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Abstract. Using local motion information data such as that obtained
from optical flow, we present a network for a multilayered segmentation
into motion regions that are governed by affine motion patterns. Using an
energy-based competitive multilayer architecture based on non-negative
activations and multiplicative update rules, we show how the network
can perform segmentation tasks that require a combination of affine es-
timation with local integration and competition constraints.
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1 Introduction

Motion-based segmentation and motion-based layer separation are essential steps
for the decomposition of dynamic visual scenes. The topic has been investigated
in a series of early publications by commonly either combining locally estimated
motion models [1, 2] or estimating the spatial support of mixture models [3, 4].
The latter frequently appears in the realm of probabilistic approaches, formu-
lating the problem in terms of maximum-likelihood of the observed data.

A common starting point of the approaches is a motion field estimation as
a preprocessing step. Subsequently, they introduce parameterized models for
describing subregions in the motion field, where almost all of these approaches
assume affine motion models. In order to consider spatial constraints, Markov
Random Fields (MRFs) are commonly used to support regions of similar motion
[5, 6]. As such approaches optimize conditions in a pixels neighborhood, they do
not explicitly consider model competition at certain pixel positions.

In this paper, we used a dynamic neural network approach to combine the
spatial distribution of labels (intra-label integration) with further constraints on
inter-label competition. Such a model is motivated by previous work on compet-
itive layer models [7]. The network dynamics within this work are deterministic
and follow a gradient-descent-like update rule, updating motion region param-
eter estimation and motion region labeling in alternating steps. The dynamics
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can be implemented very efficiently as block operations on a labeling grid. Com-
pared to MRFs which rely on stochastic techniques, this deterministic relaxation
method is a computational much faster approach.

Sec. 2 introduces the network for multi-region motion segmentation in detail.
As a proof-of-concept, we present results from two motion sequences in Sec. 3.
These include the MPEG Flower Garden sequence as well as an example of a
moving hand filmed by a moving observer. In Sec. 4, we finally conclude the
paper.

2 Dynamic Neural Network for Motion Segmentation

In this paper, we start with a sequence of 2D images. For each consecutive pair
of images, an approximation of the 2D motion field in the images is obtained by
calculation of a dense optical flow in the form of velocity vectors v(p) at posi-
tions p. In our particular implementation, we use a spatiotemporally integrating,
patch-based method for calculating optical flow [8].

In this section, we introduce the main components of our motion estimation
network. In Sec. 2.1, we briefly explain the calculation of parameters for the
affine description of motion regions by applying weighted regression on a motion
field. In Sec. 2.2, we present a competitive recurrent network for dynamically
updating activations that encode the tendency of each image position to belong
to the different motion models. In Sec. 2.3, we combine both approaches within
a single energy function that drives the entire system.

2.1 Motion Fields Described by Affine Models

We assume the motion field to be composed of large spatial regions that can be
approximated by affine homographies. This is valid if the images recorded by a
camera are rectified and the 3D scene contains planar surfaces where changes in
depth between objects and camera are small compared to their distance.

In the following, we introduce image coordinates p = {px, py}T and mo-
tion vectors v = {vx, vy}T , as well as homogeneous image coordinates p̂ =
{px, py, 1}T and homogeneous motion vectors v̂ = {vx, vy, 1}T . The goal is to
find NA affine matrices Ak, where each matrix describes the motion field for
a certain region. In other words, an assumed affine homography is suitable for
describing a region of the image when a large amount of the measured motion
vectors v(p̂) can be approximated by motion vectors vAk

(p̂):

v(p̂) ≈ vAk
(p̂) = Akp̂ =

(
ak,11 ak,12 ak,13

ak,21 ak,22 ak,23

) 


px

py

1


 . (1)

Assuming that the motion field has been measured at Np positions pi :=
{pi,x, pi,y}T , we have vi := v(pi). Since we want to describe the entire motion
field by all NA affine models simultaneously, we introduce weight factors wi,k ≥ 0
which indicate the affiliation of a motion vector vi to an affine model Ak. For
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fixed weight factors, and assuming the underlying parametric model of residu-
als ri,k to be Gaussian, we can formulate a cost function G({Ak}) that is the
weighted Euclidean distance between measured and expected motion:

G({Ak}) =
∑

k

Gk(Ak) =
∑

k

∑

i

wi,k‖v(p̂i)− vAk
(p̂i)||2

=
∑

k

∑

i

wi,k‖v(p̂i)−Akp̂i‖︸ ︷︷ ︸
:=ri,k

2
. (2)

For this case, a weighted linear regression can be used for the calculation of
the affine models. For each affine model Ak describing a region of the motion
field characterized by the affiliation weights wi,k, the affine parameters are then
estimated by minimizing the cost function G({Ak}):

A∗k = arg min
Ak

G({Ak}) = arg min
Ak

Gk(Ak). (3)

The cost function gets minimal if:

∇Ak

{∑

i

wi,k[vi,x − (ak,11 pi,x + ak,12 pi,y + ak,13)]2

+
∑

i

wi,k[vi,y − (ak,21 pi,x + ak,22 pi,y + ak,23)]2
}

= 0. (4)

This in turn leads to a linear equation system in the coefficients of the Ak’s,
which can be solved analytically in a straightforward way (see Appendix).

Nevertheless, this only applies for fixed affiliation weights wi,k. If these are
given by some preprocessing step (like segmentation) we would be done. However,
we want to simultaneously estimate Ak and wi,k. The first step towards this is
to consider that the affiliation weights act as a kind of affiliation probability, i.e.
the different models are loosely coupled via their affiliations by a normalization
condition

∑
k wi,k = 1 and wi,k > 0. Furthermore, beyond the normalization

condition, we let the models Ak compete explicitly for their affiliations, i.e., a
model Ak which best describes the motion field at location pi receives a signifi-
cant affiliation weight wi,k. In the following section, the implementation of this
competition by means of a recurrent neural network is presented.

2.2 Extraction of Motion Layers with a Recurrent Neural Network

We have seen that the considerations of the previous section assumed the affil-
iation weights to be fixed or determined by external means. To make affiliation
weights compete for their models, we apply a competitive neural network which
consists of a grid-like arrangement of neurons at image positions pi with activi-
ties ai,k for all positions and all models Ak.

The network dynamics are determined by energy function E({ai,k}) of all
neuronal activities {ai,k}. It can be considered as a layered neural network with
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a fixed number of NA layers (indexed here by k = 1, ..., NA), and each layer
consisting of Np positions (indexed here by i = 1, ..., Np, but which for practical
purposes should be arranged in x and y coordinates so as to map with the input
image).

Each neuron receives two sources of input. One, hi,k, is a driving input,
which originates from outside of the network and conveys a kind of “sensory”
support for the neuron ai,k. The second is an input originating from recurrent
connections from within the network itself, i.e., from the other neurons. This
input serves to trigger a competition between the neurons on different layers, and
for imposing a spatial coupling between different positions. The energy function
therefore comprises three terms, one for the driving input (d), one for the layer
competition (l) and one for the spatial coupling term (c):

E({ai,k}) = Ed({ai,k}) + El({ai,k}) + Ec({ai,k}) = −λ1

∑

i

∑

k

hi,kai,k

+λ2
1
2

∑

i

∑

k

∑

k′
W k′

k ai,k′ai,k−λ3
1
2

∑

i

∑

i′

∑

k

Ki′
i ai,kai′,k. (5)

Subsequently, we assume a positivity constraint ai,k > 0 and hi,k > 0. The
energy function should be minimized which is the case e.g., for high activities at
those neurons with a large (positive) driving input hi,k, and which are consistent
with the layer competition and the spatial coupling conditions.

In Eq. (5), we have restricted ourselves to a layer competition term which
acts over all layers (corresponding to the motion models Ak) but exclusively on
neurons at the same position pi. This is parameterized by the kernel W k′

k , which
quantifies the competition between the activities ai,k′ and ai,k. Similarly, we use
a kernel Ki′

i to express the spatial coupling within one layer. This segregation
into inter-layer and spatial coupling is not strictly necessary so that a fully
connected network may also be used, but for the purpose presented here it is
sufficient. Both kernels W k′

k and Ki′
i are chosen to be symmetric and positive.

The structure of the neural network, including layerwise and spatial coupling is
illustrated in Fig. 1. x

k

y

k

x

y
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Fig. 1. Structure of the recurrent neural network. Each layer of neurons represents the
affiliation to a specific motion model through normalized activities ai,k (right). The
network is initialized by the driving input hi,k (left).
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The dynamics of the activities are motivated by standard gradient descent
considerations. We therefore obtain ai,k ∼ −∇ai,k

E with:

∇ai,k
E = −λ1hi,k + λ2

1
2

∑

k′
W k′

k ai,k′ − λ3
1
2

∑

i′
Ki′

i ai′,k . (6)

For accurate motion model separation, we would like the activities to be inter-
pretable as affiliation probabilities to different motion models. This implies that
the activities should always remain positive and they should always be normal-
ized over the layer index, so that

∑
k ai,k = 1. Neither condition is fulfilled by

dynamics according to Eq. (6).
We impose the first condition, positivity, by using a multiplicative update

rule motivated by exponentiated gradient descent and non-negative matrix fac-
torization (NMF) techniques, similar to [9]. In our case, we separate positive and
negative terms of the gradient from Eq. (6) according to:

∇ai,k
E := ∇ai,k

E+ −∇ai,k
E− (7)

and express the dynamics by the fixpoint condition:

ai,k ← ai,k

∇ai,k
E−

∇ai,k
E+

. (8)

Intuitively, as the dynamics approaches the minimum of the energy function,

∇ai,k
E+ → ∇ai,k

E− such that
∇ai,k

E−

∇ai,k
E+ → 1 and the activities approach a static

state. In addition to the advantage of positivity, the multiplicative update rule
does not depend on a step size as gradient descent does.

The second condition, having normalized activities, is not trivial to impose.
We cannot modify the activities according to Eq. (8) and then simply normalize
the activities at each time step because normalization changes the overall energy
E({ai,k}) in an unpredictable way, leading for example to a potential energy in-
crease (instead of a decrease). Instead, we can either calculate the gradient and
then modify the activities by projecting it onto the “normalized energy sub-
manifold” or we can search for dynamics that have a continuous normalization
condition built-in. The latter is the case for energy E({āi,k}) based on position-
wise (resp. columnwise) normalized activities

āi,k :=
ai,k∑
k′ ai,k′

. (9)

Now, we are searching for the dynamics of the activities that minimizes
E({āi,k}) (instead of E({ai,k})). This can be done by the multiplicative update
rule according to Eq. (8) except that activities are now normalized:

ai,k ← ai,k

∇ai,k
E−({āi,k})

∇ai,k
E+({āi,k}) . (10)
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Accordingly, the derivative of the energy function changes to ∇ai,k
E({āi,k}) =∑

k′ ∇āi,k′E({āi,k})∇ai,k
āi,k′ .

In summary, if we apply the update rule (Eq. (10)) followed by activity
normalization (Eq. (9)), we get an activity dynamics that minimizes the energy
function under the constraints of positive and normalized activities.

In our implementation, we further used a layer competition kernel W k′
k :=

δ(k, k′). The detailed activity dynamics from Eq. (10) is then:

ai,k ← ai,k

λ1hi,k + λ2

∑
k′ ā2

i,k′ + λ3

∑
i′ K

i′
i āi′,k

λ1

∑
k′ hi,k′ āi,k′ + λ2 āi,k + λ3

∑
k′

∑
i′ K

i′
i āi′,k′ āi,k′

(11)

which at each update should be followed by normalization Eq. (9). Therefore,
Eq. (11) is an iterative descent towards the minimization of the energy E({āi,k}).

2.3 Combined Segregation and Affine Model Estimation

In Sec. 2.1 we explained how to estimate a number of affine models to describe
partial motion fields of an image sequence for pre-set model affiliation weights
wi,k. In Sec. 2.2 we introduced a modified recurrent, layered network to let the
affiliation weights compete for their models, triggered by the driving input hi,k.
The weights are encoded in different layers and incorporate through spatial cou-
pling constraints. In this section, we fuse the energy functions of Sec. 2.1 and
Sec. 2.2 by combining the affiliation weights and the driving input. This al-
lows iterative calculations to estimate the motion models and the best affiliation
probabilities for the models.

We assume the affiliation weights to be represented directly by the activities
of the layered network, i.e., wi,k ≡ ai,k. Since by construction the activities ai,k

remain positive and normalized if deployed according to the neuronal dynamics
from Sec. 2.2, they fulfill the conditions postulated for the weights in Sec. 2.1.

Furthermore, we assume the driving input to originate from the consideration
of how well a given model Ak serves to describe a motion flow v at the positions
pi indicated by, and weighted with, the model affiliation probabilities ai,k. Using
the considerations from Sec. 2.1, the driving input should be large when the
measured flow and the model-based flow match, in our case by using:

hi,k ∼ e−
1

2σ2 ||v(p̂i)−Akp̂i||2 . (12)

Finally, the complete energy equation becomes:
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E({ai,k}, {Ak}) = −λ1

∑

i

∑

k

e−
1

2σ2 ||v(p̂i)−Akp̂i||2ai,k

+λ2
1
2

∑

i

∑

k

∑

k′
W k′

k ai,k′ai,k − λ3

∑

i

∑

i′

∑

k

Ki′
i ai,kai′,k . (13)

This energy function now has to be solved simultaneously for the models Ak

and the activities ai,k, with the additional constraints of positive and normalized
activities. We then proceed as before with gradient descent, taking

∇ai,k
E({āi,k}, {Ak}) (14)

and
∇Ak

E({āi,k}, {Ak}) (15)

to update the activities and the models in alternating steps for fixed models
and activities, respectively. As a shortcut, during the model update according
to Eq. (15) we assume that at positions where the layer activity is large, the
corresponding model is already matching well (which is the case close to the
minimum of the energy function). This means that v(p̂i) ≈ Akp̂i and hence we
can approximate

hi,k ≈ 1− 1
2σ2
||v(p̂i)−Akp̂i||2 (16)

so that

E({āi,k}, {Ak}) ≈ −λ1Np + λ1

∑

i

∑

k

1
2σ2
||v(p̂i)−Akp̂i||2 āi,k

+λ2
1
2

∑

i

∑

k

∑

k′
W k′

k āi,k′ āi,k − λ3

∑

i

∑

i′

∑

k

Ki′
i āi,kāi′,k . (17)

Therefore, we get a contribution to the energy function from the driving input
which is identical in form to Eq. (2), and hence can be solved using Eq. (4) and
Eq. (18).

The full algorithm then reads:

1. Initialize the activities {ai,k}
2. At each time step:

(a) Get the motion vector field {vi}
(b) Calculate the models {Ak} according to Eq. (18)
(c) Calculate the driving input {hi,k} according to Eq. (12)
(d) Update the activities {ai,k} according to Eq. (11)
(e) Normalize the activities {ai,k} to 1 according to Eq. (9)
(f) While a desired energy decrease has not been reached, go to 2 (b)

3. Warp the current activities {ai,k} with the calculated affine parameters Ak

as prediction for the next time step
4. Go to step 2

The warping step (3) allows to move the activities along with the motion
field, which is very useful for temporally persistent, coherent motion. In this
case, the affiliation probabilities represented by the activities ai,k are shifted
with the stimulus, which requires less repetitions of steps 2(b)-2(f).
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3 Results

Below, results of the proposed algorithm for two image sequences are presented.
The first is the well known MPEG flower garden sequence, available at e.g. [11].
It consists of several planes shifting horizontally due to a moving observer: the
tree in front moves fastest, the flower bed moves at intermediate speed and the
house moves very slowly. To compute the driving input for the recurrent network,
motion vector fields are estimated by the method described in [8]. The second
video shows a moving hand in front of a moving background available at [10],
including a manually annotated flow field.

For both sequences, the activities of the algorithm have been initialized by
zero-mean Gaussian noise. For relaxation, 30 iterations were used for each motion
vector field, where iterations 1, 15 and 30 were plotted in Figs. 2 and 3. The first
row shows the input images and following rows each represent a motion layer.
The λs to weight the energy terms have been set to λ1 = 0.6, λ2 = 0.3 and λ3

= 0.1 for all sequences. These heuristically evaluated values represent a good
parameterization for a variety of examples.

For the flower garden sequence, the number of models was set to three. It
can be seen from the image sequence that after 15 iterations the system starts
to converge (2nd column) and already after 30 iterations all models can be
clearly separated (3rd column). As described in the previous chapter, activities
are warped here to predict the activities for the next input image (see columns
three to four). This avoids starting from the scratch for every new incoming
image.

For the hand sequence, two models were assumed to be present in the flow
field. Again, after 30 iterations the method is able to clearly separate the two
layers. For this example, the fitted vector fields are plotted into the layers. This
illustrates the close interaction between activities and affine model parameters.

4 Conclusion

We have presented a model for motion-based image segmentation into multiple
affine motion layers. In contrast to many approaches, we employ a strictly pos-
itive dynamic neural network to address the problem of gaining the affiliation
parameters for each layer. This allows us to directly combine conditions for layer
competition and spatial coherence in a single energy function.

The energy optimization for normalized, positive activities provides a com-
putationally efficient way to minimize the total energy. This allows an effective
implementation to make the system employable to practical applications.

The proposed framework makes an important contribution to interpreting
and understanding visual scenes containing rigid moving objects. The capability
of the algorithms to successfully separate motion in real-world images has been
shown for two video sequences.

As the evaluation has shown, the system provides accurate results. This in-
dicates a solid basis for more complex scenarios. Of course, in more challenging
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Fig. 2. Layer separation for the MPEG flower garden sequence. The first row shows
the input images and the next three rows represent the layer activities. Each column
of a layer illustrates the activities for the 1st, 15th and 30th iteration step. After the
last iteration of the first input image, the activities are warped to predict activities for
the next input image as initialization.

Fig. 3. The hand sequence, available at [10]. The first row shows the input images and
the next two rows represent the motion layers. Each column of a layer illustrates the
activities for the 1st, 15th and 30th iteration step. For each layer, the fitted vector field
is plotted as well.
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scenarios we have to cope with less reliable measured motion. In such cases, the
regression analysis using the Euclidean norm might not suffice to satisfactorily
fit the motion models. Now, as we have shown the consistency and correct func-
tionality of the implementation, the next step is to prepare the algorithm to be
able to deal with outliers and larger uncertainties in the motion data.

Appendix: Solution of the weighted regression

A∗k =




a∗k,13 a∗k,23

a∗k,11 a∗k,21

a∗k,12 a∗k,22


 =




∑
i

wi,k

∑
i

wi,kpi,x

∑
i

wi,kpi,y

∑
i

wi,kpi,x

∑
i

wi,kp2
i,x

∑
i

wi,kpi,xpi,y

∑
i

wi,kpi,y

∑
i

wi,kpi,xpi,y

∑
i

wi,kp2
i,y




−1




∑
i

wi,kvi,x

∑
i

wi,kvi,y

∑
i

wi,kpi,xvi,x

∑
i

wi,kpi,xvi,y

∑
i

wi,kpi,yvi,x

∑
i

wi,kpi,yvi,y


 (18)
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