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Abstract. It is still an open question how preliminary visual reflexes
can be structured by auditory and visual modalities in order to recognize
objects. Therefore, we propose a new method for a controlling strategy
for an active vision system that learns to focus on relevant multi modal
aspects of the environment. The method is bootstrapped by a bottom
up visual saliency process in order to extract important visual points.
In this paper, we present our first results and focus on the unsupervised
generation of training data for a multi-modal object recognition. The
performance is compared to a human evaluated database.
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1 Introduction

Active vision starts from retinal filtering and is understood as a process that
actively interacts with the environment in order to control the gaze towards
relevant aspects like objects. Most object recognition systems suffer from train-
ing with hand annotated data resulting in an inflexibility regarding spontaneous
changes. So far, little work has been done in the computational modeling of an
object recognition process, which automatically extracts a structure of auditory
and visual cues in order to gain an object representation. Object recognition
in an online learning scenario features a wide range of challenges. This means
to build up a system that incrementally learns the structure of a demonstrated
object. The ability to enhance the visual sensitivity on repeated exposures to
multi-modal sources like movements of the mouth and speech requires the inte-
gration of bimodal signals. In addition, this requires a mechanism which selects
stimulus driven relevant visual and auditory features in an initial learning phase
in order to define unsupervised learned classifiers. Walter and Koch [1] propose
a model that links a bottom up attention model to an object recognition sys-
tem with an attentional modulation. This approach focuses on visual perceptual
properties of the environment. In order to maintain object constancy for an
object recognition, Newell [2] proposes that a constancy can be achieved by a



2 M. Grahl, F. Joublin, and F. Kummert

multi sensory representation and refers to the interaction with haptic cues. Xiao
[3] studies the effect of task irrelevant sound on the oculomotor system. The
analysis with different pitch deviants shows that the smooth pursuit ability in-
creases with an increasing of the pitch. Lehmann [4] investigates the influence
of past audio-visual object representations on an unimodal object recognition
task. The criteria of memory performance and accuracy are improved if an ob-
ject has been perceived in both modalities. Molholm [5] also suggests that an
audio-visual representation leads to a faster and more accurate object detection
performance and hypothesizes that auditory input modulates the processing in
regions of the lateral occipital cortex. This challenges to find features that link
the auditory and visual part of an object. Furthermore, a system needs to dis-
criminate relevant information from irrelevant information automatically. Roy
et. al [6] addresses the problem of finding significant features for the learning of
auditory and visual cues between objects and speech. This approach uses the
mutual information as clustering criterion and selects images and speech seg-
ments according to their mutual information maximization. A few approaches
have been suggested to estimate audio-visual correlations [7], [8]. In contrast
to this methods, our approach researches the correlation of auditory and visual
properties from an active vision perspective and therefore focuses on space vari-
ant regions. In section 2, we present a system architecture for the control of an
active vision system. Section 3 focuses on the correlation of auditory and visual
properties with respect to center activity. A conclusion about the performance
of unsupervised generation of training data is given in section 4.

2 System Architecture

In the following, the architecture [9] (fig. 1) is described with respect to the
shown components. At each time when the camera moves onto a new position
and tracks the scene for a defined time, the field of vision is processed with
visual filters. The central region of the observed scene is correlated with auditory
cues. The visual filtering is initially determined by predefined filters (6) and
results into a saliency map. In relation to the new position, the movement is
defined by a saccade logic (7) that calculates the center position by using the
saliency map. The extraction of the most important point defines the camera
movement. The moment of the movement is determined by a timer logic (8) that
defines a new saccade and the system reevaluates the scene center. During the
track of the scene, the system separates the acquired sound in active and non
active audio segments. In a first learning phase the audio signal is not classified
and is not accessible for the saliency computation with a weighting by auditory
classifiers. The properties of the active audio segments are correlated with visual
properties of the camera center and serves as criterion for retaining auditory
and visual segments. The correlation computation provides a basis to extract
visual and auditory segments in order to cluster them (11, 12) and to prepare
classes for learning of an auditory classifier and for additional visual saliency
filters. The correlation computation (9) is carried out during the tracking and
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Fig. 1. An active vision system that attends on multi-modal relevant aspects. In the
initial phase, the gaze selection of the architecture is reactive and the controlling strat-
egy is defined by [10]. This model extracts visual salient points of the environment. An
object classification based on auditory characteristics requires an associative learning of
visual and auditory concepts (e.g. mouth/speech, hand/knocking). Therefore a learn-
ing of additional visual saliency filters (2) and auditory classifiers (3) are proposed. The
association of learned concepts is defined by a weighting (1) of the relative importance
of visual saliency filters that determines the saliency computation.

results in a statistic that provides indications about the mutuality of visual and
auditory properties. The decision (10) of retaining single segments depends on
the observed mutuality and extracted visual regions and auditory segments that
have been correlated in particular. In this paper, we focus on part 9 and 10.

3 Selection of relevant visual and auditory segments

The proposed selection mechanism serves as a criterion for what to learn and
suppresses the processing of noise with respect to missing coherence of auditory
and visual information. Hershey et. al [7] define temporal synchronous observa-
tions of audio at and visual signals v(x, y)t as Mutual Information I (1). Both
events at timestamp t are drawn independently from a joint Gaussian process
with variances ĈAt

and ĈV (x,y)t
belonging to a joint covariance matrix ĈAV (x,y)t

.

I(x, y)t = −1

2
log

(
∣ĈAt
∣ ⋅ ∣ĈV (x,y)t

∣
∣ĈAV (x,y)t

∣

)
. (1)
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This approach suffers from a constant time averaging and hence temporal changes
of I are not adapted. Therefore, we use the method proposed by Rolf [8].
We investigate in the analysis of the audio energy at and motion activity vt
defined by the difference of intensity images with respect to center activity
w (x, y) = exp

((
−x2 − y2

)
/�2
)
. For ĈV (x,y)t

we estimate a threshold ̂t (2)
during the tracking:

̂t = ̂t−1 + � ⋅ (t − ̂t−1) with t =
∑
x,y

w ⋅ ĈV (x,y)t
. (2)

Those regions that don’t exhibit significantly a large variance of vt are removed
for a further correlation computation:

ĈV (x,y)t =

{
0, if ̂t > ĈV (x,y)t

ĈV (x,y)t , else
(3)

Active acoustic segments are obtained by applying a fixed threshold. After each
tracking step k the observed mutuality is summarized with Ik =

∑
x,y w ⋅I (x, y)t.

In order to select relevant visual and auditory events r̂v,a that have been corre-
lated, Ik is evaluated after each tracking sequence (4). Firstly, the thresholding
step ensures that visual and auditory information are removed that obtain low
correlation activity. The threshold �1 is adapted by removed correlation mea-
surements during the whole observation of the scene. The filtering includes a
second threshold �2 and is determined by a randomization step Irk computed in
parallel. For this a is drawn from a normal distribution with � and � estimated
from origin active acoustic segments.

r̂v,a =

{
1 if Ik > max(�̂1, �2)

0 and �̂1k = �̂1k−1
+ � ⋅ (�1k − �̂1k−1

) else
(4)

If the estimated Ik yields a higher mean value as the estimated �1 and the
randomized correlation �2, than the visual and auditory information are selected
as relevant. Otherwise the correlation is caused by noise.

4 Results

The manual classification contains the separation between relevant and not rele-
vant information of the sequences. The next saccade movement is determined by
a saliency map that is computed by color, motion and orientation. An inhibition
of return leads to a gaze selection to locations that have not been attended before.
A new saccade is triggered each second. The Mutual Information I is weighted
with � = 0.05 and w is defined with � = 0.1/cut-off = 0.5. The threshold for

motion activity ĈV (x,y)t
and �̂1 are adapted with � = 0.5. In order to analyze

the performance of our approach, we use a dataset that is manually classified by
humans into relevant and irrelevant patches. The dataset is recorded under labo-
ratory conditions and shows a speaking person. The dataset comprises sequences
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Fig. 2. Example dataset of relevant and irrelevant information (upper/bottom row).
For the evaluation, the sequences are extracted in a predefined step with our algorithm.
They contain always the last image and the sound information from start to the end
of the tracked scene. The image view is restricted according w. The labeling criterion
is defined by the appearance of redundant information of both modalities. This means
if the sequence contains a mouth and is coherent with speech, the sequence is marked
as relevant. Otherwise the sequence is marked as irrelevant. We conducted our analysis
on 105 tracking sequences k. Sequences without any sound activity are removed from
the dataset. By the manual annotation, we get 35 relevant combinations of auditory
and visual information and 70 not relevant combinations.

of images with sound. Figure 2 shows a set of visual patches marked as relevant
and irrelevant. As our thresholding criterion (4) contains a random parameter,
we repeated our analysis for five times on the dataset. The results are averaged
by the number of trails. Compared to the manually annotated data, our auto-
matic approach finds 46 % (table 1) of the dataset that are selected as relevant
(tp). Our method classifies 54 % combinations as not relevant. The fn error

Table 1. Evaluation results: The true positive error tp and false negative error fn
describes those patch combinations that are selected as important and unimportant
from relevant ones. The false positive error fp and true negative error tn describes those
patch combinations that are selected as important and unimportant from irrelevant
ones.

tp fn tn fp relevant irrelevant

relative 0.46 0.54 0.83 0.17
average total 16 19 58.2 11.8 35 70

d� 26 39.4 251.2 217.1
d� 17.6 31.4 165.8 148.4

shows a loss of training data. This does not implicate an influence of a further
clustering step. The most difficult task for an object recognition system consists
in the unsupervised description of not relevant information. The tn error is 83
% and shows the effectiveness of our approach. Most irrelevant combinations are
identified. Only 17 % are detected as relevant. Hence an unsupervised extrac-
tion of valid training data is ensured for a further clustering step. An additional
analysis of the spatial distribution of center views of selected and rejected infor-
mation shows a difference in the different conditions. This similarity is measured
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by the euclidean distance d between the centers resulted from a sequence k. The
results show that in case of the tp the average distance is smaller than in the
case of fp. This means the accepted visual information from false wise accepted
correlation events are distributed to center reference and can not share common
features. In contrast to this, the visual fields that are evaluated as tp provides a
basis for a common feature representation reasoned by the low d�.

5 Conclusion

This paper introduces an active vision architecture that is bootstrapped by a
visual bottom up process and a correlation computation. A threshold adaptation
takes place during the tracking and removes not significant aligned audio-visual
events. The results provide a significant discrimination of relevant auditory-
visual information. The investigation in the analysis with respect to center refer-
ence provides a preliminary clustering and a basis for learning of visual saliency
filters.
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