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Abstract. We study a sparse coding learning algorithm that allows for
a simultaneous learning of the data sparseness and the basis functions.
The algorithm is derived based on a generative model with binary latent
variables instead of continuous-valued latents as used in classical sparse
coding. We apply a novel approach to perform maximum likelihood pa-
rameter estimation that allows for an efficient estimation of all model
parameters. The approach is a new form of variational EM that uses
truncated sums instead of factored approximations to the intractable pos-
terior distributions. In contrast to almost all previous versions of sparse
coding, the resulting learning algorithm allows for an estimation of the
optimal degree of sparseness along with an estimation of the optimal
basis functions. We can thus monitor the time-course of the data sparse-
ness during the learning of basis functions. In numerical experiments on
artificial data we show that the algorithm reliably extracts the true un-
derlying basis functions along with noise level and data sparseness. In
applications to natural images we obtain Gabor-like basis functions along
with a sparseness estimate. If large numbers of latent variables are used,
the obtained basis functions take on properties of simple cell receptive
fields that classical sparse coding or ICA-approaches do not reproduce.

Proc. LVA/ICA 2010, in press.

1 Introduction

The mammalian brain encodes sensory stimuli by distributed activities across
neural populations. Different neurons or different populations of neurons are
hereby found to code for different aspects of a presented stimulus. Such dis-
tributed or factorial codes can (A) reliably encode large numbers of stimuli
using relatively few computational elements and (B) they can potentially make
use of the representation of individual components for further processing. In Ma-
chine Learning, factorial codes are closely associated with what is often called
multiple-causes models. That is, they are related to probabilistic generative mod-
els which assume a data point to be generated by a combination of different
hidden causes or hidden variables. Two very influencial models, that can be
regarded as such multiple-causes models, are independent component analysis
(ICA) [1] and sparse coding (SC) [2]. Indeed, since it was first suggested [2]
sparse coding has become the standard model to explain the response properties
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of cortical simple cells. In its generative formulation, SC optimizes the param-
eters of a generative model with a sparse prior p(s |λ) and a Gaussian noise
model p(y | s,W, σ). In the last two decades, many different variants of the basic
SC model have been introduced and discussed in the literature. These variants
focused on different ways to train the parameters of the model (e.g., MAP esti-
mates [2], sampling approaches [3] and many more). However, almost none of the
approaches studied in the past estimated the data sparseness. This highlights
that learning the sparseness seems a much more challenging task than learning
the basis functions although usually just a single sparseness parameter has to
be estimated. The learning algorithm studied in this paper will be shown to
successfully estimate the sparseness. In applications to natural images we, fur-
thermore, show that the algorithm reproduces simple cell properties that have
only recently been observed [4].

2 Sparse Coding with Binary Hidden Variables

Consider a set of N independent data points {y (n)}n=1,...,N where y (n) ∈ RD
(D is the number of observed variables). For these data the studied learning
algorithm seeks parameters Θ = (W,σ, π) that maximize the data likelihood

L =
∏N
n=1 p(y

(n) |Θ) under the generative model:

p(s|π) =
∏H
h=1 π

sh
(
1− π

)1−sh , p(y | s, W, σ) = N (y; Ws, σ21) , (1)

where W ∈ RD×H and H denotes the number of hidden variables sh. For small
values of π the latent variables are sparsely active. The basis functions W h =
(W1h, . . . ,WDh)T combine linearly and (given the latents) each observed variable
yd is independently and identically drawn from a Gaussian distribution with
variance σ2. The only difference to the generative model of classical sparse coding
is thus the choice of binary latent variables (distributed according to a Bernoulli
distribution) instead of latents with continuous values.

To optimize the parameters Θ, we use a variational EM approach (see, e.g.,
[5]). That is, instead of maximizing the likelihood directly we maximize the
free-energy:

F(q,Θ)=

N∑
n=1

[∑
s

q(n)(s ;Θold)
[
log
(
p(y (n) | s,W, σ)

)
+ log

(
p(s |π)

)] ]
+H(q) ,

(2)
where q(n)(s ;Θold) is an approximation to the exact posterior and H(q) de-
notes the Shannon entropy. In the variational EM scheme F(q,Θ) is maximized
alternately with respect to q in the E-step (while Θ is kept fixed) and with re-
spect to Θ in the M-step (while q is kept fixed). Parameter update rules (M-step
equations) are obtained by setting the derivatives of (2) w.r.t. the different pa-
rameters to zero. The obtained update rules contain expectation values such as
〈s〉q(n) and

〈
ssT

〉
q(n) which are intractable for large H if q(n) is chosen to be the
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exact posterior (q(n)(s ;Θold) = p(s |y (n), Θold)). To derive an efficient learn-
ing algorithm, our approach approximates the intractable expectation values by
truncating the sums over the hidden space of s:

〈g(s)〉q(n) =

∑
s

p(s,y (n) |Θold) g(s)∑
∼
s

p(
∼
s ,y (n) |Θold)

≈

∑
s∈Kn

p(s,y (n) |Θold) g(s)∑
∼
s ∈Kn

p(
∼
s ,y (n) |Θold)

, (3)

where g(s) is a function of s (and potentially the parameters), and where Kn
is a small subset of the hidden space. Eqn. 3 represents a good approximation
if the set Kn contains most of the posterior probability mass. The approach
will be referred to as Expectation Truncation and can be derived as a novel
form of a variational EM approach (compare [6]). For other generative models
similar truncation approaches have successfully been used [7, 8]. For the learning
algorithm, Kn in (3) is chosen to contain hidden states s with at most γ active
causes

∑
h sh ≤ γ. Furthermore, we only consider the combinatorics of H ′ ≥ γ

hidden variables that are likely to have contributed to generating a given data
point y (n). More formally we define:

Kn = {s |
(∑

j sj ≤ γ and ∀i 6∈ I : si = 0
)

or
∑
j sj ≤ 1}, (4)

where the index set I contains those latent indices h with the H ′ largest values
of a selection function Sh(y (n)). This function is given by:

Sh(y (n)) =
WT

h

||W h|| y
(n), with ||W h|| =

√∑D
d=1(Wdh)2 . (5)

A large value of Sh(y (n)) signals a high likelihood that y (n) contains the basis
function W h as a component. The last term in (4) assures that all states s
with just one non-zero entry are also evaluated. In numerical experiments on
ground-truth data we can verify that for most data points the approach (3) with
(4) and (5) indeed approximates the true expectation values with high accuracy.
By applying this approximation, exact EM (which scales exponentially with
H) is altered to an algorithm which scales polynomial with H ′ (approximately
O
(
H ′

γ)
) and linear with H. Note, however, that in general larger H also require

larger amounts of data points.
With the tractable approximations for the expectation values 〈g(s)〉q(n) com-

puted with (3) to (5) the update equations for W and σ are given by:

W new =

(∑
n∈M

y (n) 〈s 〉Tqn

) ( ∑
n′∈M

〈
s sT

〉
qn′

)−1
(6)

σnew =

√
1

|M| D
∑
n∈M

〈∣∣∣∣y (n) −W s
∣∣∣∣2〉

qn
(7)

Note that we do not sum over all data points y (n) but only over those in a subset
M (note that |M| is the number of elements in M). The subset contains those
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data points for which (3) finally represents a good approximation. It is defined to
contain the N cut data points with highest values

∑
∼
s ∈Kn

p(
∼
s ,y (n) |Θold), i.e.,

with the highest values for the denominator in (3). N cut is hereby the expected
number of data points that have been generated by states with less or equal γ
non-zero entries: N cut = N

∑
s, |s|≤γ p(s |π) = N

∑γ
γ ′=0

(
H
γ ′

)
πγ
′
(1− π)H−γ

′
.

Update equations (6) and (7) were obtained by setting the derivatives of
Eqn. 2 (w.r.t. W and σ) to zero. Similarly, we can derive the update equation
for π. However, as the approximation only considers states s with a maximum
of γ non-zero entries, the update has to correct for an underestimation of π. If
such a correction is taken into account, we obtain the update rule:

πnew =
A(π)π

B(π)

1

|M|
∑
n∈M

〈|s|〉qn with |s| =
H∑
h=1

sh and (8)

A(π) =

γ∑
γ′=0

(
H

γ′

)
πγ′ (1− π)H−γ′ and B(π) =

γ∑
γ′=0

γ′
(
H

γ′

)
πγ′ (1− π)H−γ′ .

Note that if we allow all possible states (i.e., γ = H), the correction factor A(π)π
B(π)

in (8) is equal to one over H and the setM becomes equal to the set of all data
points (because N cut = N). Equation (8) then falls back to the exact EM update
rule that can canonically be derived by setting the derivative of (2) w.r.t. π to
zero (using the exact posterior). Also the update equations (6) and (7) fall back
to their canonical form for γ = H. By choosing a γ between one and H we can
thus choose the accuracy of the used approximation. The higher the value of γ
the more accurate is the approximation but the larger are also the computational
costs. For intermediate values of γ we can obtain very good approximations with
small computational costs.

3 Numerical Experiments

The update equations (6), (7), and (8) together with approximation (3) define
a learning algorithm that optimizes the full set of parameters of the generative
model (1). In order to numerically evaluate the algorithm we ran several tests
on artificial and natural data.

Linear bars test. We applied the algorithm to artificial bars data as shown
in Fig. 1A. To generate this data we created H = 10 basis functions W h in the
form of horizontal and vertical bars. Each bar occupied 5 pixels on a D = 5× 5
grid. Bars were chosen to be either positive (i.e. W d

h ∈ {0.0, 10.0}) or negative
(W d

h ∈ {0.0,−10.0}). Half of the basis functions was randomly assigned the
negative values and the other half the positive values. Data points were generated
by linearly superimposing these basis functions (compare, e.g., [9] for a similar
task) with a sparseness value of πH = 2.0 (i.e., two active causes per image on
average). To this data we added iid Gaussian noise (mean = 0.0, std = 2.0).
After each trial we tested whether each basis function was uniquely represented



Binary Sparse Coding 5

1

0

5

10

60

20

it
er
at
io
n

max

0

-max

B

std σ

sparseness πH

A

60200

2
0

4

0

2

4

6

iteration

6

C

Fig. 1. Linear bars test with H = 10, D = 5×5, and N = 500. A 12 examples for data
points. B Basis functions for iterations given on the left. C Sparseness and standard
deviation plotted over the iterations. Data for same experiment as in B in blue. Data
for a run with initial sparseness value of 1.0 in red. Ground-truth indicated by dashed
horizontal line.

by a single bar in oder to compute the success-rate, i.e. the reliability of the
algorithm.

The approximation parameters were set to γ = 3 and H ′ = 5. We started
with 20 iterations in which we set |M| = N , then linearly decreased the amount
of used data points in the next 20 iterations to |M| = N cut where we kept it
constant during the last 20 iterations, thus using a total of 60 iterations. The
parametersW were initialized by drawing randomly from a Gaussian distribution
with zero mean and a standard deviation of 2.0 (compare [6]). Sparseness was
initialized at πH = 5.0, thus assuming that five of the causes contributed to
an image on average. The standard deviation was initialized by calculating the
sum over all squared data points which led to a value of σ ≈ 6.0. After each
iteration we added iid Gaussian parameter noise to the learned basis functions
(mean = 0.0, std = 0.05).

We ran the algorithm with the above parameters 1000 times, each time using
a newly generated set of N = 1000 data points. In 978 of these trials we recovered
all bars (≈ 98% reliability) and obtained a mean value of πH = 2.0 (±0.01 std)
for the sparseness and σ = 2.0 ± 0.06 for the data noise. Reliabilities increased
when more data points were used (e.g., ≈ 99% for N = 4000) and decreased for
lower initial values of πH (e.g., ≈ 96% and ≈ 84% for πH = 3 and πH = 1,
N = 2000, respectively). Figures 1B and 1C show the typical development of
the parameters W , πH, and σ over the 60 iterations.

Natural image patches. In order to perform the experiment on natural im-
ages, we sampled N = 200 000 patches of D = 26 × 26 pixels from the van
Hateren image database [10] (while constraining random selection to patches
of images without man-made structures). As a form of preprocessing, we used
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Fig. 2. Numerical experiment on image patches. A 200 basis functions randomly se-
lected out of the H = 700 used. B The most globular of the H = 700 fields. C Time-
courses of sparseness (πH) and data noise (in terms of standard deviation σ).

a Difference of Gaussians (DoG) technique1. According to the previous exper-
iment, the initial condition for each basis function was set to the average over
the preprocessed input patches plus small Gaussian white noise. The initial noise
parameter σ was set following equation 7 by using all data points (|M| = N).
Finally, the initial sparseness value was taken to be πH = 1. The approxima-
tion parameters for the algorithm were set to γ = 8 and H ′ = 10. This choice
reflects the relatively high average number of components that we expect for
the relatively large patch size used (experiments with different γ and H values
have all suggested an average of approximately 6 to 10 components per patch).
The number of data points used was |M| = N during the first 66 iterations, de-
creased to |M| = N cut from iteration 66 to iteration 100 and kept at this value
for the remaining 100 iterations. Fig. 2 shows the learned parameters for a run of
the algorithm with H = 700 hidden variables. Fig. 2A shows a random selection
of 200 of the 700 obtained basis functions. In Fig. 2B the most globular of the
700 basis functions are displayed. The monitored time-course of the data sparse-
ness (πH) and the time-course of the data noise (σ) are displayed in Fig. 2C.
As can be observed, we obtain Gabor-like basis functions with different orienta-
tions, frequencies, and phase as well as globular basis functions with no or very
little orientation preferences (compare [4]). Along with the basis functions we
obtain an estimate for the noise and, more importantly, for the data sparseness
of πH = 7.49 active causes per 26 × 26 patch. Runs of the algorithm with H
smaller than 700 (e.g. H = 200) resulted in similar basis functions. However, for
smaller H, basis functions had the tendency to be spatially more constrained.

1 Filter parameters were chosen as in [11]; before the brightest 2% of the pixels were
clamped to the maximal value of the remaining 98% (influence of light-reflections
were reduced in this way).
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4 Discussion

We have studied a learning algorithm for sparse coding with binary hidden vari-
ables. In contrast to almost all the numerous SC and ICA variants, it is capable
of learning the full set of parameters. To the knowledge of the authors there are
only two previous SC versions that also estimate the sparseness: the algorithm
in [3] which assumes a mixture of Gaussians prior, and the algorithm in [12]
assuming a Student-t prior. To estimate the sparseness the approach in [3] uses
sampling while the approach in [12] screens through discrete values of different
sparseness levels to estimate the optimal one by comparison. In contrast, we use
an update equation derived from a deterministic approximation (Expectation
Truncation; [6]) which represents a novel form of variational EM. Another dif-
ference between the approaches [3] and [12] and our approach is the assumption
of continuous-valued latents in those, and of binary latents in our case. Binary
latents have frequently been used in the past ([13–15] and many more). The
approach most similar to ours is hereby [15] which assumes the same underlying
generative model. However, in none of these approaches the data sparseness is
learned. The presented approach is thus the first algorithm that infers the ap-
pearance probabilities and data noise in a linear bars test (but compare [7] which
learns the sparseness for non-linear superpositions with a different method). Also
in applications to image patches, our approach estimates the sparseness in par-
allel to learning the basis functions and data noise (Fig. 2). The basis functions
hereby take the form of Gabor-like wavelets and of globular functions with no or
little orientation tuning. Interestingly, simple cell receptive fields that correspond
to such globular functions were observed in in vivo recordings in [4]. Modelling
approaches have only very recently reproduced such fields [16, 17, 11]. The sys-
tem in [16, 11] is a neuro-dynamic approach that models cortical microcircuits.
The model described in [17] is, notably, a SC version whose hidden variables
have a more binary character than those of classical SC: they use latents with
continuous values but explicitly exclude values in an interval around zero (while
allowing zero itself). If applied to image patches, globular basis functions are
obtained in [17] alongside Gabor-like basis functions. In that study the sparse-
ness parameter had to be chosen by hand, however. The algorithm in [15] uses
binary latents but, although applied to image patches, globular fields were not
reported. This might be due to a relatively small number of hidden units used
there. Also in [15] the sparseness level had to be set by hand.

Parameter optimization as studied in this paper can in future work be applied
to SC models with continuous latents (e.g., with Laplacian or Student-t prior).
Based on such models, the difference between binary and continuous latents can
be investigated further. The observation that globular basis functions are ob-
tained with the here presented algorithm might be taken as an indication that
the assumption of binary or more binary latents at least facilitates the emergence
of localized and circular symmetric basis functions. The observation that such
globular functions also describe the response properties of many cortical simple
cells [4] might have interesting implications for theories on neural coding.
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