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Abstract— A major step towards intelligent vehicles lies in
the acquisition of an environmental representation of sufficient
generality to serve as the basis for a multitude of different
assistance-relevant tasks. This acquisition process must reliably
cope with the variety of environmental changes inherent to
traffic environments. As a step towards this goal, we present
our most recent integrated system performing object detection
in challenging environments (e.g., inner-city or heavy rain). The
system integrates unspecific and vehicle-specific methods for
the detection of traffic scene elements, thus creating multiple
object hypotheses. Each detection method is modulated by
optimized models of typical scene context features which are
used to enhance and suppress hypotheses. A multi-object
tracking and fusion process is applied to make the produced
hypotheses spatially and temporally coherent. In extensive
evaluations we show that the presented system successfully
analyzes scene elements under diverse conditions, including
challenging weather and changing scenarios. We demonstrate
that the used generic hypothesis representations allow successful
application to a variety of tasks including object detection,
movement estimation, and risk assessment by time-to-contact
evaluation.

I. INTRODUCTION

A major step towards intelligent vehicles constitutes the

research of perception systems whose capabilities equal those

of a human driver and which can provide the perceptual basis

for the diverse tasks a driver has to fulfill for safe driving.

In this article, we will address the question of how to

give a vehicle the ability to achieve reliable perception of

the environment even under adverse weather conditions such

as rain, night or snow, as well as in a broad spectrum of

traffic-scenes such as highway, inner-city and rural roads. We

argue that these requirements can only be met by a system

approach. More specifically, we will investigate the impact

of:

1) Combination of complementary information.

2) Modulation of processing by context information.

3) Generic representations for multiple tasks.

The first point, the combination of complementary sensory

information, implies a selection of object specific and un-

specific detection methods yielding their peak performance

under different environmental conditions or for different

object classes. For example stereo pop out can detect ar-

bitrary objects, such as pedestrians, animals, cyclists, or

vehicles, as long as they are separable from the depth of their

surrounding. In contrast, appearance based detectors can only

acquire specific objects but are largely independent from the

scene layout.

The second point, the modulation by context information

(system-level correlations), addresses the modulation of the

detection process or the validation of detection results. For

example, the correlation between typical car positions and

the position of the road can be used to support car detection

in the vicinity of the ground plane.

The third point, the representational generality, addresses the

question of finding a minimal, i. e. most efficient, represen-

tation of scene elements which carries all the information

necessary for a variety of system tasks and which affords

easy extension to meet the requirements of new tasks.

In the following, we will review the field of related work

w. r. t. fulfilling these criteria. A prominent approach for the

detection of cars is the implicit shape model based approach

by Leibe et al. [1]. Context information in terms of object

motion and scene geometry is used, but the use of diverse

visual detection cues is not addressed. The system presented

by Okutomi et al. [2] shows good performance under broad

weather and scene conditions, which is mainly achieved by

linking road information to obstacle detection. Szczot et

al. [3] also use road information and additional position-

size constraints to enhance pedestrian detection. Similar to

[4], neither Okutomi nor Szczot approach cue diversity or

representational generality.

Strategies for combining visual and non-visual cues have

been extensively researched, differing in the information

that is fused and the applied fusion method. Commonly,

information from different sensors is fused, like sets of
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1: System Architecture.

different radar sensors [5]–[7], radar with lidar sensors [5],

[8], radar with vision [7], [9], or lidar with vision [10]–[13],

including combinations of the above. These approaches gain

performance by exploiting the different physical characteris-

tics of different sensors, but the commonly applied sequential

processing in which one sensor preselects possible targets

for another sensor restricts the modulation capabilities. For

pedestrian detection Oliveira et al. [14] accurately evaluate

the performance for different sets of visual classifiers, but

they neither address context information nor representational

generality.

The following sections are structured as follows: In the

next section, we will present an overview of a system

fulfilling the defined criteria, including a description of its

central elements. In Section III we will evaluate the system

under a variety of different environmental conditions and

show that the chosen design lets the system outperform state-

of-the-art object detection systems. To show the generality

of the presented approach the system is evaluated exemplary

for an object detection task and for time-to-contact analysis.

II. SYSTEM ARCHITECTURE AND ELEMENTS

Figure 1 shows the simplified system architecture. It

contains the most important processing elements and will

be used to structure this section.

The preprocessing stage (Section II-A) contains the general

computation necessary for the different system elements.

It comprises the computation of a stereo disparity map, a

ground-plane estimation, which is a 3D approximation of

the street surface, an ego-motion estimation based on a single

track model, and an unmarked street detection, the so called

free area.

A central aspect of this system design is the use of object

specific and unspecific detection methods. The Classifier Cue

(a) Stereo Cue (b) Classifier Cue

(c) Fused (d) Time To Contact

2: Results of the different processing steps. Red boxes in

Figure (a) and (b) represent detections by the respective

cues. Rectangles in (c) visualize tracked and fused detections,

whereas crosses indicate initial, yet unrelated detections. The

color of the ellipses in (d) represents the danger level.

(Section II-B) is an object specific method selecting regions

which are most likely to contain a car. In contrast, the Stereo

Cue (Section II-C) identifies unspecific obstacles which pop

out from the ground-plane. Without loss of generality, the

presented system incorporates only visual cues, but targets

from other sensors like radar or lidar could be analogously

integrated.

The detection in both the Classifier and the Stereo Cue is

modulated by the current scene context using the identified

free area, disparity, and distance to the ground plane. This

information is used by offline learnt scene context models

for early modulation of hypotheses (Section II-D).

To represent the object hypotheses detected by the different

cues, the concept of Proto-Objects is chosen. These Proto-

Objects can be considered as a pointer to objects in the

environment: As long as this pointer remains valid, all visual

information can be obtained by referencing this pointer and

extracting the information from the image [15].

In the following, the term P t
C,i will be used to refer to

the ith Proto-Object of the Proto-Object list P
t
C created by

the Classifier Cue at time t, whereas P t
S,i will refer in an

analogous way to a Proto-Object created by the Stereo-Cue.

In Figure 2a and 2b the detected Proto-Objects by the Stereo-

and Classifier-Cue are shown for a typical city night scene.

To keep Proto-Object pointers valid, detections need to be

made spatially and temporally coherent. This is the task

of the Proto-Object Fusion (Section II-E). It tracks Proto-

Objects over time and fuses detections from different cues

into a coherent Proto-Object P t
F,i. The result of this step is

visualized in Figure 2c.

Finally the Proto-Objects are passed to the different tasks,

like the detection of cars or a time-to-contact analysis based
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3: Car detection by the template-based Classifier. The visual

hierarchy is computed for different scales. For each scale and

each image-point a SLP classifies the templates as containing

a car or a non-car, resulting in a confidence-map. A local

competition selects the maxima in these maps.

on the estimated ego-motion and object-motion (Section II-

F). Figure 2d shows an exemplary time-to-contact visualiza-

tion, where color encodes the predicted minimal distance of

an object to the egovehicle and saturation encodes the time,

when this distance will be reached.

In the following a more detailed description of the different

architectural elements is given.

A. Preprocessing

For disparity computation, we use a established stereo

implementation, similar to the approach of Fua [16]. It

consists of four major steps: In a first step the matching

values for all pixels and all disparities are calculated. In

the second step the disparity values are interpolated to sub-

pixel accuracy by fitting a quadratic curve to the matching

values in the neighborhood of the best matching value. The

third step is a left-right consistency check for detecting

occlusions and the fourth step consists of rejecting small

disparity segments.

The approximation of the free area bases on an evaluation

of features in a street training region in front of the car and

two non-street training regions at the side of the road. By

dynamic estimation of probability distributions over these

features a pixelwise mask of the unmarked street is obtained.

A more detailed description of the approach is presented in

[17].

The resulting mask is used to approximate the 3D road

surface by a plane. The applied method [18] interprets the

input mask as a plane and searches for the optimal plane

parameters for matching the mask in the left image to the

right image by means of a Hook Jeeves optimization [19].

Based on the obtained 3D representation the distance of each

point to the ground-plane is calculated and provided as a

pixelwise map.

B. Appearance-based Classifier

The appearance-based classifier generates object hypothe-

ses in three successive steps, which are visualized in Fig-

ure 3. First the output of a hierarchical feed-forward ar-

chitecture as proposed in [20] is computed at multiple

scales, resulting in a set of feature maps for each scale and

each image-point. Second, for each scale a Single Layer

Perceptron (SLP) receives the feature maps around one image

point and computes a confidence for this point depicting the

center of a car; i. e. if the image-patch used to compute

the templates is likely to approximate the boundaries of a

car, the confidence value for this point is high, otherwise

it is low. In a last step the confidence maps are fed into a

competitive selection method that generates a given number

of object hypotheses. For this, the local maxima across all

scales are detected. Each maximum is directly associated

with a Region of Interest (ROI) in the image, where the

center of the ROI lies on the maximum and the size of the

ROI depends on the scale associated to the corresponding

map. The selection works in a greedy fashion. So first, the

maximum with the highest confidence is chosen and used to

create the Proto-Object P t
C,1. With the corresponding ROI

the confidence values in all other maps are suppressed. The

remaining maxima are then processed in descending order to

create the Proto-Objects P t
C,2 to P t

C,N , whereas each maxima

is rejected whose ROI is covered by the already inhibited

area by more than 75%. The process stops when the desired

number of hypotheses is reached or no further maxima

remain. To control the number and quality of detections the

confidence maps are thresholded by a value ΘC . With the

choice of the ΘC a trade-off between false detections and

missed cars is made.

This trade-off is supported by incorporating the scene con-

text. It modulates the confidence maps by evaluating the

height of a detection above the ground-plane, the maximal

overlap with the free area, and by relating the image size

of the detection with the 3D size from stereo. The effect of

modulation is that local maxima corresponding to implausi-

ble hypotheses are ignored.

The SLP is learned in a supervised fashion; Segments con-

taining cars and segments containing non-cars are cropped

from the training scenes and normalized in size. The SLP

learns to generate high values for positive examples and low

values for negative ones. The result is a so called view-

tuned-unit [20] which responds robustly to car views of

different viewing angle, delivering competitive performance

in benchmarks like the UINC car detection [21].

C. Stereo Popout

The instantiation of Proto-Objects by the Stereo Cue

constitutes a generic detection method because it does not

require object specific knowledge but identifies regions of

contiguous depth that stand out from their surroundings. To

identify regions of coherent depth, the stereo disparity image

is segmented by a region growing approach.

To reduce these detections to relevant objects, each region

is related to the current scene context. A depth-region Rt
i



(a) Camera Image (b) Modulation Image

4: A typical modulation image (b) used for incorporating

scene context into detection algorithms. Light values in the

modulation image relate to plausible locations for vehicles

in the image (a), dark values to implausible ones.

which is connected to the current ground-plane, whose 3D

height lies in a specific interval, and whose size exceeds

a reasonable value, is passed as Proto-Object P t
S,i to the

output.

D. Scene Context

Scene context models are incorporated at the level of

single object detection methods, e.g. Stereo Cue and Classi-

fier Cue. We have implemented and tested two alternatives:

Heuristics and modulation. The major difference between

them is their application. Heuristics filter the detection re-

sults, whereas modulation can suppress or enhance image

regions during the detection process. The underlying assump-

tion of both methods is that for each Proto-Object detection

context features can be computed, which are correlated with

certain object identities. In other words, specific objects

such as cars are characterized by their relation to other

scene-elements or processing results. For example, cars are

characterized by a high proximity to the ground-plane or a

specific physical size.

In the case of heuristics, the representation of context

models describing such characteristics boils down to the

learning of appropriate thresholds. Optimizing these thresh-

olds is performed on a small training set derived from parts

of the overcast, sunny and rain stream (more details on these

streams follows in Section III). Unfortunately, the learning

of the thresholds constitutes a multi-objective optimization

problem because the single thresholds depend on each other.

For the three features used for the Stereo Cue it is possible to

find the optimal thresholds by a brute force search. However,

for the Classifier Cue we used six different features. In

this case, we applied a standard evolutionary optimization

algorithm [22] to find a good solution in reasonable time.

The downside of heuristics is that they constitute a binary

decision. Hence, this approach may fail if the characteristics

of the scene, and by this also the optimal thresholds, change

too much. This problem is addressed by the context modu-

lation. In contrast to the heuristics the scene context models

used for modulation reflect the statistical dependencies be-

tween context features and objects. These dependencies are

learned autonomously using methods described in [23]. In a

conceptually new step, learned dependencies are inverted to

produce hypothesis feature distributions given the object type

”vehicles”. Such distributions can be transformed to modu-

lation images (see Figure 4) which are multiplied with the

confidence maps produced by the classifier (see Section II-B)

to achieve selection of vehicle-containing image regions.

The achieved improvement by means of context features

is discussed in Section III.

E. Proto-Object Fusion

The Proto-Objects P
tc

C and P
ts

S represent instantaneous,

asynchronous detections, independent from each other and

the temporal history. The Proto-Object Fusion relates these

detections over time and space, thus building coherent rep-

resentations. The approach comprises two major steps: First,

the tracking of detections in the isolated cues and second

the fusion of detections in different cues relating to the same

physical object.

The aim of the tracking in isolated cues is relating all Proto-

Object detections {P t0
i , P t1

i , . . . , P tN

i } to one Proto-Object

model P̂ t
i

1. Therefore the Kalman-Filter based multi-object

tracking presented in [15] is extended to cope with the

high dynamics of the automotive domain. In the traditional

approach Proto-Object P̂ t
k is associated with a detection P tc

i

if

k = argmax
j

(

S(P tc

i , P̂ tc

j )
)

(1)

∧ S(P tc

i , P̂ tc

k ) > ΘF (2)

where S(Pi, Pk) ∈ [0, 1] is a similarity function between

the Proto-Objects Pi and Pk, and P̂ tc

k is a prediction of the

Proto-Object P̂ t
k towards the current timestep tc. Thus, the

decision to bind an existing model to a detection is made by

predicting all available models towards the timestep tc of the

detection and perform a comparison between the detection

and the predicted models. If a detection is associated to a

model, the model is updated as described in [15].

This traditional approach exhibits three limitations for the

automotive domain:

1) Binding models to predictions is a one-to-one mapping.

2) S depends on the overlap in the image only.

3) S does not incorporate dynamic uncertainties.

The approach presented in this paper binds detections to the

best fitting model, thus overcoming the one-to-one mapping.

As the similarity measure based on visual overlap can neither

cope with occlusions by other objects, nor with the noisy cue

segmentation, we refine the similarity function between two

Proto-Objects Pi and Pk as

S(Pi, Pk) = wP · SP (Pi, Pk) + wO · SO(Pi, Pk)

+ wC · SC(Pi, Pk) + wS · SS(Pi, Pk) ,

where SP (·, ·) encodes the similarity based on 3D position,

SO(·, ·) based on 2D overlap, SC(·, ·) based on color, and

SS(·, ·) based on Local Orientation Coding (LOC) features

describing the image structure [24]. The wi are fixed scalar

weightings of the respective similarity measures, summing

1As the tracking is identical for each Cue, the source-indices have been
dropped for convenience



(a) overcast day (b) sunny day (c) night (d) rain (e) snow

5: These images are example frames of the five different weather conditions we used for evaluating our system.
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6: Visualization of Time To Contact estimation. The smallest

relative distance dmin
i (t) and the time tmin

i (t) when this

distance is reached are evaluated and determine the color

coding. In this figure the indices are dropped for convenience.

up to 1.0. The similarity measures SP (·, ·) and SO(·, ·) incor-

porate the dynamic process- and measurement-covariances of

the Kalman-Filter, which are chosen such, that they account

for uncertainties based on an object’s distance, the ego-

motion, and the temporal history.

As a result of this step, the detections of the Classifier- and

the Stereo-Cue are aggregated to Proto-Objects P̂ t
C,i and P̂ t

S,i

respectively. In a second step, these Proto-Objects are fused

into one list of coherent Proto-Objects P
t
F . Here the fusion is

done exactly as in the above step, except that the similarity

is not computed between detections P t
C,i and and tracked

Proto-Objects P̂ t
C,i, but rather between tracked Proto-Objects

P̂ t
C,i, P̂ t

S,i and fused Proto-Objects P t
F,i.

F. Time To Contact Evaluation

The time to contact evaluation demonstrates the applicabil-

ity of the perceived Proto-Objects to various tasks, including

risk assessment. This risk is composed of two estimations:

The minimal predicted distance dmin
i (t) between the egovehi-

cle and an object P t
F,i in a time window [t+ t0, t+ tN ], and

the time tmin
i (t) when this minimal distance will be reached.

They are estimated by

dmin
i (t) = min

τ∈[t0,tN ]
d(P̂ t+τ

F,i , et+τ ) (3)

tmin
i (t) = argmin

τ∈[t0,tN ]

d(P̂ t+τ
F,i , et+τ ) , (4)

where et+τ is the state of the egovehicle predicted for time

t + τ , P̂ t+τ
F,i is a Proto-Object predicted towards time t + τ ,

and d(P̂ t
F,i, e

t) is the distance between the closest points of

P̂ t
F,i and the egovehicle at time t. The predictions incorporate

current position and velocity gained from the Kalman Filter

[25].

Figure 2d shows a visualization of this risk estimation by

color coding. Here the minimal predicted distance is mapped

to hue, and the minimal time to saturation. This coloring

scheme is also visualized in Figure 6.

III. EXPERIMENTS

In order to assess the performance of our system, we set

up two different tasks. The first task is to detect all cars

within the current scene at a low false positive rate. With

this experiments we evaluate two aspects:

1) Is there a gain in using unspecific detection cues when

searching for specific objects?

2) Is there a quantitative gain in using context modula-

tion?

We evaluate robustness against different weather conditions

(overcast day, sunny day, night, rain, snow (see Figure 5))

as well as generality over different scene types (inner city,

highway, rural road, industrial area). To evaluate our system

w.r.t. these requirements, we recorded five video streams of

roughly 10 minutes length using an experimental prototype

vehicle. For all streams the same route was traversed, encom-

passing all of the aforementioned scene types and weather

conditions. Hence, these streams allow a sophisticated anal-

ysis of the raised questions.

Parts of the overcast, sunny and rain stream are used to train

the learning modules of the system. The remaining parts of

these streams as well as the full night and snow streams are

used for evaluation.

In a second experiment, the system has to analyze the

current scene and assign a risk to each object, based on

the previously introduced time to contact analysis. This task

requires a certain amount of scene understanding as objects

have to be identified and their movement has to be predicted.

A. Car Detection Evaluation

As mentioned above, our evaluation of car detection is

done on five different streams. For quantitative evaluation,

one image per second has been annotated by hand to create

ground truth data. The annotation constitutes a rectangular

mask for each car in the scene, approximating the shape of

each car. These masks are intrinsic, that is, they approximate

the actual object shape even if the object is not completely

visible. Additionally, the amount of occlusion for each object

is labeled.

The performance of single methods for the car detection

task is assessed through Receiver Operator Characteristic

(ROC) analysis. To investigate the trade-off between correct

detections and false positive detections of non-car scene

elements, we evaluate the false-positive rate per image frame
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7: a) ROC comparison of the average (over all streams) Classifier Cue performance with and without using scene

context models b-f) Comparison of selected Classifier Cue and Stereo Cue performance with System Working Point (WP)

performance for each stream.

(FP/IMAGE) with respect to the so called RECALL R,

which is defined as

R =
TP

TP + FN
. (5)

Here, TP stands for true-positives, the number of labeled

cars which were detected by the system, and FN stands for

false-negatives, the number of labeled cars which were not

detected by the system. A labeled car is considered detected

if the center of one of the generated Proto-Objects lies inside

the annotated region. The advantage of using ROCs lies in

analyzing the detection methods across their whole working

range instead of using a single working point. Unfortunately,

this is not possible for the whole system because contrasting

to the classifier, the system’s performance does not depend

on one parameter but on a large set of parameters. Thus the

creation of a ROC would require a complete iteration of all

combinations of parameters. Hence, we run the system with

optimal parameters derived from isolated ROC analyses of

the single cues.

We performed a thorough analysis of single cue perfor-

mance2 and compared the results to the performance of the

whole system. When comparing two ROC curves, the one

2Without scene context for the Classifier Cue, with scene context for the
Stereo Cue.

ROC curve being above the other is considered to be better

because it shows continuously better performance. In case a

working point is compared to an ROC curve, we consider

the performance of the working point to be better if it is

above the ROC curve because it constitutes a better trade-off

between false-positive rate and recall. As a complete review

of our results would go beyond the scope of this paper, we

restrict the results to the most striking ones.

First, the results show that inclusion of scene context

models dramatically improves the performance of the indi-

vidual cues as shown here for the Classifier Cue. The car

classifier employed in our system is appearance-based, i.e. its

response depends on local image information. Due to this, the

classifier itself is not able to revoke implausible detections

according to their position or size. Indeed, a street scene has

a defined structure and allows for various context information

like cars being close to the ground plane, cars having a

certain physical size or cars occurring only in certain areas

of an image. Figure 7a shows that such scene context models

significantly boost the performance of the car classifier.

The second conclusion from the results is that even

for the detection of vehicles the complete system has

a significantly higher performance than the appearance

based classifier alone. As mentioned above, it is unfeasible

to create a ROC of the whole system because of the



large parameter space and the time required for a single

performance evaluation. For this reason, we compare the

ROCs of the single cues with the working point of the

whole system. The results are displayed in the Figures 7b,

7c, 7d, 7e, and 7f for the different weather conditions. All

these plots show a significantly higher performance of the

whole system compared to the single cues. On average, the

recall of the whole system is 0.1 higher than the individual

cues, at equal false positive rate. However, this effect

varies considerably for the different weather conditions.

The highest gain is achieved for the sunny day stream

in Figure 7c, where the system achieves a recall of 0.95

compared to a recall of 0.8 for the classifier. The lowest gain

in recall rate appears at night, as visualized in Figure 7d.

Here, the whole system has a recall of 0.81 at a recall of

0.77 for the best single cue. These results indicate that

methods for dynamical fusion, dependent on the weather

conditions and cue performance require further investigation.

Two important conclusions can be derived from this ex-

periment: First, the use of scene context greatly improves

detection performance. Second, even when searching for

specific objects, the use of unspecific detection cues improves

the performance significantly. However, a dynamic fusion

strategy incorporating knowledge about cue performance

under different weather conditions is suggested. This has also

been verified in first tentative experiments.

B. Time To Contact Evaluation

A quantitative analysis of the risk assessment is not possi-

ble as no ground-truth data exists and the use of simulators

implies the problem of insufficiently reproducing noise and

error sources of real-world environments. For this reason, we

present a qualitative evaluation here. The results are plotted

for a 10 second interval in an exemplary inner-city day-

scene in Figure 8. Car 1 is initially detected at a distance of

56m. The initial relative velocity in z-direction (longitudinal

movement) is estimated to be 4m/s, thus the minimal pre-

dicted distance within 4 seconds is 40m. Our Kalman Filter

approach for tracking hypotheses (see Section II) requires

approximately 12-20 frames until convergence, which is

expressed in a slowly increasing relative velocity. With

increasing relative velocity, the minimal predicted distance

drops to below 1m but not below 0m. This is the effect of

evaluating the distance in a 3D coordinate system. Car 2 is

already detected at a distance of 80m, giving the Kalman

Filter enough time to converge, so that a minimal distance

below 1m can already be predicted at a distance of 56m.

At about t = 2 the velocities change abruptly. Here, the

car is lost by the Classifier Cue, and the Stereo Cue takes

over. As the Stereo Cue usually detects objects later than the

Classifier Cue, the estimated velocity is lower. However, the

system recovers from this loss after about 4 frames. Car 3

following car 2 at a close distance is detected late. Thus, its

prediction becomes accurate at a distance of only 12m. In

contrast to the other cars, the relative velocity of the parked

car 4 is only caused by the egovehicle’s movement. Thus
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8: Results of the time to contact analysis over a 10s inner-

city day-sequence. The images contain the risk colored as

described in the previous section. For selected objects, this

plot shows the currently measured distance (top row), the

minimal predicted distance estimated relative velocity in z-

direction (bottom row).

the predicted minimal distance falls off much slower. Since

all the cars on the opposing lane move out of the camera’s

field of view before they reach the egovehicle, the measured

current distance never falls below 3m.

This experiment shows the feasibility of the presented

system for risk assessment. The settling time of the Kalman

Filter between 12-20 frames is slightly higher than reported

by [26]. We assume, that this is caused by a less accurate

depth, the missing use of optical flow for initialization,

and an unconstrained 3D coordinate space which is more

error-prone than the commonly used 2D-projections to the

ground plane. As reported in [26], we believe that the settling

time can additionally be improved by incorporating velocity

information from the radar-sensor.

IV. CONCLUSION AND OUTLOOK

In this paper we presented a system whose design differs

in three major aspects from state-of-the-art approaches: It



includes several complementary visual object detection meth-

ods (cues) generating vehicle hypotheses that are tracked and

fused to obtain coherent representations of objects in the

environment. Moreover, the cues are modulated by incorpo-

rating context information, like the relation of detections to

the ground plane or to the estimated drivable area. Finally, the

concept of Proto-Objects is employed, serving as a generic,

common representation which affords the applicability to

various tasks.

In extensive evaluations we compared our proposed system

with a state of the art appearance based classifier. These

experiments demonstrate that the combination of object

specific and unspecific detection cues is beneficial, even for

the detection of specific objects: The presented system sig-

nificantly outperforms the appearance based classifier under

various conditions.

Moreover, the use of car-unspecific detection cues equip the

system with the ability to detect unexpected obstacles, such

as pedestrians, cyclists, motor-bikes or animals.

It is worth noting that the gain of incorporating multiple

cues varied among the different scenes, indicating a not yet

sufficient fusion strategy.

In an exemplary experiment we demonstrated the feasibil-

ity of the chosen representations for a typical risk assessment

based on trajectory prediction. The shown performance is

convincing, considering that the system has not been spe-

cially designed for this task, but only evaluates the obtained

Proto-Object representations.

Similar to previous approaches we could show that in-

corporating context information to the cue detection sig-

nificantly improves performance. However, in the current

approach this is mainly exploited for the car detection, but

much less for the remaining processing, like tracking and

fusion. Methods for improving these processes by incorporat-

ing such context information or top-down knowledge are sub-

ject to further research. They would constitute an important

step towards scene understanding as they would enable the

system to go beyond visual similarities and maintain coherent

representations even if objects are temporarily occluded.
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