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Abstract

Despite the fact that formant extraction has been investi-
gated for a long time it still remains a challenging task.
Particularly in real-world environments, where noise and
echoes are detrimental factors for speech processing, ex-
isting methods for formant extraction yield unfavorable re-
sults. Here, we present a framework for formant tracking
which is specifically tailored for application in such diffi-
cult settings. Keys to our method are, firstly, an auditory
inspired preprocessing which enhances formants in spec-
trograms and, secondly, a probabilistic scheme which es-
timates the joint distribution of formants. Especially the
latter contributes to the robustness of our system as it natu-
rally considers the uncertainty inherent to the speech data.
We demonstrate the favorable performance of our frame-
work by a comprehensive evaluation on a publicly avail-
able database as well as in form of an online system oper-
ating under real-world conditions.

1 Introduction

Formants are the resonance frequencies of the vocal tract
and appear as energy concentrations in the spectral do-
main. Formant trajectories are of primary interest in the
areas of speech recognition and speech synthesis. How-
ever, their use in current systems is limited, since common
methods for formant extraction lack in precision, robust-
ness, and computational efficiency.

Here, we propose a framework for formant extrac-
tion [1] which is specifically suited to operate in noisy and
echoic environments. As illustrated in Fig. 1, the system
comprises an auditory inspired preprocessing to enhance
formants in spectrograms and a subsequent probabilistic
tracking scheme which extracts continuous formant trajec-
tories. We further incorporate a gender detection based on
pitch extraction and voiced-unvoiced classification. The
gender decision is used as additional information which
modulates the probabilistic tracking.

In the following we give a detailed description of the
processing blocks. Next, we demonstrate the superior
performance of our approach compared to existing ap-
proaches. Therefore, results of extensive tests on a pub-
licly available database are presented for both clean speech
as well as speech degraded by noise and echoes. Finally,
we present an online system which verifies the suitability
of the framework to operate in real-world environments.

2 Formant Enhancement

We initially transform the speech signal into the spectro-
temporal domain by using the Patterson-Holdsworth audi-
tory filterbank [2]. This filterbank resembles neurophysio-
logical findings on the human auditory system, specifically
the cochlea. Our setup comprises 128 Gammatone filters
covering the frequency range from 80 Hz to 8 kHz. A sub-
sequent rectification and low-pass filtering calculates the
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Figure 1: The framework for formant extraction.

envelope of the filter responses. Since formants are the
resonance frequencies of the vocal tract, their extraction
can be improved by eliminating the spectral influence of
excitation and radiation contributing to human speech pro-
duction. For doing so, we correct the spectral tilt via an
emphasize of the spectral energy by +6 dB/oct.

Additionally, the emphasized spectrogram is smoothed
along the frequency axis using a Laplacian kernel adjusted
to the logarithmic arrangement of the Gammatone filter-
bank’s channel center frequencies. By doing so, the har-
monics spread and peaks are formed at formant locations.
A subsequent normalization of the filter responses to the
maximum at each sample as well as an application of a
sigmoidal function further enhances the spectral contrast.

3 Formant Tracking

Based on the formant enhanced spectrogram we next ex-
tract formant trajectories using Bayesian filtering – a prob-
abilistic technique for estimating a dynamic system’s state.
Bayesian filters represent the state at time t by a prob-
ability distribution over random variables xt , called the
belief Bel(xt). Assuming the filterbank is composed of
N channels, the state space at time t can be written as
xt = {x1,t ,x2,t , . . . ,xN,t}. We model the target distribution
Bel(xk,t) by a weighted mixture of M filtering distributions
Belm(xk,t), such that each formant is represented by one
mixture component (see Fig. 2):

Bel(xk,t) =
M

∑
m=1

πm,t ·Belm(xk,t) (1)
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Figure 2: (top) The joint belief (dashed line) is represented

as a mixture of components, each of them covering one

formant. (bottom) A frequency segmentation and belief

reclustering results in non-overlapping components.

Bayesian filtering targets the sequential estimation of the
belief conditioned on all information contained in the sen-
sor data z = (z1, . . . ,zt). Let pm(xk,t |xl,t−1) denote a model
for the m-th formant’s dynamics and p(zt |xk,t) an observa-
tion model, then the Bayesian filter recursion is

Bel−m (xk,t) =
N

∑
l=1

pm(xk,t |xl,t−1)Belm(xl,t−1) (2)

Belm(xk,t) =
p(zt |xk,t)Bel−m (xk,t)

∑
N
l=1 p(zt |xl,t)Bel−m (xl,t)

(3)

πm,t =
πm,t−1 ∑

N
k=1 p(zt |xk,t)Bel−m (xk,t)

∑
M
n=1 πn,t−1 ∑

N
l=1 p(zt |xl,t)Bel−n (xl,t)

. (4)

We choose pm(xk,t |xl,t−1) to be Gaussian and p(zt |xk,t) is
given by the preprocessed spectral vector at time t.

The formulas show that the component distributions
Belm(xk,t) evolve independently over time. An interaction
between the components only takes place during the calcu-
lation of the mixture weights πm,t . To prevent belief degen-
eration, which may result in loosing track of formants, our
framework additionally relies on a dynamic programming-
based algorithm [1] which adaptively segments the fre-
quency range into consecutive formant-specific regions
R1,t ,R2,t , . . . ,RM,t (see Fig. 2). This means that each fre-
quency channel xk,t at each instance in time is element of
exactly one set Rm,t and therewith assigned to exactly one
non-empty mixture component covering a certain formant.
This reclustering of component beliefs incorporates short-
term continuity constraints as well as long-term constraints
on valid formant locations. We consequently recalculate
the component beliefs, such that the mixture approxima-
tions of (1) before and after the reclustering procedure are
equal in distribution:

π ′
m,t = ∑

xk,t∈Rm

M

∑
n=1

πn,t ·Beln(xk,t) (5)

Bel′m(xk,t) =

{
∑

M
n=1 πn,t ·Beln(xk,t)

π ′
m,t

, ∀xk,t ∈ Rm,t

0 , ∀xk,t 6∈ Rm,t

(6)

We next apply Bayesian smoothing on the obtained filter-
ing distributions. In contrast to Bayesian filtering, this
technique recursively estimates a smoothed distribution
which relies on both past and future observations. Thereby,
it works in the reverse time direction and uses the already
obtained filtering distributions Belm(xt):
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Figure 3: Example utterance ”They all agree that the essay

is barely intelligible.”: (top) extracted formants overlaid to

the original spectrogram, (middle) preprocessed spectro-

gram, and (bottom) smoothed component beliefs.

B̂el
−

m(xk,t) =
N

∑
l=1

B̂elm(xl,t+1) · pm(xl,t+1|xk,t) (7)

B̂elm(xk,t) =
Belm(xk,t) · B̂el

−

m(xk,t)

∑
N
l=1 Belm(xl,t) · B̂el

−

m(xl,t)
(8)

For an online operation of our framework (see section 6)
we consider a finite time horizon and apply a sliding win-
dow technique to implement Bayesian smoothing.

Finally, the m-th formant equals the peak location in
the smoothed distribution of component m (see Fig. 3):

Fm(t) = argmax
xk,t

[
B̂elm(xk,t)

]
(9)

4 Gender Extraction

Our probabilistic framework for tracking formants addi-
tionally uses information on the gender of a speaker. This
is reasonable as formant profiles of female and male speech
differ significantly. More precisely, female formant pat-
terns are on average scaled to 20% higher frequencies than
corresponding male patterns [3]. We incorporate gender
information by relying on gender-specific models of both
the formant dynamics pm(xk,t |xl,t−1) and the formant loca-
tions pm(xk). These models are instantaneously switched
according to the decision provided by a gender detection.

To judge a speaker’s gender we first extract pitch using
an algorithm which combines information residing in the
temporal and spectral representation of the speech signal
[4]. Based on the harmonicity of the speech signal as well
as the energy ratio between a high and a low frequency
band we further perform a voiced-unvoiced classification
[5]. By relying on a reference of typical fundamental fre-
quencies of male and female speech, each pitch estimate in
a voiced region consequently produces a gender probabil-
ity. A temporal smoothing of these probabilities yields the
final gender decision. Thereby, the smoothing suppresses
fluctuations in gender decision and extends the result from
voiced to unvoiced speech regions [1].
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Figure 4: The plots depict the mean relative errors of our method when speech was degraded by various types of noise at

different SNRs. Bars mark 95 % confidence intervals.

Formant
Mustafa [6] Snack [7] Praat [8]

babble white car babble white car babble white car

F1
50.1 39.0 64.2 8.3 52.5 45.3 50.5 79.4 74.0

(+2.1;-2.2) (+2.6;-2.6) (+2.5;-2.7) (+1.8;-1.8) (+2.1;-2.2) (+2.7;-2.8) (+2.1;-2.3) (+0.9;-1.0) (+1.4;-1.5)

F2
-0.1 19.8 28.4 11.0 39.1 33.4 29.4 63.0 64.0

(+2.3;-2.4) (+2.8;-2.9) (+4.0;-4.2) (+2.8;-2.9) (+2.9;-3.0) (+4.6;-4.8) (+3.8;-3.9) (+2.3;-2.4) (+2.8;-2.9)

F3
30.2 34.2 35.4 31.4 40.8 30.8 34.3 56.4 55.1

(+4.6;-4.9) (+3.3;-3.6) (+4.9;-5.3) (+3.4;-3.5) (+2.5;-2.6) (+4.5;-4.7) (+3.8;-4.1) (+2.4;-2.6) (+2.9;-3.0)

Table 1: Mean relative improvements (and 95 % confidence intervals) in % of our method compared to [6, 7, 8]

5 Results

To evaluate the proposed method we used the publicly
available VTR–Formant database [9]. This database com-
prises utterances spoken by male and female speakers and
additionally provides hand-labeled trajectories for the first
three formants. For testing the robustness of our method
we further added white noise, babble noise, and car noise
to the clean speech signals. This was done for signal-to-
noise ratios (SNRs) of -3 . . . 15 dB. The performance of
our method was measured by means of the relative devia-
tion of the extracted formant locations with respect to the
manual labels. The results depicted in Fig. 4 show that the
error continuously increases when SNR decreases. Never-
theless, our method yields suitable estimates in all condi-
tions without any significant drop in performance.

To judge the quality of our system we compared our
results to those of existing approaches, i.e. to a recently
proposed method also targeting noise robust tracking [6]
as well as two widely-used speech processing tools (the
Snack Sound Toolkit [7] and Praat [8]). The relative per-
formance improvements achieved by our framework with
respect to these methods are summarized in Table 1, where
the relative improvements are averaged over all SNRs for
each type of noise, respectively. As can be seen, our ap-
proach significantly outperforms the other methods in all
cases tested, except for speech degraded by babble noise
where the algorithm presented in [6] reaches similar per-
formance for F2. However, in all other cases we achieve
relative performance enhancements ranging from 20 % to
60 %. In some cases, the improvements even exceed 80 %.

Finally, we evaluated the influence of echoic environ-
ments on the precision of the different formant tracking
algorithms. For doing so, we measured impulse responses
of a loudspeaker-enclosure-microphone (LEM) system us-
ing loudspeaker-microphone distances of 1 and 3 meters in
a room with a reverberation time RT60 = 1100 ms. We con-

volved clean speech signals with the obtained impulse re-
sponses and additionally added babble noise, white noise,
and car noise at an SNR of 6 dB. The results shown in
Fig. 5 demonstrate that the incorporation of echoes impairs
the performance of the algorithms, particularly for the ex-
traction of F2. However, for our algorithm there is just
a minor effect of echoic environments with respect to the
extraction of F1 and F3. Overall our algorithm reaches su-
perior performance compared to the other approaches in all
cases tested.

6 Application to Speech Synthesis

Formants are of primary interest for speech synthesis.
However, formant-based synthesizers necessitate accurate
information on the trajectories of the formants in order
to produce natural sounds. To assess the quality of our
framework we consequently implemented an online sys-
tem which resynthesizes speech solely based on the ex-
tracted parameters, i.e. pitch and formants [10]. At the end
the system reminds one of a parrot which repeats every-
thing it hears. Here, our aim was to use the intelligibility
of the resynthesized speech as a subjective measure for the
performance of the feature extraction in a real-world envi-
ronment. This is reasonable, since an erroneous extraction
of formants and pitch will result in the generation of un-
natural sounds or deviating pitch trajectories, respectively.
Fig. 6 shows the architecture of the system, which has been
implemented using the ToolBOS framework [11]. Overall,
the system runs on one computer with an Intel Quad Core
processor (Q6600 @ 2.4 GHz). Thereby, the processing
introduces a signal delay of 124.5 ms.

We tested the system in rooms featuring reverbera-
tion times of 625 ms, 810 ms, and 975 ms. Due to addi-
tional noise sources (e.g. computers and air conditioning)
the scenarios resulted in SNR levels ranging from 15 dB
to 0 dB. The most difficult setup with an 8 m speaker-
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Figure 5: Evaluation in a room with echo constant τ60 = 1100 ms using speaker-microphone distances of 1 and 3 meters.

Plots of the mean relative errors as obtained by averaging over various types of additionally added noise (6 dB SNR) are

shown. Bars mark 95 % confidence intervals.
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Figure 6: The online system first extracts pitch and for-

mants and subsequently resynthesizes the speech based on

the extracted parameters.

microphone distance and a rather low SNR of ≈ 0 dB is
shown in Fig. 7. Our experiments with the system re-
vealed that the resynthesized speech is highly intelligible
when we talk close to the microphone. For larger speaker-
microphone distances the speech intelligibility only drops
a little bit. From the results we conclude that our frame-
work shows a large amount of robustness against noise and
echoes as they occur in real-world environments.

7 Summary

Noisy and echoic environments pose serious problems to
common methods for formant extraction. In the design
of our framework we explicitly considered these aspects.
Firstly, we implemented a preprocessing which is inspired
by the processing carried out in the human auditory sys-
tem. Since humans perform marvelously well in such diffi-
cult conditions, this may lead a way to overcome the prob-
lems of existing approaches. In fact, additional tests [1]
(whose results are not shown here) revealed that our audi-
tory inspired preprocessing significantly contributes to the
robustness of our framework as compared to using Lin-
ear Predictive Coding (LPC). Secondly, the probabilistic
treatment of measurements (as it is inherent to our track-
ing scheme) extracts formant locations by integrating mul-
tiple individually ambiguous observations. The tight cou-
pling between Bayesian filtering, Bayesian smoothing, and
an adaptive frequency range segmentation estimates the
joint distribution of formants, thereby taking possible in-
teractions between neighboring formants into account. In
our experiments we could show that the combination of
both aspects yields a framework which significantly out-
performs state of the art methods and is suitable to be ap-
plied in real-world scenarios.

Figure 7: The most difficult experimental setting for test-

ing the online system is shown.
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