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Imitating Object Movement Skills with Robots – A Task-Level
Approach Exploiting Generalization and Invariance

Michael Gienger, Manuel Mühlig and Jochen J. Steil

Abstract— This paper presents an architecture for learning
and reproducing movements with a robot in interaction with
a human teacher. We focus on the movement representation
and propose three enhancements to increase generalization
capabilities: Firstly, we introduce a flexible task-level movement
representation that is based on neuropsychological findings.
Movement is represented in task-oriented frames of reference,
and generalizes to a variety of different situations. Secondly,
we propose a mechanism to decouple the task descriptors from
the perceived objects in the robot’s environment. This allows
to formulate a set of generic controllers, and to interactively
create associations with perceived objects. Thirdly, we introduce
a method to dynamically modify the system’s body schema
to account for structural changes such as having grasped a
tool. The changes are consistently treated in the kinematics
computations. This permits to generalize movements to be
carried out in different ways, for instance with different hands
or bi-manually. A set of experiments in an interactive imitation
learning situation underline the capabilities of the proposed
concepts.

I. INTRODUCTION

The capability to acquire and imitate motor skills is
one of the key aspects to achieve cognitive abilities in
robotic systems. The recent years showed a trend from
researching individual methods within this area towards
combining them in more comprehensive architectures that
comprise movement learning, representation, reproduction
and planning capabilities. Such architectural approaches are
important steps towards more autonomy and a fluent human-
robot interaction. It is yet an unsolved question how to
combine reactive low-level control schemes with more ab-
stract representations up to a symbolic level. It seems that
there is a significant dependency of higher level planning to
the underlying movement representation. Particularly when
it comes to applying acquired skills in novel situations,
it is important to incorporate invariance and generalization
capabilities into the movement representations.

A number of interesting architectures have been published
in the recent time. A hybrid architecture to instruct a robot
grasping tasks has been proposed in [1]. They incorporate
active vision, gestural instruction and a dialog system and
couple these elements with a hierarchical movement gen-
eration system. In [2], similar sub-systems are used, but
integrated in a three-layered cognitive architecture. Move-
ment is coordinated by a Petri-Net and distributed to the
individual extremities of the robot by means of parallel
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interacting behavior-based components. A comprehensive
architecture for grasp-oriented visual perception has been
presented in [3]. They combine visual attention and different
visual cues with grasp planning and inference strategies.
Above approaches focus mainly on the architectural aspects,
but incorporate rather simple movement generation schemes.
More complex movement adaptation has been realized by
combining planning methods and reactive movement control.
While [4] proposes a scheme to couple sampling-based
planners with local adaptations based on visual feedback, [5]
learn a probabilistic representation and use optimal control
techniques to adapt the trajectories to a given situation. A
dynamical systems representation is proposed in [6]. Fast
policy learning methods adapt the movement to disturbances.

Such trajectory adaptation mechanisms are capable to
deal with dynamic environments. However, learning does
usually not capture how (for instance with which effector)
to execute the movement, and to which object to relate the
movement. In many real-world problems, there exist several
ways to solve a movement task, and it can be applied to
various different objects. It is desirable to generalize learnt
movements to different ways of reproducing them. This is
related to the correspondence problem which is the transfer
of movement skills to different embodiements. This has for
instance been addressed in [7] by projecting the observed
movements into the teachers frame of reference using a
viewpoint transformation. However, movement is represented
and reproduced using a fixed mapping of visual input to the
degrees of freedom of the system. A joint-level movement
representation according to a detailed kinematic model of a
human has been presented in [8]. Movements are acquired
using motion capture, and can be reproduced in different
task-specific ways on a robot using a set of converter
modules. An approach using dynamic Bayesian networks
has been presented in [9]. The DBN is used to learning
relations between the observed positions of the objects and
body parts of the instructor. A number of approaches to
learn and adapt the body schema have been proposed, for
instance for proprioceptive models [10] and for models
including tools [11], [12]. The concepts of body schema
and body percept have been exploited in [13] to solve the
correspondence problem. They define similarity of teacher
and robot based on the effector movement in cartesian space,
and apply their methods to imitation of hand writing and to
more symbolic sequential tasks.

The architecture presented in this paper combines elements
of prior work in the area of imitation learning [14], [15],
movement control [16] and optimization [17]. While we



concentrate on the human-robot interaction in a related
publication [18], this paper will emphasize the aspects of
movement representation and generation. The objective is to
provide methods to introduce generalization capabilities so
that such architectures can perform a task in various ways
and in different situations. We will focus on goal-directed
movements with objects. In Section II we will give an
overview on the architecture and its major elements. In Sec-
tion III we will derive a flexible movement control scheme
that comprises findings from neuropsychology. Section IV
will introduce a mechanism to dynamically link perceptual
information to the control system using an attention mecha-
nism. This concept is enhanced in Section V by a method to
dynamically modify the systems body schema at run-time.
This allows to generalize task descriptors to a set of options
how the movement can be executed, for instance one-handed
or bi-manual. The proposed concepts have been verified in
experiments with a humanoid robot, which will be explained
in Section VI.

II. SYSTEM OVERVIEW

Figure 1 depicts the architecture underlying the presented
system. It is divided into three layers, with an increasing level
of abstraction from bottom to top. The left part of the figure
refers to the perceptual functions, while the right side refers
to the elements related to movement planning, prediction and
control.
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Fig. 1. System architecture

A. Perception and Learning

A fundamental element of this system is the Persistent
Object Memory (POM). It is the interface between the system
and the real world and can be interpreted as a simple working
memory. The POM comprises a kinematic model of the robot
as well as the spatial and geometrical information of the
objects in its surrounding. Further, it maintains a model of
a human tutor whose pose is determined with the robot’s
sensors. Each perceived entity is associated with a confidence
value that determines the quality of the perception, for
instance if objects are occluded or invisible. A short-term
memory maintains a history of the recent past.

The Interaction System is connected to the POM and
computes a set of cues. An important cue to structure the
learning process is detecting distinct poses or gestures of
the tutor. We utilize this cue to indicate the robot what
to do, or to re-confirm actions the robot is about to take.
Another important cue determines time events to segment
object trajectories for imitation learning. It is based on the
temporal coherence of hand- and object movements and
explained in [18] in more detail. The system is additionally
equipped with an attention system. Each object represented
in the POM is associated with a saliency value. This value
can be modified by the robot’s interaction partner by shaking
the object or pointing to it.

With the above elements, the tutor can show object move-
ments to the robot. They are automatically segmented and
stored as time series of object transformations in the Obser-
vation Memory. Having acquired a set of such observations,
the tutor can instruct the robot to learn a movement represen-
tation for them. The employed learning scheme exploits the
statistical characteristics of the observations and is presented
in detail in [14]. We’ll briefly recapitulate its fundamental
capabilities: First, the observations are projected into a task
space. While we introduced a scheme to automatically detect
the most feasible task spaces in [15], a simplified scheme is
used here. We relate the relative coordinates of the most
salient object with respect to the second most salient object.
This allows the tutor to interactively indicate which objects
are important before demonstrating the movement to the
robot. The observations are then temporally normalized using
a Dynamic Time Warping algorithm. A Gaussian Mixture
Model is then fitted to the normalized data, so that the
movement is statistically represented by a mean and a
variance. It is stored in the Movement Primitive Memory.
The granularity of the primitives is on the level of simple
reaching or stacking movements.

On the highest level, the system is equipped with a
Procedural memory. This memory maintains sequences of
movement primitives as discrete nodes. The nodes can
correspond to learnt movements, or pre-defined ones. The
sequence is represented as a hierarchical state chart. The
nodes are connected by one or several transitions. We
currently use a pre-defined set of sequences, which are for
instance preparatory movements to grasp an object. Learnt
movement primitives are currently embedded at pre-defined



locations within the sequence. This allows us to perform
the required preparatory movements for instance to grasp
an object, before applying the learnt skill to it.

B. Movement generation

On the lowest level, movement is generated with a re-
dundant whole body controller [16], [19]. It is based on the
kinematic control scheme proposed by [20] and integrated
with a walking and balancing control system [21]. The
scheme allows to augment a task vector that is composed
of a set of independent task descriptors. The coupling to the
real world is realized through the POM and explained in
Section III.

On the movement primitive layer we apply a linear at-
tractor system to the selected task descriptors. This leads to
a smooth, human-like movement that converges the robot’s
pose to the attractor target values. We developed movement
primitives with different levels of complexity: Simple prim-
itives converge the robot’s trajectory reactively, with mech-
anisms to locally avoid joint limits or collisions. Sequential
primitives are composed of several attractor vectors and with
an optimization method to adapt them with respect to a set
of criteria [17]. It is local in space, but anticipates a future
time horizon. In decently complex environments, it allows
to generate movements that are collision-free and optimal in
other respects. Imitation primitives additionally incorporate
the statistical information of the demonstrated movement.
We developed a criterion that describes the similarity of
the observed movement to the movement of the robot. The
similarity is weighted with the variance at the corresponding
time point. This results in imitated movements that reflect the
tutor’s characteristics precisely in phases with low variance,
while phases with higher variance weight the other criteria
stronger.

On the highest level, the movement primitives are linked to
the discrete nodes of the Procedural memory and connected
by transitions. The states correspond to the movement primi-
tives, while the transitions correspond to sensory events, such
as “Target reached, contact detected”. They are all evaluated
through the POM. Switching from one node to another
is carried out in the following way: When entering the
new node, the currently active task descriptors are replaced
with those associated with the new primitive, and initialized
with the current robots state. The new attractor targets are
initialized from the given primitive. We also allow to leave
the target unspecified. In this case, the target is set to the
current value of the respective task descriptor. This way, we
achieve invariance of a movement primitive with respect to
different situations, for instance when the target of a task
descriptor cannot be associated with a specific movement
primitive, but depends on the prior movements of the system.

Each node is also equipped with an internal simulation
of the controller. This permits to predict the future state of
the robot based on the assigned targets. We currently use
this prediction mechanism for two cases: Firstly, if a critical
situation is predicted, the system will ask for a confirmation
before it continues. Secondly, we use it to parallelize the

learning and optimization steps with the movement of the
robot. In this way, the system is able to already learn and
optimize movements while it is carrying out the related
preparatory movements.

III. TASK-LEVEL CONTROL

Biological findings suggest that human movement is en-
coded in a variety of action-oriented reference frames. For in-
stance [22], [23] distinguish between egocentric and allocen-
tric reference frames, and give evidence from neuropsycho-
logical studies. Egocentric frames are placed relative to the
human, and comprise head-, arm-, gaze- and grasp-centered
ones. Allocentric frames are represented in environmental
coordinates, such as room- or object centered ones. In this
section, we exploit these findings and derive task descriptors
that relate the movement of one body with respect to any
other body. This allows for instance to describe the position
of one end effector with respect to the other, the orientation
of the camera to the body, etc.

The robot’s kinematics is described in the form of a
tree structure depicted in Figure 2. The individual links are
connected by degrees of freedom (joints) or fixed trans-
formations. The tree may also comprise objects from the
environment. To mathematically formalize this concept, we

Fig. 2. Left: Kinematic tree - Right: Relative body coordinates

look at the relative kinematics of an articulated chain, such
as depicted in Figure 2 right. Coordinate frame 0 denotes its
root. Frame 1 is an arbitrary body which is connected to 0
through a set of joints. Body 2 shall be represented relative
to body 1 with vector r12. We now can write the kinematic
equations as follows:

r12 = r02−r01 ṙ12 = ṙ02− ṙ01 +ω1×r12 . (1)

The outer product term of eq. (1) right is due to the angular
velocity ω1 of body 1. Introducing the coordinate system
in which the respective vector is represented as the left
sub-index and projecting the velocities into the state space
with the respective translational ṙi = JT,i q̇ and rotational
Jacobians ωi = JR,i q̇, the differential kinematics gets

1ṙ12 = A10

(
0JT,2 − 0JT,1 + 0r̃

T
12 0JR,1

)
q̇ = 1JT,rel q̇

(2)
with r̃ = (r×) being a skew-symmetric matrix representing
the outer product, and A10 being a rotation matrix from
frame 0 to frame 1. If the reference (“1”) body corresponds
to a fixed frame, it has no velocity and the corresponding



Jacobian is zero. In this case, we get the differential end
effector kinematics with respect to an inertial (world-fixed)
coordinate system.

The task descriptors for a segments spatial orientation can
be computed for instance in Euler (3d) or Spherical angles
(2d), or as the inclination of one body axis with respect to
any other (1d). It needs to be mentioned that the mapping
from a rotation matrix to a serial angle representation is not
unique. We therefore compute the differential kinematics in
terms of the (unique) angular velocities

1ω12 = A10 (0JR,2 − 0JR,1) q̇ = 1JR,rel q̇ . (3)

and compute the feedback term ∆e in eq. (4) with some
unique representation, such as the CLIK formulation of [24]
for Euler angles, or our formulation [16] for Spherical angles.
We also use task descriptors for the linear and angular
momentum, or individual joint angles, which are skipped for
brevity.

With these equations, we can formulate task descriptors
that relate any segment of the tree to any other. Further, it is
possible to compute these descriptors element-wise, such as
“position of body 2 with respect to body 1 in x-direction”,
or “Euler α angle of body 2 with respect to body 0”.

For a set of task descriptors, we augment an overall
task Jacobian, and compute the joint rates with an inverse
kinematics scheme based on the concept presented in [20]

δq = J# ∆e− α (I − J#J)W−1

(
∂H

∂q

)T

(4)

where J# is a W -weighted Pseudo-Inverse of the aug-
mented task Jacobian, ∆e is the feedback term of the task
coordinates, and H is a secondary objective whose gradient
is projected into the null space of the movement through the
right term of eq. (4). We utilize terms to avoid joint limits
and proximities to obstacles as described in [17].

Fig. 3. Different robot postures according to the same task represented in
effector coordinates (x y α)T

The choice of the order of the relative coordinates yields
some interesting aspects. This is illustrated in Figure 3
for a simple planar redundant system controlled with task
variables (x y α). If the task variables are represented in the
objects frame of reference, different values are needed to
realize the depicted poses. If, like depicted, the orientation
between object and end effector is not important, it may

be more advantageous to represent the task variables in the
effector’s frame of reference. In that case, all three poses
can be realized with the same values. This task description
introduces an invariance with respect to the relative pose
between effector and object. Its null space comprises the
relative pose between effector and object. When resolving
redundancies with eq. (4), the achieved pose will correspond
to a (local) optimum with regard to the cost function H .

An important property of this concept is the decoupling
from the task description from the absolute or world co-
ordinates. When for instance representing the left hand’s
transformation in the frame of reference of the right hand,
the world coordinate trajectories emerge from the secondary
objectives in eq. (4). Both hands absolute transform will vary
over time according to the secondary objective, while their
relative coordinates track the task variables. The absolute
coordinates are in that way resolved in the null space of
the movement. There are many other examples, such as
representing a gazing controller as an object in head-centered
coordinates which is “pointed” to by the focal axis, or a
pointing controller in a similar way.

IV. LINKED OBJECTS

In the previous section, we presented a scheme to derive
task descriptors that can comprise robot - object or object -
object relations. In dynamic environments, the number of
objects as well as their identities and geometrical shapes
are not known in advance. In order to decouple the task
descriptors from a concrete object identity and such to de-
crease the number of required task descriptors, we introduce
the concept of linked objects. This is a way to dynamically
couple salient objects to the bodies associated with the
task descriptors introduced in the previous section. A linked
object may be associated with a perceived object within the
POM, or directly refer to the world reference. Linked objects
are the entities on which the object-related task descriptors
are formulated, and which are constituting to the objects to
be considered in the collision avoidance.

Fig. 4. Linked objects

In order to create the links, we use an attention mecha-



nism. This mechanism organizes an ordered list of salient
objects. We directly assign the salient objects of this list to
the linked objects in their order: The linked object one refers
to the most salient object, linked object two to the second
most salient object etc. If an object’s saliency is below a
threshold, the association to a linked object is deleted, and the
linked object refers to the world reference. This is depicted
in Figure 4. Linked object L1 is associated with object 2 and
has the highest saliency. L2 is associated with object n.

During interaction, we can now use the attention mech-
anism to indicate the important objects to the system. The
tutor can increase an object’s saliency by shaking or pointing
to it, and decrease it by hiding it. If an object’s saliency
exceeds another body’s saliency, the list will be sorted,
and the link associations will be updated. The saliency
computation includes a small hysteresis so that reorganizing
the links is insensitive to sensor noise.

This is utilized both in learning movements, and in move-
ment generation:

• Movement learning
In this work, we assume that the demonstrated move-
ment is mainly characterized by the relative movement
of the objects. Before computing a generic movement
representation based on a set of observations, the trajec-
tories of linked object 1 and 2 are therefore projected
into the space of relative object coordinates. This means
that the movement of the most salient object is rep-
resented in the coordinates of the second most salient
object. If only one object is salient, its trajectories are
represented in world coordinates.

• Movement generation
This is the more interesting case. Formulating a task
descriptor that relates to linked objects now gives us the
flexibility to interactively change the robot’s behaviour.
If we for instance formulate a task descriptor to gaze
at linked object one, the robot will always track the
most salient object in the scene. The same applies for
reaching or approaching an object. If we would for
instance like to reach for object three, we simply point
to it before we make the robot perform the reaching
movement with a task descriptor relating the hand
position to the linked body one.

V. BODY SCHEMA ADAPTATION

Kinematic structures as depicted in Figure 2 represent a
parent-child hierarchy: The movement of a segment will
affect the movement of its children. In many practical
situations, changes to this kinematic configuration occur.
An example is a robot grasping an object and putting it at
a different position. Another example is to put an object
from a table on a tray which is placed on the table. A
common approach to deal with such changes is to keep
the kinematic configuration, but to compute the robots end
effector coordinates based on the desired object transfor-
mation. This way, the movement can be controlled in end-
effector coordinates, and collisions can be taken into account

by applying avoidance strategies based on the transformed
object geometry.

We propose to address this problem by adapting the body
schema, which commonly refers to the perception of a
humans physical appearance, or the interpretation of the body
by the brain. In the following, we assume the geometric
properties of our system to be known, and rather focus on
dealing with structural changes during interaction with the
environment. We argue that kinematic structure modifications
can be modeled in a higher abstraction of the movement
generation system, such as in actions or in action sequences.
For instance if a robot “grasps” an object, it is either known
(or it can be reconfirmed by tactile or visual feedback) that
the grasp is successful and the object is held by the robot’s
end effector.

Fig. 5. Adaptation of the kinematic chain according to performed action.
The linked objects are denoted with Li, index i being the saliency index.

We suggest to exploit this knowledge and apply such
structural modifications based on actions like grasping or
releasing an object. This is depicted in Figure 5. Applying an
action that grasps linked object 2 will modify its connectivity
so that it is connected to the grasping hand of the system. The
relative transformation between linked object and hand has
to be computed according to the robots state at the time the
structural change occurs, so that the alignment is consistent
with the perception. It should be noted that this also accounts
for the case where the linked object refers to a parent-child
structure like object 2 in Figure 4. An example would be
to grasp a tray on which two objects are placed. In the
same way, releasing the linked object can be associated with
connecting it to the worlds frame of reference, or any other
object at which it is positioned.

This approach is beneficial, since firstly, an abstraction
of the embodiment is introduced. Object movements are
generic, while the movement of an end effector always
incorporates the knowledge about a specific embodiment.
Secondly, representing movements in object coordinates al-
lows to introduce invariance in the same line of argument as
discussed in Figure 3: Stacking a cylinder on top of another
can be described by aligning the cylinders symmetry axis,



while it is rather difficult to find a general end-effector object
relation.

Fig. 6. Kinematic chains for different body schemas. The gray lines cover
the joints and transformations that are involved in the movements.

Figure 6 illustrates this for three examples. Let’s assume
a task descriptor that relates the transformation of linked
object L1 to the transformation of linked object L2. The
target values are determined to put L1 on top of L2. In
example a), L1 is connected to the left hand, while L2 has
a fixed transformation in world coordinates. The system will
generate a trajectory moving the grasped L1 on L2 with its
left arm. In case b), both L1 and L2 have been grasped. The
result is a coordinated bi-manual movement, L1 is put on L2

which is held with the right hand. In case c), L2 has again a
fixed transformation in world coordinates, and L1 has been
grasped with both hands. In this case, the system will put
L1 on top of the static object L2, but this time generating a
coordinated bi-manual trajectory with the grasped object L1.

The examples illustrate how to generalize movement rep-
resented in relative object coordinates to different body
schemata. Casting the overall movement into an optimization
problem such as for instance presented in [17] additionally
adds the capability to adapt the resulting trajectories, for
instance to avoid collisions or other limits.

VI. EXPERIMENTS

We conducted a set of experiments to validate the proposed
concepts. The setup is depicted in Figure 7. A tutor is sitting
at a table and demonstrates a task to a humanoid robot
several times. The robot perceives the scene with its on-board
cameras and determines the object’s transformation based on
a color and depth cue. Object rotations are currently extracted
in the camera plane only. The tutor’s pose is estimated by
projecting the 3d position of the detected skin color blobs to
the head and hands of a kinematic tutor model.

The tutor indicates the interesting objects with the at-
tention mechanism by pointing to them. This results in
associating the most salient object with L1, and the second
most salient object with L2. After this, the tutor demonstrates
the task to the robot. In this phase, the robot will cut the

observations into segments based on the coherence of the
hand and object movement, and store the segmented object
trajectories in the Observation Memory. Now the tutor can

Fig. 7. Experimental setup

instruct the robot to reproduce the movement with a gesture.
If no movement primitive has yet been learnt from the
observations, this will be done first. Otherwise, the system
will start the action sequence associated with the tutor’s
gesture. We prepared a set of action sequences that allow the
robot to imitate the learnt movement in different ways, for
instance performing the task with the left hand or with both
hands. The sequences comprise some preparatory movements
as well as the learnt ones. The preparatory movements have
been designed to generalize for different situations. They are
hierarchically organized in form of a state chart so that they
can easily be reused in other situations. Figure 8 shows the
execution flow. Throughout the sequence, the robot will gaze
at the most salient object. Currently, we freeze the object’s
location once the robot starts to walk to the table. This is
due to the limited field of view of the used cameras, in
future it is planned to update the object’s location steadily to
account for more dynamic scenarios. Further, we pre-define
the location where the object is to be grasped, and the set
of task descriptors to be used. In this scenario, we grasp
symmetrical objects and therefore select task descriptors that
relate the hand position and polar angles to the objects
transformation.

A. Stacking with one hand

Experiment a) in Figure 8 shows the robot performing a
stacking task using its left hand. It will first approach the
most salient object so that it can conveniently be grasped.
Then, the hand will move towards a pregrasp pose. In this
phase, the relative position of hand and object is controlled
in hand coordinates, and the hand inclination is aligned with
the object’s handle. This task description is invariant against
the object’s position and orientation (see Figure 3). Once
the hand reached the target coordinates, the fingers will be
closed to a power grasp. At this point, we modify the systems
body schema and attach the grasped object L1 to the hand.



Fig. 8. Experiments

We currently rely on the precision of the system and don’t
incorporate additional tactile or visual information. Once the
preparatory movement has been carried out, the system will
imitate what it has learnt. The chosen task descriptor is the
movement of L1 with respect to L2, which will result in the
robot moving L1 on top L2. Once the movement is finished,
the robot releases the object, retracts the hand relative to the
object and walks back.

B. Stacking with obstacle avoidance

In the second experiment (Figure 8 b) we apply the same
learnt movement as in a), but put an obstacle between
the objects. The proximities between the obstacle and the
linked objects are formulated as an optimization criterion, so
that the trajectory will be adapted to avoid these collisions.
The image sequence illustrates how the system modifies the
movement to account for the new situation, but still preserves
the important characteristics.

C. Rotating an object

The same sequence is also applied in the third experiment
(Figure 8 c), but this time using another learnt movement that
rotates L1 (this time linked to the green object) and puts it
next to L2 (the box). This experiment shows the invariance
of the task description used in the preparatory movements.
We can apply the same task descriptors to retract the hand,
even though the object is rotated after performing the task.

D. Bi-manual stacking

In the last experiment (Figure 8 d), we reuse some actions
and add a preparatory movement to get L2 with the right
hand, and to put it on the table. After grasping L2, we
connect it with the right hand, and after putting it on the
table, we disconnect it. These modifications allow us to
perform the same learnt skill with a coordinated bi-manual
movement as depicted in the last image sequence.



VII. CONCLUSION

We presented an architecture for interactive movement
learning and generation of robots with a human tutor. We par-
ticularly focused on the topic of generalization and invariance
of the underlying movement representation. Learnt move-
ment is represented by the relation of object trajectories, and
incorporates statistical information of the demonstrations.
The robot’s embodiment is not part of the representation. The
association of the movement representation with a concrete
situation is created when the movement is reproduced. This
is achieved in interaction with a human. The major novelties
of the contribution can be summarized as follows:
• We achieve flexibility by providing the system the

capabilities to learn new movement primitives in inter-
action. Newly learnt and pre-defined primitives can be
combined in a consistent scheme.

• We achieve invariance by describing the task in coordi-
nates frames that generalize to different situations, such
as robot-object or object-object relations.

• We employ an attention mechanism to associate salient
objects with the movement representation. This allows
the tutor to instruct the system to reproduce a movement
with a variety of different objects.

• We introduced a method to dynamically modify the
systems body schema. This allows to carry out learnt
skills in different ways, for instance with different
effectors, or even bi-manually.

• We achieve robustness by applying prediction and op-
timization methods, allowing the system to adapt its
movement according to the current situation.

We conducted a set of experiments in an interactive
imitation learning scenario with a humanoid robot to verify
the proposed concepts.

The proposed methods assume that movement can exclu-
sively be represented by the object trajectories, which is
feasible for a certain class of problems only. Further, it is
assumed that it is known how to modify the body schema
of the robot when grasping an object. In more complex
scenarios, this is not trivial. Future work will focus on these
issues.
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