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Abstract
We investigate incremental word learning in a Hidden

Markov Model (HMM) framework suitable for human-robot in-
teraction. In interactive learning, the tutoring time is a crucial
factor. Hence our goal is to use as few training samples as pos-
sible while maintaining a good performance level. To adapt
the states of the HMMs, different large-margin discriminative
training strategies for increasing the separability of the classes
are proposed. We also present a novel estimation of the variance
floor when a very low number of training data is used. Finally
our approach is successfully evaluated on isolated digits taken
from the TIDIGITS database.
Index Terms: speech recognition, discriminative training, effi-
cient learning

1. Introduction
We focus on an interactive learning scenario where a human tu-
tor teaches a robot. This is inspired by the process of speech
acquisition in children. For auditory learning in small children,
a closed loop of speech perception and production plays an im-
portant role. While some authors concentrate on jointly solving
both aspects [1], others [2] constrain their work on the genera-
tion of robust perception as it is in itself still a widely unsolved
problem in automatic speech recognition (ASR) systems. Our
current work also only considers the perceptual aspects.

Unfortunately, conventional ASR offline training tech-
niques rely on a large amount of labelled training data which
is not available in interactive learning. Because of this, and to
maintain a short tutoring time, researchers aim either to train
the system in an unsupervised manner (i.e. without a tutor) or
to train it with a reduced number of samples.

One of the main drawbacks using a small amount of train-
ing data is that learning algorithms may fit the model param-
eters to some specific features of the dataset (overfitting). In
our framework, we use Hidden Markov Models (HMMs), the
most frequently used representations in ASR systems. Maxi-
mum likelihood (ML) estimation is often deployed to adapt the
parameters of HMMs including the means and variances of its
Gaussian Mixtures Models (GMM). A variance estimated from
only a few training samples might not be representative for the
underlying distribution. More precisely there is a tendency of
underestimating the variances in such cases, if the value of the
variance is too small. The Baum-Welch algorithm, the most
commonly used ML training algorithm, can be modified by in-
cluding a lower threshold on the variance parameters, a vari-
ance floor [3]. This translates the problem to the computation
of this floor value. One simple way of computing the variance

Figure 1: An overview of the incremental discriminative train-
ing system, which consists of two main stages. Stage I is ex-
plained in Sections 2.1 and 2.2 and the stage II in Section 2.3.
ML stands for maximum likelihood estimation.

floor is estimating the average within state variances scaled by
a predefined factor [4]. In [5], a method is used to adapt the
variance floor to each dimension of the features. The method
computes the average variance over all Gaussian components in
each feature-dimension. Then this value is also scaled by some
constant and used as variance floor.

As mentioned before, when using a small number of train-
ing samples the resulting distributions generally differ from the
true distribution of the speech segments. Additionally to ML
estimation, discriminative training (DT) has been widely inves-
tigated for HMMs in ASR [6, 7]. The DT methods directly
minimize the classification errors on the training data as the
model estimation criterion. In our previous work [8] we inves-
tigated minimum classification error (MCE) estimation using
the extended Baum-Welch (EBW) algorithm proposed in [9].
However, the application of incremental MCE training was not
beneficial because of the very low number of training samples
used. In this case, after ML all training data was already clas-
sified correctly. Recently, the generalization ability of HMMs
has been further improved by taking the margin of the classifier
into account, these techniques are called large-margin discrimi-
native training [5, 10].

In this paper we present an extension of the incremental
word learning framework introduced in [8], where an unsuper-
vised initialization of the parameters of a HMM is performed,
followed by the retraining and construction of a new HMM us-
ing multiple sequence alignment (MSA). In Fig. 1 the main con-
tribution of this paper compared to [8] is reflected in the blocks
framed by dotted lines. In stage I, we initialize the parame-
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Figure 2: The average XV (n) of the variances of the Gaussian
Mixtures Models (GMM) over all the models for a different
number of samples n and its approximation by the Gompertz
function are depicted here.

ters of the HMMs by means of the model bootstrapping method
proposed in [8] and a novel variance floor estimation, where we
go a step further by not only estimating the variance floor de-
pending on the feature-dimension [5] but also on the number of
samples used. After retraining the HMMs using ML estimation,
different large-margin discriminative training strategies are in-
troduced and analyzed in stage II. These strategies also improve
the recognition results when few training data are used.

The remainder of the paper is organized as follows. In
Section 2 we give an overview of our incremental word learn-
ing framework. In Section 2.1, we briefly introduce the model
bootstrapping presented in [8]. Next, the estimation of the vari-
ance floor and the different large-margin discriminative training
strategies proposed are described in Sections 2.2 and 2.3, re-
spectively. In Section 3 we report the results for our approach
on an isolated digit recognition task and compare them to a stan-
dard approach. Finally, in Section 4 we discuss the results and
give an outlook on future work.

2. Incremental word learning system
The incremental word learning system consists of two main
stages (Fig. 1). First, the parameters of the Hidden Markov
Models are initialized by means of a model bootstrapping
method. This stage allows to estimate a good initial set of
HMM parameters, which are trained by the Baum-Welch algo-
rithm [11] (ML estimation) afterwards. In this stage, a suitable
variance floor dependent on the number of samples used has to
be chosen. Finally, in stage II different large-margin discrimi-
native training strategies refine the estimates of the parameters
computed in the stage before.

2.1. Model bootstrapping and ML estimation

As mentioned in Section 1, the Baum-Welch algorithm [11] is
usually employed to train Hidden Markov Models. Unfortu-
nately, this algorithm easily gets stuck in local minima. Thus, it
is necessary to have a model bootstrapping which provides an
adequate initialization of the HMM parameters to obtain good
convergence.

The model bootstrapping system used here was presented in
[8] and comprises three main steps: the unsupervised training of
a generic HMM, in which a common HMM initialization model
is built without using any labelled training data. Here an unre-
lated speech segment stored from an independent source (not
implicitly including the words to learn) is used. Next, train-
ing of the previously obtained HMM using the Baum-Welch
algorithm [11] on labelled training data is performed. This
yields ergodic word-level HMMs. The main contribution in [8]
was the proposal of an algorithm for transforming the ergodic
word-level HMM into a left-to-right word-level HMM in the

next step. The multiple sequence alignment (MSA) algorithm
[8] iteratively merges the information contained in the Viterbi-
decoding sequences of the training data into an optimal state
sequence modelling the topology of a left-to-right HMM. The
computational complexity of the MSA is O(m2T 2), where m
is the number of training samples used and T is the length of
the longest training sample of the model. These steps are the
basis for the construction of a new word-level HMM, which is
retrained by the Baum-Welch algorithm afterwards using the es-
timation of the variance floor described in the following section.

2.2. Estimation of the variance floor

In Section 1, the relevance of setting a variance floor was moti-
vated when a very small number of training samples is used. To
decide which floor constant is optimal for our task (see Section
3.1), first it is necessary to evaluate how the variances decrease
when the number of samples n is reduced. In Fig. 2 the aver-
age XV (n) over the variances of all Gaussian Mixture Models
for all feature-dimensions and models after one iteration of the
Baum-Welch algorithm is displayed. One can observe that the
variances abruptly grow after one sample and then slightly in-
crease until they saturate at XV (∞) = 0.5. This behaviour can
be easily modelled using a sigmoid function, called the Gom-
pertz function:

G(n; a, b, c) = a · eb·ec·n
(1)

with parameters a, b and c adapted to the data. In Fig. 2
the dashed line represents the following Gompertz function:
v(n) = −(0.5+G(n;−1,−3,−2)), where n is the number of
samples. Once the behaviour of the variances is modelled, v(n)
is normalized such that vf1(n) converges to 1 for n → ∞, re-
sulting in vf1(n) = XV (∞)/v(n) = 0.5/v(n). However,
as the number of training samples decreases a larger variance
floor is required [3]. The reinforcement term rf (n) = 1 + e−n

compensates this effect, by increasing the value of the function
vf1(n) for a very small number of training samples. Finally, by
multiplying the reinforcement term rf (n) and the normalized
variance function vf1(n) estimated above, we obtain a function
of the variance floor depending on the number of samples used:

vf (n) =
0.5 · (1 + e−n)

−(0.5 + G(n;−1,−3,−2))
(2)

The variance floor estimation used in [5] which is based on
a larger number of training samples is shown in Eq. 3. Here K
is the scaling constant and XV,d is the average variance over all
Gaussian components in each dimension d.

VF (d) = K ·XV,d (3)

Our variance floor estimation is represented in Eq. 4. The
variance floor function vf (n) and the scaling factor K are mul-
tiplied by the average variance XV,d over all Gaussian compo-
nents in each feature-dimension. This yields a variance floor
value depending on the dimension of the feature d and the num-
ber of samples n used.

V ∗
F (d, n) = K · vf (n) ·XV,d (4)

This variance floor V ∗
F is used in each iteration of the

Baum-Welch algorithm.

2.3. Large-margin discriminative training

The main idea of the large-margin principle is to estimate the
HMMs parameters in such a way that the decision boundary de-
termined by the estimated HMMs achieves the maximum clas-
sification margin.



For a word sample si, assuming that it belongs to class Wi,
the multi-class separation margin for si is defined as [10]:

d(si) = F(si|λWi)− max
Wj∈Ω;j 6=i

F(si|λWj )

= min
Wj∈Ω;j 6=i

[F(si|λWi)− F(si|λWj )]
(5)

where Ω denotes the set of all possible words, F is a discrimi-
nant function and λWj is the word-level HMM of the class Wj .

Different optimization algorithms have been proposed for
large-margin computation. The most prominent ones are gradi-
ent descent [10] and semidefinite programming [12]. Semidefi-
nite programming algorithms provide the best results, however
they have a high computational cost. In on-line learning it is
fundamental to reduce the computation time, hence we use the
limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [13] to ensure a faster convergence.

As mentioned in Section 1, when a small number of sam-
ples is used, the HMM models may be overtrained. In this case,
the models already seem well separated. This can be charac-
terized by large distances between them. Therefore, optimizing
the model in each iteration with the minimum distance criterion
according to Eq. 5 does not improve recognition results signifi-
cantly.

To optimize the models, one heuristic is to slightly increase
the variances in order to produce overlapping models. In this
way we multiply the variances with a scaling factor S to inten-
tionally worsen the estimations and to force the algorithms to
recalculate the means of the models. In addition to the scaling
factor S, we propose two alternative strategies to the distance
criterion of Eq. 5 used in combination with [10]. These strate-
gies select a set of classes to optimize their models in each it-
eration, thereby reducing the computational cost, which means,
saving the retraining of some models, and improving the recog-
nition results for a small number of training samples.

2.3.1. Retraining the last introduced word-model (RLM)
As we are dealing with an incremental word learning system,
we consider that the word-models are improved incrementally.
That means, if word-model 1 and 2 have already been opti-
mized, word-model 3 can only affect the relation between 1 and
3, and 2 and 3, but it may not influence the relation between
word-models 1 and 2. This approach assumes that the only
word-model to readapt in each step is the last model added. This
strategy reduces the computational cost significantly, because
only one model is retrained in each iteration. This method is
referred to as retraining last model (RLM).

2.3.2. Selecting word-models via confidence intervals (CBS)
As mentioned before, it is not possible to get a reliable esti-
mation of the word-models when using a very small number of
training data. Furthermore, not all models are uniformly esti-
mated. Hence, instead of using the distance of each sample to
each already learned model (see Eq. 5), we propose to select the
word-models by using the probability distribution of their dis-
criminant functions F, i.e., confidence based selection (CBS).

To construct each distribution, the discriminant function
F(sj |λWj ) is calculated for each sample sj belonging to each
class Wj , which is modelled by the word-level HMM λWj .
Once the distributions of the discriminant functions are com-
puted, we analyze the number of samples si which may be
wrongly generated by the class Wj using the discriminant func-
tion F(si|λWj ) of the sample si and confidence intervals. Fi-
nally, the models of the classes Wj wrongly showing a high
confidence that sample si belongs to these classes are retrained.

3. Experiments
3.1. Experimental procedure

In the unsupervised phase described in Section 2.1, the database
used is a subset of TIMIT [14] with alternating utterances from
men and women. TIMIT contains recordings of 630 speakers,
each reading ten phonetically rich sentences. To evaluate the
following phases of our incremental word learning system, a
subset of the TIDIGITS corpus [15] containing only isolated
digits was used. This subset contains utterances from 112 men
and women collected from 21 regions of the United States.
There are a total of eleven words (digits) in the corpus vocabu-
lary (digits of “1” to “9”, plus “oh” and “zero”). From this sub-
set, several datasets are generated. First, the subset is split up
into a test set and several training sets. The test set contains 224
samples for each digit from men and women and each training
set up to 10 labelled samples for each digit. Each training seg-
ment that we have selected was uttered by a different speaker,
where exclusively men were used. Further, for the estimation of
the behaviour of the variances depicted in Fig. 2, a random set
of training samples was also selected.

In our experiments, the 45-dimensional acoustic feature
vectors consist of 15 RASTA-PLP coefficients [16] and their
first and second order time derivatives. The RASTA-PLP fea-
tures were first decorrelated by means of Principal Component
Analysis (PCA) and afterwards normalized. The PCA coeffi-
cients and the normalization parameters are computed from a
subset of TIMIT. All data is sampled at a rate of 16 KHz. The
models used in our experiments are continuous density HMMs
(CDHMMs) with 16 hidden states, where each state is described
by a Gaussian Mixture Model (GMM) with 3 components. As
baseline system, a Hidden Markov Models framework imple-
mented as in [11] using a statistical Matlab Toolbox called NET-
LAB [17] is used.

First, we start evaluating the stage I of our incremental word
learning system (Fig. 1). We compare our variance floor estima-
tion method V ∗

F presented in Section 2.2 with the method VF

from [5] using as model bootstrapping the conventional initial-
ization of the baseline system BL proposed in [11]. The value
of K was set to 1. After that, the model bootstrapping MSA
explained in Section 2.1 is also evaluated when using our pro-
posed variance floor estimation method V ∗

F . This is the final
configuration used as basis for stage II.

After performing the experiments for stage I, we evaluate
the advantage of adding stage II by analyzing the two proposed
large-margin discriminative training strategies (RLM and CBS)
described in Section 2.3. Thereby only the means of the GMMs
are updated. The scaling factor S is set to 1.1 for RLM. In CBS,
S is set to 1 if the model of the class Wj overlaps more than 2
models of different classes Wi, to 1.1 if it overlaps 1 or 2 mod-
els and to 1.2 if it does not overlap any model. Setting the length
of the confidence interval to ±σ, with σ being the standard de-
viation of the distribution of the discriminant functions F , saves
computation time and does not impair the recognition results.

3.2. Experimental results

Compared to the variance floor estimation method (Eq. 3) in [5],
our method (Eq. 4) improves the results obtained in the baseline
system [11] when a very small number of training samples is
used (see Table 1). However, when v(n) approaches XV (∞),
both methods are very similar and the recognition results are
not improved. Furthermore, the MSA model bootstrapping de-
scribed in [8] clearly reduces the word error rates (WER) com-



Nr. BL(VF ) BL(V ∗
F ) MSA RLM CBS

Data M W M W M W M W M W
10 1.0 33.0 1.0 33.0 0.4 28.8 0.3 27.4 0.1 25.5
9 1.1 33.1 1.1 33.1 0.5 29.6 0.4 28.4 0.2 26.9
8 1.4 34.7 1.4 34.7 0.6 31.3 0.5 29.9 0.3 28.4
7 1.6 36.9 1.6 36.9 0.7 33.1 0.5 30.8 0.4 29.4
6 1.7 41.1 1.7 39.4 1.0 35.2 0.8 33.4 0.6 32.0
5 2.3 42.0 2.0 40.2 1.2 36.7 1.1 35.3 0.8 33.3
4 5.6 48.2 3.1 46.4 2.0 42.7 1.6 39.8 1.6 39.1
3 10.5 56.1 6.3 54.3 3.7 50.9 3.1 46.8 3.0 45.5
2 35.3 79.1 22.8 71.7 13.4 67.6 12.1 64.9 12.0 64.0
1 75.8 88.4 44.9 80.9 32.6 77.3 31.6 75.4 32.3 75.0

Table 1: Word Error Rates (WER %) of the model bootstrap-
ping method used, the baseline system and the different large-
margin discriminative training strategies. For each method, the
WER values represent the mean of a 20-fold cross-validation
on the male training data set, evaluated on separated male (M)
and female (W) test data sets. MSA stands for the multiple se-
quence alignment bootstrapping method proposed in [8], BL for
the baseline system, VF for the variance floor estimation in [5]
and V ∗

F for the variance floor estimation presented in Section
2.2. In the case of discriminative training, RLM and CBS stand
for the strategy 1 and 2 respectively.

pared to the baseline system as shown in Table 1. In Fig. 3,
the achieved improvement of MSA against the baseline system
BL(VF ) is 41% in men and almost 15% in women when 6 train-
ing samples are used.

Additionally, Table 1 and Fig. 3 show that large-margin dis-
criminative training strategies in combination with MSA model
bootstrapping outperform the baseline system for male and fe-
male voices, independent of the strategy used. Nevertheless,
CBS provides the best results with a 65% relative improvement
in men and 22% in women with respect to the baseline system
BL(VF ) when 6 training samples are used.

4. Discussion and Summary
We have proposed an incremental word learning system [8] ex-
tended by different large-margin discriminative training strate-
gies and a variance floor estimation dependent on the feature-
dimension [5] and the number of training samples.

First, we have demonstrated that our variance floor esti-
mation method improves the recognition results when a very
small number of training samples is used. Further it is not
necessary to tune any other parameter to obtain convergence
in comparison with [8]. Second, we have shown that using
the semi-supervised model bootstrapping method in [8] out-
performs a conventional initialization baseline system [11] in
all test cases, e.g. for 6 training samples an improvement of
41% in male voices was obtained. Finally, two large-margin
discriminative training strategies used in combination with the
semi-supervised model bootstrapping mentioned before were
presented. Each of the strategies outperforms the preceding al-
gorithms as shown in Section 3.2. The RLM strategy is faster
than CBS, however the CBS method provides superior results.
Furthermore, the generalization power of our system is shown
via the female test sets, where recognition results are also im-
proved although no training samples containing female voices
were used. Additionally, our system is optimized to operate on-
line.

In human-robot interactive learning, a reduction from
1.7% WER when using only 6 training samples in a speaker-
independent task obtained by the baseline system to 0.6% WER
with our approach is a significant and highly relevant improve-
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Figure 3: The box plots of the WER of all methods presented
are displayed for 6 training samples only considering the tests
on male voices. For abbreviations, see Table 1.

ment. In other words, the performance obtained by the base-
line system 1% WER for 10 training samples can be maintained
while reducing the tutoring time to half (0.8% WER for 5 train-
ing samples). In future work, we will investigate if our results
also hold for more complex tasks and expand our system to-
wards a multimodal learning framework.
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