
forearm-/x-axis, hand and arm must be positioned backwards
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to compensate the offset. Due to the kinematic coupling also
the upper body is moved which in turn requires slightly
different postures for the left arm. In Figure 2b the tool-tip
offset is constant, and a linear movement of the tool-tip from
right to left is generated. As the posture changes, also the
orientation of the offset vector in world coordinates changes,
which requires a highly non-linear trajectory of the wrist in
space.

III. LEARNING ARCHITECTURE

The whole body inverse kinematics is learned by a re-
current neural network. It receives subsequent target tool-tip
coordinates for both hands and the current tool-tip offsets as
input u(t) = (~o(t), ~e(t)) ∈ R12. As output, the network shall
produce the set of joint angles/control variables ~q(t), such
that the target position is reached (F~e(~q(t), ~o(t)) = ~e(t)).
The network target output is denoted with d(t) = ~q(t)∈R15.
The actual network outputs are denoted with ~̂q(t). Therefore,
the network is trained to approximate an inverse kinematic
function F̂−1(~o(t), ~e(t)) = ~̂q(t). Throughout our experiments,
the offset vector ~o is assumed to be known and acts as a
parameter for the estimated inverse kinematics.

The network consists of 12 input-, 15 output- and 500
hidden “reservoir”-neurons. Output nodes receive the neuron
activities from both input and reservoir (see Fig. 3). The
reservoir receives the values of input and – in a recurrent loop
– from the output nodes. The input is fully connected to the
output, while the remaining connections are sparse with only
20% of the possible neuron-to-neuron connections present.
The reservoir is internally connected with sparsity 2%. As
shown in [21], the recurrent architecture of the reservoir im-
plements attractor dynamics, which enables efficient learning
of static mappings like inverse kinematics with a dynamical
system.

Formally, we consider the recurrent reservoir dynamics

x(k+1) = Wnety(k) + Winu(k), (2)
y(k) = f(x(k)), (3)

where k is the discrete time step and xi, i = 1 . . . N are
the neural activations. y = f(x) is the vector of neuron
activities obtained by applying parametrized Fermi functions
component-wise to the vector x:

yi = fi(xi, ai, bi) = (1 + exp(−aixi−bi))−1. (4)

The inputs are fed into the network with the weight matrix
Win, while Wnet denotes the weights between neurons inside
the network.

The R-dimensional vector u(k) = (u1(k), . . . , uR(k))T

denotes the inputs at time step k. We assume that the neurons
are enumerated such that the first O = 15 neuron activations
xi, i = 1 . . . O serve as output values. In our setting we can
thus write

x(k) =
(
q̂(k)T , xO+1(k) . . . xN (k)

)T
(5)

Our setup involves two learning rules that work in parallel.
Connections to the output nodes are adapted with the super-
vised Backpropagation-Decorrelation (BPDC) rule [22] (see

Connection Sparseness Init. range
Input-Reservoir 0.2 0.1
Input-Output 1.0 0.1
Reservoir-Reservoir 0.02 0.02
Reservoir-Output 0.2 0.1
Output-Reservoir 0.2 0.1

BPDC-Learning
Rate-Start 0.25
Rate-End 0.001
ε 0.002

IP-Learning
Rate-Start 0.025
Rate-End 0.0001
µ 0.1

TABLE I: Network structure and learning parameters

1x 4x

4x 1x

Left Hand Right Hand

Turning Left

Turning Right

Fig. 4: Training pattern used for the training: a combination
of concurrent circular movements. Different speeds of the
movements provide all necessary combinations of the spatial
axes.

Fig. 3). All other connections are randomly initialized from a
uniform distribution (see Tab. I) and stay fixed. Additionally,
an unsupervised Intrinsic Plasticity (IP) rule [23], [14] is ap-
plied in the reservoir neurons in order to optimize information
transmission.

IV. EXPERIMENTS

In order to explore the kinematics and to acquire ground
truth training data, we use the analytic feedback controller
[24] based on the effector Jacobian. The goal of learning is
not to replicate the velocity mapping that is implemented by
the analytic controller. Rather, we learn a pure feedforward
control that solves the inverse kinematics directly on position-
level. Thus, the joint angles necessary to realize a desired tool-
tip position are immediately available.

To acquire data, we first choose a target motion of the tool-
tip positions ~e(t), t = 1, ..., T ′. We train on one temporal
sequence, which can have arbitrary length and form. We
provide this trajectory as target to the analytic controller, that
applies it on the real robot with a rate of 5Hz for a certain
effector offset ~oi. During that execution, the robots joint angles
~qi(t) are memorized at each t. This recording yields a set of
training data ui(t) = (~oi;~e(t)) and di(t) =~qi(t) for the offset
~oi.

In the current setup, we apply tool motions within a fixed
vertical plane in front of the robot. Our training pattern is a
combination of circular movements with different speeds and
directions within that plane (see Figure 4). The motion roughly
captures all top/down and left/right combinations of left and
right tool-tip and has a total length of T ′=256 samples. The
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∈ℝ15 Joint Angles
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Fig. 3: Target positions of both tool-tips and the tool-tip offsets are fed into the recurrent neural network. The network is
trained towards an inverse kinematics solution by BPDC adaption of output weights and an Intrinsic Plasticity (IP) rule within
the reservoir. The estimated joint angles are applied on robot in order to follow a target movement.

Training offsets
x y z

Default 0.05 0 0
x-off 0.1 0 0
y-off 0.05 0.05 0
z-off 0.05 0 0.05

Test offsets
x y z

x-test 0.15 0 0
y-test 0.05 0.1 0
z-test 0.05 0 0.1

TABLE II: Tool-tip offsets of the right hand. The default offset
vector is 0.05m straight from the wrist point, in the center of
the palm. Each one additional training offset is chosen 0.05m
distant from it along each axis. The offsets used for testing
are 5cm more distant (see Figures 2a, 2b, 6a and 6b). The left
tool-tip’s offset is fixed at (0.05; 0; 0).

circles have a radius of each 10cm, the center is placed 75cm
over ground, and +25cm and −25cm distant from the body
axis to the left and right respectively.

Besides this sampling of target tool-tip positions in space,
different tool-tip offsets ~o need to be explored. We use four
different offsets for the training, which are listed in Table II.
For this experiment we only vary the offset of the right
hand. The left hand receives a constant offset. For the three-
dimensional offset space of the right hand, four offset samples
are notably the absolute minimum of samples in order to span
the full space. The sample offsets are very close (5cm) to the
hand center point, such that they basically incorporate the size
of the hand itself.

We require the analytic controller to produce the same
circular tool-tip trajectory ~e(t) for each of the offsets. Due to
the different kinematic structure, the recorded joint angles ~qi(t)
differ for each offset ~oi. As overall result of this exploration
procedure, we gain the set of network inputs u(t) and target
outputs d(t) simply by concatenating the data sets of the four
different tool-tip offsets in time. For all offsets together, the
training data has T =1024 samples.

A. Training

For systematic evaluation, the training procedure is orga-
nized in epochs and cycles, where a cycle is one full temporal
presentation of the training input pattern u(t). In each epoch
we first re-initialize the network-state randomly and present
one cycle to the network without training. Subsequently we

Fig. 5: Top: Result trajectories for circle-targets for the right
tool-tip and a fixed target position for the left tool-tip. The
circle radius is scaled up iteratively. Bottom: Tracking error
dependent on circle radius, shown for all four training offsets.

show the complete pattern five times with enabled learning:
after the presentation of each new target position u(t), the
output connections are adapted towards the target output d(t)
using the BPDC update rule. The reservoir neurons are updated
with the IP rule. During these epochs, the learning rates of
both BPDC and IP are continuously decreased following an
exponential function from a defined start to a defined end value
(see Table I). This scheduling is not strictly necessary, but
improves the performance.

B. Spatial Generalization

Previous studies already showed that a high degree of
generalization and even extrapolation capabilities to unseen
target coordinates is possible from few data with the proposed
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recurrent network scheme [18], [21]. Here we can show that
this generalization is preserved with the additional difficulty
of a parametrized and variable tool-tip offset. Figure 5 (top)
shows the spatial generalization for the trained tool-tip offset
x-off. The target tool-tip movement is a circle for the right
hand, whereas the left hand receives a fixed target coordinate.
This fixed target does in fact not ease the task for the neural
network. This behavior is completely untrained and requires
the network to compensate upper body movements with the
left arm to maintain the position. Step by step the radius of
the right hand’s circle is increased up to 20cm, which is twice
the radius contained in the training data.

A quantitative evaluation is shown in Fig. 5 (bottom). For
the scaled circular movements, the tracking error is plotted
against the radius of the circle. To obtain an interpretable and
realistic error measure, we do not directly compare against
ground truth joint-values. Instead we measure the tool-tip
positions that are result of the estimated joint angles and
compare it to the desired tool-tip position. The measured error
is then the mean euclidean distance || · || between desired and
actual tool-tip positions in meters:

err =
1
2

T∑
t=1

(
||F e

l (q̂(t))−el(t)||+ ||F e
r (q̂(t))−er(t)||

)
(6)

The plot shows the radius-scaling results for all four tool-tip
offsets that were part of the training. The error is rather con-
stant and very low up to a circle radius of 15cm. Afterwards
the error increases but still remains very moderate. Even for
20cm radius, where the network has to extrapolate along twice
the training radius, the error is clearly below 4cm which is
remarkable for the case of open loop control.

C. Tool Generalization

The main point of the present study is the flexibility
introduced by a parametrized tool-tip offset. The results pre-
sented in the previous section show that the inverse kinematic
functions for several trained tools can be stored within a single
neural network. No re-learning is necessary. However, it is
also crucial to deal with different offsets than those present
in the training. In the training, only four different tool-tip
offsets were presented to the network, spanning the three
dimensional offset space for the right hand. Here we show that
generalization to untrained offsets is possible with our model
from such few samples. Even extrapolation widely beyond the
training samples is possible.

Figure 6a repeats the examples from Fig. 2a, but with
the trained neural network instead of the analytic feedback
controller. The offsets have twice the distance from the wrist
than those present in the training (see Tab. II). Nevertheless
the network is able to extrapolate, such that the target tool-tip
position is reached very accurately. For instance, the network
has learned to put the arm back for a long tool on the x-axis.
Figure 6b shows the execution of a linear target motion with
extrapolated tool-tip offset (compare to Fig. 2b). Although
the resulting trajectory shows some curvature, the kinematic
solution is remarkably accurate. The stabilization of the left
hand is almost perfect in this case.

(a) The same target position is applied for different tool-tip offsets (red).

(b) The offset (red) is kept constant, while the tool-tip shall be moved along
a straight line (blue). The position of the wrist point during that motion in
green. The offset for the right hand is z-test = (0.05, 0.0, 0.1).

Fig. 6: Extrapolation performance of a trained neural network
for different tool-tip offsets.

Figure 7 shows an experiment in which we keep the target
motion constant, but scale the tool-tip offset. The target motion
is the same circle as in the spatial generalization experiment,
but fixed to radius 10cm. For the right hand, we systematically
shift the tool-tip offset away from the default point:

~oright = (0.5; 0.0; 0.0) + length · ∆
|∆|

We tested along four direction: pure shift along x (∆ =
(1; 0; 0)), pure along y (∆ = (0; 1; 0)), pure along z (∆ =
(0; 0; 1)), and mixed (∆ = ( 1

3 ; 1
3 ; 1

3 )). Each direction is tested
up to a length of 15cm, where only 5cm distance from the
Default point were present in the training data. Figure 7
shows the tracking error (see equ. 6) depending on the offset
length. The network yields a very good kinematic solution up
to a scaling length of 10cm, which displays a high degree of
generalization also across tools.

V. DISCUSSION AND OUTLOOK

The experiments show that our methodology allows to learn
kinematics of different tools within a single neural network.
The network can learn to coordinate the whole body for
doing so. The network’s ability to generalize is remarkable.
One smooth sample motion, consisting out of 256 closely
connected samples, is sufficient to learn the whole body
kinematics for a given tool. To generalize across tools, we
trained four different offsets for the right hand, which is the
minimum to span the 3D offset space at all. In both cases
(spatial and tool generalization) the network gives accurate
results up to twice the amplitude of the training data.

As the complete problem is learned and represented within
a single network, no re-learning is necessary to use a tool
– and thus no forgetting of the own body model. Contrary
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Fig. 7: Top: Circular target for the right hand with untrained
offset y-test. Bottom: Tracking error of the circle, depen-
dent on the length of the tool-tip offset.

to modular approaches, expertice and computational resources
are holistically distributed in the network and can be efficiently
used for all different tools. Undoubtedly, the necessity for
different modules will arise at a certain degree of complexity.
Imamizu et al. could for instance show separate modules in the
human cerebellum when subjects were faced with qualitatively
different control problems [17], [25]. However, we could show
empirically that this point of complexity is not yet reached for
quantitative differences like varying tool-tip offsets.

Evenmore, the generalization from offsets very close to the
hand to more distant offsets indicates that the control of an
external tool is possible once the coordination of the own, full
body is mastered in a flexible manner.

A. Outlook

In the present study we learned a feedforward control. Such
feedforward control is very usefull in the sense that it allows
an immediate estimate of where to place the joints and is not
subject to the stability issues of feedback control. However,
the integration of an additional feedback control loop will be
subject to further research in order to implement a fine-tuning
of the kinematic solution and improve the accuracy. Hybrid
control architectures have e.g. been studied in feedback-error
learning [26] or more recently in [27].

Currently, we generate training data with an existing an-
alytic controller. This prerequisite will be relaxed in further
studies. In fully autonomous motor learning scenarios, gen-
eralization has been shown to be crucially important [28].
Therefore we are convinced that the current learning archi-
tecture will also be a useful method for tackling such further
questions.
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