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Bootstrapping inverse Kinematics
with Goal Babbling

Matthias Rolf, Jochen J. Steil, Michael Gienger

Abstract—We present an approach to learn inverse kinematics
of redundant systems without prior- or expert-knowledge. The
method allows for an iterative bootstrapping and refinement of
the inverse kinematics estimate. We show that the information
structure induced by goal-directed exploration enables an effi-
cient resolution of inconsistent samples solely from observable
data. The bootstrapped solutions are aligned for a maximum
of movement efficiency, i.e. realizing an effector movement
with a minimum of joint motion. We derive and illustrate
the exploration and learning process with a low-dimensional
kinematic example and show that the same procedure scales for
high dimensional problems, such as hyperredundant planar arms
with up to 50 degrees of freedom.

Index Terms—Motor Exploration, Motor Learning, Inverse
Kinematics, Goal Babbling

I. INTRODUCTION

Learning to control the own body is a fundamental problem
in human development. Infants need to learn the most basic
skills like reaching for an object. The ability to learn control
from scratch also allows to master more complex tasks like
writing or riding a bicycle [1]. The control of such tasks can be
well understood with the notion of internal models [2]. Internal
models describe relations between motor commands and their
consequences. A forward model predicts the consequence of
a motor command, while an inverse model suggests a motor
command necessary to achieve a desired outcome.

How can internal models emerge from uncoordinated be-
havior? Before internal models can be applied for coordinated
control, experience must be gained by exploration. The crucial
question is how that experience is generated, i.e. how infants
explore their body for coordination. Piaget suggested that
human (motor-)development progresses in several stages [3].
At first infants react purely reflexive. Meltzoff and Moore [4]
suggested the concept of “body babbling” as an initial stage
in which experience is gathered. Infants can then use this
knowledge to attempt goal-directed action and fine-tune their
skills on the fly.

However, evidence over the last decades clearly shows
that infants perform goal-directed movements from the very
beginning. Von Hofsten [5] has repeatedly highlighted the role
of goal-directed action for infant motor development. “Before
infants master reaching, they spend hours and hours trying
to get the hand to an object in spite of the fact that they
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will fail, at least to begin with.” [5] Statistics revealed that
already days after birth, infants attempt goal-directed action
by means of arm and finger movements [6], [7]. Early goal-
directed actions clearly suggest that “learning by doing” has
a central role in infant motor development. Infants learn to
reach by trying to reach.

A. The Learning Problem
Before infants, but also robots, can master reaching, inverse

models must be learned for their limbs or even the full body.
In the present work, we investigate the kinematic control of
redundant systems. Formally, we consider the relation between
joint angles q∈Q⊂Rm and effector poses x∈X⊂Rn (e.g.
the position of the hand). Thereby m is the number of degrees
of freedom (DOF) and n is the dimension of the target variable
(e.g. n =3 for the spatial position of a hand). The forward
kinematics function f(q) = x uniquely describes the causal
relation between both sizes. If the hand needs to be positioned
at some desired coordinate x∗, an inverse model g(x∗)=q is
needed to find appropriate joint angles q (f(g(x∗))=x∗). Such
a function is not uniquely defined if the number of joint angles
m exceeds the number of controlled dimensions n.

An example is shown in Fig. 1: a robot arm with two joints
(m= 2) and a total length of 1m. Since we want to consider
a redundant structure, the goal here is to control only the
height of the effector (n = 1). The redundancy appears in
form of manifolds through the joint-space, on which all joint-
angles apply the same effector height. An inverse kinematics
function in this example must suggest joint angles q ∈ R2

for each desired effector height x∗ ∈ R1. Such an estimate
can be visualized by a one dimensional manifold through
the joint space. Figure 2 shows an example generated with
motor babbling. For several target heights x∗, the joint angle
estimates are shown by colored markers on the manifold
(the joint angles are furthermore visualized by corresponding
postures in the 3D simulation). Small green markers show the
examples used for learning. If the estimate is correct, each
marker must be positioned on the redundancy manifold that
represents the set of joint angles that do indeed realize the
desired effector height. An accurate inverse estimate positions
all colored markers on the contour with the same color.

Two substantial problems must be solved when an inverse
model shall be learned from experience:

1) Inversion of causality. It is difficult to get at least one
correct solution q for a target x∗. The outcome x for a
motor command q can simply be probed by applying q
(the cause) and observing x. This probing is not possible
for inverse problems.



Fig. 1: Robot arm (length 1m) with two joints. The left side shows the joint space. Multiple configurations (see postures a-c)
can be used to apply the same height of the end effector, but can not be averaged without leaving the desired height (see
posture d). The sets of joint angles that apply the same height are marked by colored contours in the joint space.

2) Non-convexity. It is also difficult to deal with the
possible occurrence of multiple solutions. Non-convex
solution sets (see Fig. 1) prohibit learning from multiple
solutions.

Existing approaches to the exploration and learning of inverse
kinematics split into two groups: error-based and example-
based methods. Error-based methods follow the “learning by
doing” approach. An estimate g(x∗) of the inverse kinematics
is used for trying to reach for a target position. Using the
joint angles q = g(x∗) suggested by the inverse estimate, the
resulting position of the effector is evaluated with the forward
kinematics function x = f(q). One group of mechanisms is
based on the “motor error”, which is a correction ∆q of the
joint angles in order to improve the performance. In Feedback-
error learning [8], [9] it is simply assumed that a mechanism
to compute that motor error is already available. In Learning
with distal teacher [10], [11] a forward model f̂(q) must be
learned in parallel. A motor error can be derived analytically
by differentiating the forward model. Both methods can in
principle deal with redundant systems. The critical problem is
that the motor error is not directly observable, and on its own
subject to redundancy. A special case of error-based learning
has been developed in [12]. The error in the effector space
x− x∗ is used directly for learning. The information used in
this case is fully observable, but the method has never been
shown to work for redundant degrees of freedom (n < m) and
requires a “good enough” inverse estimate in advance.

Example-based methods use example configurations
(f(q), q) for the learning of an inverse estimate g(x). The
existing approaches differ in the way how such examples are
generated. Motor babbling [13], [14] is a pure random form
of exploration. It has been proposed as an implementation
of the “body babbling” introduced by Meltzoff and Moore,
but was used also before body babbling was introduced [15],
[16]. Joint angles are randomly chosen from the set of all
possible configurations qi ∈ Q. This approach can solve the
inversion of causality, if enough examples are generated.
However, it is subject to the non-convexity problem. Also

Fig. 2: Direct inverse learning with random motor babbling as
exploration process does not yield a correct inverse estimate
because of the non-convex redundancy manifolds.

goal-directed exploration approaches have been investigated
[17], [18], which we discuss and extend in the next section.
The approach – as previously discussed in literature – solves
neither the inversion of causality nor the non-convexity
problem in a reliable fashion.

Example-based learning of inverse kinematics has only been
shown to be successful if training data without inconsistent
solutions is already available [19]. Autonomous approaches
to learn inverse kinematics based on examples have so far
consequently failed on redundant systems.

II. GOAL BABBLING

With “Goal Babbling” we generally refer to the successful
bootstrapping of some motor skill by the (i) repeated process
of (ii) trying to accomplish (iii) multiple goals related to that
skill. Goal babbling means learning by doing from scratch. We
use this terminology in order to highlight the similarities but
also differences to previous concepts. The exploration process
focuses on the goals of action instead of the means (motor-
commands). Intimately related to the original concept of vocal-
as well as body-babbling, repetition is everything. A goal
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Fig. 3: Learning dynamics with plain goal-directed exploration
from (a) to (d). Example data is only generated with the inverse
estimate. Learning occurs from inconsistent examples, as the
controlled manifold intersects some redundancy manifolds
multiple times. The estimate drifts in its orthogonal direction.
This method does not find an appropriate inverse estimate.

must be tried to be accomplished again and again in order
to succeed.

A. Goal-directed exploration

In a goal-directed exploration [17], [18], examples (f(q), q)
are generated with an untrained or inaccurate inverse estimate
g(x, θ), where θ are the parameters adaptable by learning. In
principle, any standard machine learning approach can be cho-
sen for g(x, θ), like neural networks, local learning schemes
or polynomial regression. If the parameters are not necessary
for the discussion, we will write g(x) for short. Initially, a
target motion is chosen and represented as a temporal sequence
of target positions: x∗t ∈ X∗ ⊆ X, t = 1...T . The inverse
estimate is then used for trying to reach for those targets:
qt = g(x∗t ), xt = f(qt). After the adaption of the parameters,
the process is repeated. We will refer to this method as plain
goal-directed exploration.

This process does not necessarily discover new target posi-
tions [18] and therefore fails to invert causality in a reliable
way. Another problem is that the inverse estimate is unstable in
the Nullspace of movement, i.e. along its orthogonal direction.
Finally, inconsistent examples can also exist under goal-
directed exploration. An example of the learning dynamics
is shown in Fig. 3.

Fig. 4: Left: Space of target positions x∗. A linear target
motion (bold line) shall be produced between two target points.
Right: Space of results x = f(g(x∗)). An inconsistency occurs
e.g. when the grid is folded. The formerly straight line now
has a circular shape.

B. Inconsistencies

Two samples (x1, q1) and (x2, q2) are inconsistent, if they
represent the same effector pose x1 = x2 but different joint
angles q1 6= q2. Regardless of the kind of exploration that
is used to generate samples, two samples with exact same
effector pose will rarely be found. A reliable solution must
take into account the sample generation method itself.

In goal-directed exploration, examples are generated on a
n dimensional manifold inside the m dimensional joint-space.
This manifold is defined by the inverse estimate and spanned
by the set of target positions: Qexpl =g(X∗). We assume that
two inconsistent samples q1 6=q2, x1 =x2 may be generated in
the exploration (q1, q2 ∈ Qexpl). These samples must have
been generated for two different target positions x∗1 6= x∗2.
Identical target positions x∗1 =x∗2 would lead to a contradiction,
since g(x∗1) = g(x∗2) and thus q1 = q2. We now consider that
the inverse estimate is used to attempt a linear target motion
between x∗1 and x∗2 (see Fig. 4, left). The system would start
from the joint configuration q1, trying to reach for x∗1. Then
the system would move its joints along some path and end
up in joint configuration q2, trying to reach for x∗2. At the
beginning and end of the movement, the effector has the same
pose x1 = x2. When the effector is observed while trying to
follow that straight path, two cases can occur:

1) An effector motion occurs. Since the effector returns to
the same position, the observed effector movement must
have a closed (e.g. circular) shape (see Fig. 4, right).
The goal is to follow a straight line, i.e. keeping the
movement direction constant, but the observed move-
ment direction changes.

2) The effector pose remains constant, in spite of the joint
movement from q1 to q2. This case can occur when the
inverse estimate moves exactly along one redundancy
manifold. This case is characterized by a minimum of
movement efficiency. While the joints are moved, the
effect on the effector is zero.

If we generate examples with goal-directed exploration
and exclude both unintended changes of movement direction
and inefficient movements, the remaining examples must not



contain inconsistencies.
In order to realize this exclusion, we assign weights wt ∈ R

for each example (xt, qt). Unintended changes of movement
direction can be tackled with the following scheme:

wdir
t =

1
2
(
1 + cos^(x∗t − x∗t−1, xt − xt−1)

)
. (1)

Thereby ^(x∗t − x∗t−1, xt − xt−1) is the angle between the
intended and actual movement direction of the effector. If both
are identical the angle is 0.0° and the weight becomes wdir

t =
1.0. If the observed movement has the exact opposite direction,
the angle is 180.0° and the weight becomes wdir

t = 0.0. If a
circular motion occurs for a linear target motion, one half of
the motion receives a higher weight than the other one and
the inconsistency can be broken.

Inefficient movements can be excluded by weighting with
the ratio of effector motion and joint motion, which is 0.0 if
the joints move without effector motion:

weff
t =

||xt − xt−1||
||qt − qt−1||

. (2)

Since both weights are necessary for inconsistency reso-
lution, they are be combined by multiplication, such that an
example is ignored if any of the two criteria assigns a weight
zero:

wt = wdir
t · weff

t . (3)

The weighting scheme relies on the temporal order of samples
along the trajectory, since the actual and the last sample is
taken into account. In particular, it relies on goals: unintended
changes of movement direction can only be detected if there
is an intended direction.

C. More Exploration

In plain goal-directed exploration only those examples are
explored that are exactly on the manifold of the inverse
estimate. Such behavior is highly unrealistic for human motor
development. If a motor command is sent twice, neural and
muscular noise as well as external perturbations can cause
slightly different outcomes. Such perturbations do not result in
noisy and erratic movements in the first place. For instance an
imperfect gravity compensation introduces a continuous shift
of the observable motion. Noise in the motor system primarily
acts upon forces and accelerations and causes smooth devia-
tions when a goal-directed movement is attempted. Human
motion can be distorted by neuro-muscular noise and external
perturbations, which allows to discover new effector poses by
chance. We simulate such perturbations by adding a small
disturbance term Ev(x) to the inverse estimate:

gv(x) = g(x) + Ev(x). (4)

Examples are then generated with this variation instead of the
actual inverse estimate: qv

t =gv(x∗t ), xv
t =f(qv

t ).
The assumptions and arguments for the inconsistency res-

olution still hold, since gv(x) is still a function and spans
a n dimensional manifold in the joint-space. For a set of
examples, generated with a variation gv(x), the weighting
scheme can be applied as proposed above. The index v is

(a) The inverse estimate is initialized around the home posture.

(b) The inverse estimate has aligned with the optimal movement direction and
starts to expand.

(c) The performance increases rapidly. Until the ridge of the forward function
is hit.

(d) The inverse estimate finds the necessary non-linearities to reach for extreme
positions.

Fig. 5: Inverse kinematics learning with Goal Babbling. The
images show successive stages of the learning process. The
inverse estimate is initialized around a small point in space. It
spreads successively and ends up with an accurate solution.



added to identify weights for examples of a specific variation:
wv

t = wvdir

t · wveff

t .
Although exploration is fundamental in infancy, infants do

not try to reach for an object forever. At a time, they stop
exploration, relax their muscles and rest. Learning is possible
from such a “neutral” motor command, since there is still
a resulting effector pose. At the level of kinematics, we
denote a home posture qhome as neutral motor command. The
result f(qhome) can be observed and be used for learning as
any other example. We add the example qv

0 = qhome, xv
0 =

f(qhome) = xhome to each set generated with goal-directed
exploration:

Dv ←− {(f(qhome), qhome)} ∪ Dv (5)

The “home” example receives the full weight wv
0 =1.0.

A home posture is a stable point in exploration, and thus in
learning. The inverse estimate will generally tend to reproduce
the connection between qhome and xhome if it is used for
learning: g(xhome) ≈ qhome. The easiest way to achieve the
result of applying the home posture is: applying the home
posture. This stable point largely prevents the inverse estimate
to drift away. Learning can start around the home posture and
proceed to other targets.

D. Learning

Example data (and corresponding weights) from multiple
different variations gv(x∗), v = 1...V is combined for learn-
ing, where V ∈ N is the number of different variations.

In the learning step, the parameters θ of the inverse estimate
g(x, θ) are updated using the generated examples (xv

t , q
v
t ), t =

0...T (including the home posture) and weights wv
t in a reward

weighted regression manner. Thereby the weighted command
error

EQ
w (θ) =

∑
v

∑
t

wv
t · (g(xv

t , θ)− qv
t )2 (6)

is minimized. Any regression algorithm can be used for this
step (e.g. linear regression schemes).

The overall procedure works in epochs. The inverse es-
timate is initialized with some parameters θ. We generally
use a random initialization, but such that the inverse estimate
generates joint configurations closely around the home posture
for all goal positions. There is no a priori knowledge about
the structure of the kinematics. Within one epoch, examples
are generated from multiple variations, weights are assigned
and the learning is done with the examples. The next epoch
repeats the procedure with the updated inverse estimate.

An example of inverse kinematics learning with Goal Bab-
bling on the 2 DOF arm (see Fig. 1) is shown in Fig. 5.
The inverse estimate is initialized in a small region around
the home posture, which we set to qhome = (0.0, 0.0). The
next images show the progress of the method after several
epochs. The aim is to control the effector’s height within the
full range from −1.0m to 1.0m. Initially, only heights around
f(qhome) = 0m are reachable. The extrapolation of the inverse
estimate than causes a rapid expansion of the inverse estimate
in the joint space. Finally, the necessary non-linearities are
found to successfully reach for all target positions.

III. EXPERIMENTS

In this section, we show results of Goal Babbling on a
planar arm with varying degrees of freedom and investigate the
influence of sensory noise. We use polynomial regression [20]
to represent the inverse estimate g(x∗, θ). The input vector
x ∈ Rn is expanded by a feature mapping ΦP (x) ∈ Rp

which calculates all polynomial terms of the entries of x.
Thereby P is the maximum degree of the polynomial terms
and p is the number of polynomial terms that can be calculated
from an n dimensional vector. All results are shown for third
order polynomials (P = 3). A standard linear regression with
parameters θ = M operates on these features:

g(x∗,M) = M · ΦP (x∗), M ∈ Rp×m . (7)

The entries of the regression matrix M are adapted during
learning with a gradient descent of the weighted command
error as defined in equation 6. We use a learning rate of 0.2.
Before exploration and learning proceed, we first set M to
zero and make some random adaptions such that g(x∗,M)
produces joint angles close to the home posture.

For the exploration, we use linear disturbance terms:

Ev(x) = A · x+ b, A ∈ Rm×n, b ∈ Rm . (8)

The values of A and b are chosen randomly, such that the
disturbance of any joint-angle never exceeds a range R within
the bounded set of target positions X∗:

Ev(x) = (e1, ..., em)T , |ei| <= R ∀ i = 1...m, x ∈ X∗ .
(9)

Contrary to the initial example, where only the height of
the effector is controlled (n = 1), we now consider the 2D
position control of the effector (n = 2). The aim in this set
of experiments is to gain control over a part of the possibly
reachable positions as shown in Fig. 7. We evaluate the
accuracy of the inverse estimates with performance error on
those target positions:

EX(θ) =
∑

t

(xt − x∗t )2 (10)

A new sequence of targets x∗t is generated in each epoch. Ten
positions are randomly selected from the target grid shown
in Fig. 7. One after the other is connected by a linear target
motion with five intermediate target positions.

We first investigate the behavior of the exploration range
R. Figure 6a shows results for R varying between 0.05 and
1.0 radian over 100000 epochs and for 20 independent trials.
The number of variations was set to V = 20. The left plot
shows the performance error over time for different values of
R. The error decreases continuously. High values like R =
1.0 display the fastest convergence, but the residual error is
slightly increased. Although the speed and the converged error
vary, the general success of Goal Babbling is rather insensitive
to the concrete exploration range. The performance error is
minimized to a small value in all cases. An increase of error
is visible for high values of R. Here examples are rather distant
and the residual averaging error between the variations has a
higher impact compared to small values of R. For R = 1.0
the examples are generated in almost the entire joint space.



(a) Results for different exploration ranges R. Higher exploration ranges cause a faster convergence, but higher residual error.

(b) The number of joints m is increased. Successful bootstrapping of inverse kinematics is possible also for 50 DOF.

Fig. 6: Performance of Goal Babbling over 100000 epochs for the planar arm, where the 2D position of the effector is controlled
(n = 2). The left plots show the performance error over time, averaged over 20 independent trials. The finally reached error
is plotted against the varied parameter on the right side. The maximum, average and minimum error of 20 trials are shown.

(a) Target positions x∗ are shown as gray grid. The
arm shows the home posture qhome.

(b) The actually reached positions f(g(x∗)) are shown as black grid. Multiple postures g(x∗) are overlaid
to show how the redundancy is resolved.

Fig. 7: An inverse estimate for 2D position control of a planar 10 DOF arm generated with Goal Babbling. A third order
polynomial was used as approximation model. The inverse estimate is very accurate as the reached positions are close to the
target positions. The inverse estimate makes efficient use of all degrees of freedom.



(a) Results for Gaussian white noise with different standard deviations on the effector positions.

(b) Results for Gaussian white noise with different standard deviations on the joint angles.

Fig. 8: Performance of Goal Babbling with sensory noise over 100000 epochs for the planar arm for n = 2 and m = 3.
The left plots show the performance error over time, averaged over 20 independent trials. The finally reached error is plotted
against the varied parameter on the right side. The maximum, average and minimum error of 20 trials are shown.

However, the error is – in contrast to motor babbling – still
small since the inconsistency resolution filters large portions
of the generated examples.

An important question is how Goal Babbling scales with the
degrees of freedom m. Results for up to 50 degrees of freedom
are shown in Fig. 6b. For each value of m the arm was divided
in segments of equal length, whereas we kept the arm length
constant at 1m. For instance an arm with m= 10 comprises
10 segments with each 10cm length. We used R = 0.2 and
V = 20 for exploration. The results show a reliable decrease
of the performance error for all values of m and in all trials.
Goal Babbling is systematically successful even for 50 degrees
of freedom. An example solution g(x∗) for m= 10 is shown
in Fig. 7. The target positions are reached accurately.

So far, we evaluated the effector position directly with the
analytic forward kinematics function f(q) and assumed that
the joint angles q can be applied with perfect accuracy. In
contrast to a physical robot system this involves no noise.
On a robot, the effector position might as well be measured

with a stereo vision system. Thereby the analytic forward
kinematic function would be fully replaced. In order to assess
the influence of sensory noise, which is unavoidable in such
systems, we added Gaussian white noise with different stan-
dard deviations to the effector positions xv

t . This noise acts on
the learner (Eqn. 6), but also affects the weight computation
(Eqn. 1 and 2). Fig. 8a shows results for standard deviations
ranging from 0cm up to 10cm (0.1m). The noise speeds up
the initial bootstrapping significantly. In the first epochs, the
effect of sensor noise on the effector positions is similar to
a higher exploration range R: effector positions are observed,
that are more distant to the home position f(qhome), causing a
steeper learning gradient and accelerating the learning. Since
such noisy examples do not reflect the true relation f(q),
very high amplitudes of noise cause a degeneration of the
learning. An increase of the performance error is visible for
standard deviations higher than 4cm. However, this amplitude
is substantially higher than typical noise in a stereo vision
system [21].



Sensory noise on the joint angles has a different effect. We
applied Gaussian white noise, again with different standard
deviations, to the joint angles qv

t that are used for the weight
computation and the learning. Fig. 8b shows results for stan-
dard deviations ranging from 0 radian up to 0.3 radian per
joint. Joint noise slows down the initial bootstrapping. The
final performance is very stable and the performance error
increases only very slowly with increasing joint noise. We can
conclude that Goal Babbling works reliably also with sensory
noise.

IV. DISCUSSION

We have presented an approach to bootstrap inverse kine-
matics for redundant systems without prior- or expert knowl-
edge. We have shown theoretical insights about the structure of
inconsistencies in goal-directed exploration [17], [18]. Based
on that insights we have proposed a weighting scheme
that resolves inconsistent solutions which occur in redundant
systems with non-convex solution sets. To our knowledge
this is the first successful approach of direct (example-based)
learning that can solve the non-convexity problem. Moreover,
it is the only successful approach to learn inverse kinematics
exclusively from observable information. Methods based on
the motor-error can in principle deal with redundant degrees
of freedom, but the motor-error is not observable. Feedback-
error learning [8], [9] assumes the prior knowledge about
motor-errors. Learning with distal teacher [10], [11] relies on a
complex mathematical derivation of the motor-error, which is
neurally implausible [12]. In contrast, the information needed
for Goal Babbling is fully observable – actually reached
positions as well as movement directions and velocities.

Goal-directedness is essential for the success of autonomous
motor learning. The comparison of intended movement direc-
tions with actually observed movement directions allows to
detect and resolve one type on inconsistencies. Striving for
optimal movement efficiency allows to resolve the other type
of inconsistencies that can occur in goal-directed exploration.
Optimality is necessary to learn correctly. The introduction of
a “structured” noise in the simulation allows to find previ-
ously unreachable positions and better solutions in terms of
efficiency, while maintaining the information structure that is
necessary to resolve inconsistencies.

Goal Babbling is sufficient as exploration strategy to learn
inverse kinematics. Forms of unstructured, not goal-directed
motor-exploration (like motor babbling) are not only insuffi-
cient for redundant systems, they are even unnecessary. Admit-
tedly, target effector positions are rather low-level goals. The
important aspect, however, is the change of perspective: the
exploration does not focus on the means of action (e.g. joint-
angles), but on the action itself. Contrary to suggestions of
distinct exploration mechanisms in infant motor development,
exploration and control may be based on one mechanism.

What do infants “babble” in body babbling? Possibly goals
instead of motor commands. Goal-directed action may not be
the only form of exploration in infants. However, “learning by
doing”, or Goal Babbling can be successful in learning control
from the very beginning.
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