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Abstract

sists of Sound Source Localization (SSL), Sound Source Sep-
aration (SSS), and Speech Enhancement (SE), which we have

This paper presents a speech recognition system for a mobile adopted from already existing studies. To enhance the acous

robot that attains a high recognition performance, evehsf t
robot generates ego-motion noise. We investigate noise sup

tic features further, we propose to incorporate three nustho
into this framework that are based on instantaneous informa

pression and speech enhancement methods that are based onjon extracted from ego-motion related processes: (1ptete

prediction of ego-motion and its noise. The estimation af-eg
motion is used for superimposing white noise in a selective
manner based on the ego-motion type. Moreover, instantaneo
prediction of ego-motion noise is the core concept to estab-
lish the following techniques: ego-motion noise supp@sby
template subtraction and missing feature theory basedingask
of noisy speech features. We evaluate the proposed te@&niqu
on a robot using speech recognition results. Adaptive super
imposition of white noise achieves up to 20% improvement of
word correct rates (WCR) and the spectrographic mask attain
an additional improvement of up to 10% compared to the single
channel recognition.

Index Terms: speech enhancement, noise reduction, ASR

1. Introduction

Robots with listening capabilities are being equipped \aith
dio signal processing techniques against environmentakgso
[1], [2]. However, these methods are not effective against
robot’s own noise, in particular ego-motion noise, whicises
when the robot performs a task, action or motion using its
motors. Ego-motion noise is rather challenging due to its
close proximity to the microphones and non-stationarftgré-
fore conventional noise reduction methods like spectratrac-
tion [3] do not work well in practice. A directional noise medd
such as assumed in case of interfering speakers [1] or a dif-
fuse background noise model [2] does not represent eg@moti
noise characteristics entirely either. Especially beedhs mo-
tors are located in the near field of the microphones and are
covered with body shells, they emit sounds having both siéfu
and directional characteristics. Nishimwrgal. [4] and Ito et
al. [5] tackled this problem by predicting and subtracting ego-
motion noise using templates recorded in advance for eaeh mo
tion and gesture involving activity of several motors atrad;j
but their methods work only for limited number of gestured an
motions with fixed trajectories. By exerting Missing Featur
Theory (MFT), Yamamotet al. [1] and Takahashét al. [10]
proposed models for mask generation to eliminate leakaige no
in a simultaneous speech recognition task of several spgake
however their models are unable to deal with ego-motionenois
In this work, we target to eliminate the diminishing effects
of ego-motion noise in the context of automatic speech neieog
tion (ASR). In order to generate speech features we use &n env
ronmental noise robust feature extraction framework tbat c

white noise superimposition based on the motion type, (2) pa
rameterized template subtraction, and (3) MFT-based mgski

on speech features. We demonstrate that the proposed system
achieves a high noise cancellation performance and improve
ASR accuracy.

2. Noise Robust Feature Extraction

In this section, we describe a standard multi-talker speech
recognition system using a microphone array, which is rotaus
environmental noise and interfering speakers (see Figriig.
chain starts with an SSL module. In order to estimate the lo-
cation of the speaker, we use one of the most popular adaptive
beamforming algorithms called MUItiple Signal Classifioat
(MUSIC). It detects the locations of sources by performing a
eigenvalue decomposition on the correlation matrix of thisyn
signal and sends them to SSS stage, which is a linear separati
algorithm called Geometric Source Separation (GSS) [1ik It
based on a hybrid algorithm that exerts Blind Source Separa-
tion (BSS) and beamforming. Current GSS implementation is
an adaptive algorithm that can process the input data iremem
tally, and makes use of the locations of the sources explicit
To estimate the separation matrix properly, GSS introduoss
functions that must be minimized in an iterative way [2].

After the separation process, a multi-channel post-filteri
(PF) operation proposed by Cohen [6] is applied, which can
cope with nonstationary interferences as well as statjoyaes
of noise. This module treats the transient components in the
spectrum as if they are caused by the leakage energies that ma
occasionally arise due to poor separation performancethior
purpose, noise variances of both stationary noise and sourc
leakage are predicted. Whereas the former one is computed us
ing the Minima Controlled Recursive Averaging (MCRA) [7],
to estimate the latter the formulations proposed in [2] @edu

In order to achieve an optimum recognition performance,
we create an acoustic model matched with a known noise.
Therefore, a censequent additive white noise step appfied a
post filtering improves the speech recognition results mege
ating an artificial floor in the spectrum of speech signal.digt
about the improvement of this module is subject to further di
cussion in Sec. 4.1. Finally, acoustic features are gesrbiat
calculating Mel-Scale Log Spectrum (MSLS) [8] that does not
spread distortions to all coefficients of the cepstrum enlitel-
Frequency Cepstral Coefficients (MFCC).
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Figure 1: Proposed multi-talker speech recognition system

3. Ego-motion Noise Prediction

The underlying motivation of using templates for noise pred
tion resides in the fact that the duration and the envelopkeof
motor noise signals does not change drastically for the same
motions when the motion is performed again. However, a con-
ventionalblockwise template predictiof#] that extracts tem-
plates as a single block has several shortcomings, e.gulid co
be performed properly only after the detection of the ext@ts

ing moment of the template. Another drawback is that it re-
quires a large collection of data consisting of the motoseoi
statistics for each joint of different combinations of dnigtar-

get, position, velocity and acceleration parameters. Ter-ov
come these deficits, we implemeydrameterized template pre-
diction technique [9] that fragments a discrete audio segment
into frames by associating them with the current status ef th
motors. The data is provided by the joint angle sensors that
measure the angular positions of all joints separately.

3.1. Mation Prediction and Template Database Generation
We make the following assumptions:

1. Current motor noise depends on position, velocity and
acceleration of that specific motor.

Similar combinations of joint status will result in sl
motor noise spectral vectors at any time instance.

The superposition of single joint motor noises at any ar-
bitrary time equals to the whole body noise at that spe-
cific time instance.

During the motion of the robot, actual positiof) (in-
formation regarding each motor is gathered regularly. Us-
ing the difference between consecutive sensor outputecvel
ity (0) and accelerationd values are calculated. Consider-
ing thatJ joints are active3.J attributes are generated. Each
feature is normalized to [-1 1] so that all features have the
same contribution on the prediction. Resulting featurearec
has the form of6, (k), 61 (k), 61(k), ...,0s(k),0.(k), 0. (k)],
where k stands for the time-frame. At the same time, mo-
tor noise is recorded and background noise is removed from
the recordings. The spectrum of the motor noise is given by
[D(1,k),D(2,k),...,D(F, k)], where F' represents number
of frequency bins. Both feature vectors and spectra arercont
uously labeled with time tags so that corresponding teraplat
are generated when their time tags match.

3.2. Parameterized Template Prediction

The prediction phase starts with a search in the databasesfor
best matching template of motor noise for the current time in

stance (Fig. 2). We implemented a Nearest Neighbor search to
find the correct template with most similar joint configuoati
among all templates in the database. The prediction prasess
applied for every frame. In that sense, the conventionaicibl

wise template” for a single arbitrary motion can be regarded
as the concatenation of smaller templates that are preldicte
cording to the above-mentioned approach on a frame-byeram
basis.
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Figure 2: Parameterized template prediction method arapits
plications for ego-motion noise robust speech recognition

4. Ego-motion Noise Robust Speech
Recognition
4.1. White Noise Superimposition

Since there are many different types of noise in a real-wemid
vironment, it is impractical to create matched models fahea
type of noise, especially for each ego-motion. Therefous; d
ing the training phase we add white noise with a fixed ampditud
value as a known noise source, wheif@ B] represents its mag-
nitude relative to clean speech magnitude. The second advan
tage of using white noise is that it blurs the musical noise di
tortions caused by the spectral subtraction of the post-fiie-
cause the artifacts of high motor noise (i.e. head motiosea)oi

is more harmful compared to the artifacts of arm-motion @ois
leg motion noise, robot fan or background noise, we propose
a switching mechanism for white noise level adjustmentdiasi
the noise superimposition module. The mechanism perfoames
decision between two white noise levels, which is triggdred
the motion predictor. The motion predictor is able to disdri
nate, which joints are actively involved in the motion byaal
lating and checking their velocities. By doing that it deteres,
which motion is being performed at that moment. This method
is applicable to all robotic systems and is scalable by thysph
ical conditions regarding microphones, motors, theiratises



and properties. Based on our preliminary experiments with o
robot, we propose to implement the following rule-based-rou
ing in the switch:

(k)= {20dB, if any |0 g ead.soint (k)| > € W

—40dB, otherwise

where|éH€adJoint(k)| denotes absolute velocity of the pan
or tilt motion of the head and is a certain speed valuee,
instead of zero, is used to prevent the activation of thecéwit
during thetail motion of the head. It is used as a countermea-
sure to the situation where the motion has stopped, but the jo
sensors still send very small position differences. Plemde
that the additive white noise will be cancelled out in thecspe
tral mean normalization module of ASR.

4.2. Template Subtraction

Let us start by defining(w, k) and D(w, k) as the short-time
basis frequency spectra of speech signal and distortiomogmo
noise only), respectively, whete stands for the discrete fre-
quency representation. So, the spectrum of the observedlsig
X (w, k) can be given as:

X(w, k) = S(w, k) + D(w, k). 2

The spectrum of the useful signal can be obtained by using
the inverse operation of Eq. (2):

S, (w, k) = X(w, k) — D(w, k), 3)
where D(w,k) denotes the estimated noise template and
Sr(w, k) stands for the signal comprising the useful sound and
residual motor noise. The reason of this residual noiseas th
the original motor noiseD(w, k) deviates from the predicted
one. To compensate this error, we further suggest to use spec
tral subtraction approach that exploitgerestimation factor,
and spectral floor 8. «, allows a compromise between per-
ceptual signal distortion and noise reduction level, wagfkis
required to deal witlmusical nois¢3]. Finally, we calculate the
gain coefficientsHss(w, k), and multiply them with the signal
X(w, k) asin Eq. (5):

) ; 4

Q)

ﬁ(w,k)
X (w, k)’

Hss(w, k) = max (1 —a

S(w, k) = X(w, k) - Hes(w, k)

4.3. Missing Feature Mask Generation

GSS lacks the ability to catch motor noise originating frdma t
same direction of the speaker and suppress it, becauseitfee no
is considered as part of the speech. Moreover, when theéquosit
of the noise source is not detected precisely, GSS cannat sep
rate the sound in the spatial domain. As a consequence, motor
noise can be spread to the separated sound sources in small po
tions. However, it is optimally designed for "simultaneousl-
tiple speakers” scenarios with background noise and demon-
strates a good performance when no motor noise is present.
On the other hand, template subtraction does not make any
assumption about the directivity or diffuseness of the gdoun
source and can match a pre-recorded template of the motor
noise at any moment. The drawback of this approach is, how-
ever, due to the non-stationarity, the characteristicsedipted
and actual noise can differ to a certain extent.

As stated above, the strengths and weaknesses of both ap-
proaches are distinct. Thus, they can be integrated intoiR M
based mask in a complementary fashion. A speech feature is
considered unreliable, if the difference between the eegmgf
refined speech signals generated by multi-channel andesing|
channel noise reduction systems is above a thresholdom-
putation of the masks is performed for each fraeand for
each mel-frequency bangd, First, a continuous mask is calcu-
lated like following:

18w (k) = S.(£,R)]
Sl + 5.0 B)

whereS,, (f, k) and Ss(f, k) are the estimated energy of
the refined speech signals, which were subject to multitodlan
noise reduction and resp. single-channel template suistnac
The numerator term represents the deviation of the two ¢sitpu
which is a measure of the uncertainty or unreliability. Tiee d
nominator term, however, is a scaling constant and is giyen b
the average of the two estimated signals. (To simplify theaeq
tion, we remove the scalar value in the denominator, so that
m(f, k) can take on values between 0 and 1.) A soft mask as in
Eq.(7) [10] is used in the MFT-ASR:

m(f, k)

; (6)

1 .
M(f, k)={ 1+exp(—o(m(f,k) — T))’ it m(f, k) <T 7
o if m(f k) >T
)

whereo is the tilt value of a sigmoid weighting function.

5. Evaluation
5.1. Experimental Settings

We used 8 microphones located on top of the head of the robot.
We recorded (1) random whole-arm pointing behavior in the
reaching space of the body asm motionand (2) random head
rotation (elevation=[-30 30°], azimuth=[-90 90°]) as head
motion In terms of noise energy, head motions were 8.4dB
higher compared to arm motions in average and show the spec-
tral characteristics as in Fig. 3. Sensors give the angléef t
joints every 5 ms and the length of the audio frames is 10 ms.
We used constant values fare=1 and =0.5 as template sub-
traction parameters, because in our previous study wedzser
that an increase ii improves ASR accuracy considerably com-
pared for the case g¥=0. For detailed evaluations regarding
the o and 8 parameters, please refer to [9]. MFM parameters
are selected as follow§:=0.75 ando=10.
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Figure 3: Spectrograms of arm and head ego-motion noise

Because the noise recordings are comparatively longer than
the utterances used in the isolated word recognition, vee sl



those segments, in which all joints of the correspondindglim
contribute to the noise. To generate precise SNR conditiens
fore mixing, we amplified clean speech based on its segmental
SNR. The noise signal consisting of ego noise (incl. egaianot
noise) and environmental background noise is mixed witarcle
speech utterances used in a typical human-robot interadtio
alog and recorded by us. The audio data is converted to 8 ch.
data by convoluting with a transfer function of the micropbo
array. This Japanese word dataset includes 236 words for 4 fe
male and 4 male speakers. Acoustic model is triphone HMM
(phonetic tied mixture) with 32 mix/state and 2000 mixturés

is trained with Japanese Newspaper Article Sentences (JNAS
corpus, 60-hour of speech data spoken by 306 male and female
speakers, hence the speech recognition is a word&spepkear-o
test. We created a matched acoustic model for multi-channel
noise reduction (GSS+PF) methods by adding a white noise of
—40dB. We used 13 static MSLS features, 13 delta MSLS fea-
tures and 1 delta power feature. Speech recognition resndts
given as average word correct rates (WCR) of instances from
the noisy test set. The position of the speaker is kept fixed at
0° throughout the experiments. The recording environment is a
room with the dimensions of 4.0»¥.0 mx 3.0 m with a rever-
beration time RT5) of 0.2s.

5.2. Results

We superimpose white noise of various SNR’s
(=20, —30,—40, —infd B) and evaluate WCRs with and
without MFMs. Fig. 4 illustrates the ASR accuracies for all
methods under consideration. Single-channel resultdrsata
with clean and noise matched acoustic models and without any
processing are used as a baseline. We found out that the white
noise level plays a crucial role in the final results. In cake o
arm motion, which is considered as a relatively weaker noise
white noise of the same intensity level used in the acoustic
model training has shown the best performance. On the other
hand, best ASR accuracy during a head motion with high noise
intensity is achieved with an additive white noise-e20dB.

This proves also that the musical noise effects after noise
suppression can be tackled with the white noise addition.
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Figure 4: Recognition performance for different types of-eg
motion noise

We also observe that the MFT-ASR outperforms standard
ASR without MFMs. Although there is little gain of using
MFM for the —20d B white noise (See Fig 4(a) and Fig 4(b)), it
is very beneficial to use the masks for all other cases. While
the masks eliminate unreliable speech features contamainat
with motor noise, they also compensate the erroneous efiéct
voice activity detection due to additive motor noise thattains
a large portion of energy. They prevent misdetection of moto
noise as speech, even though the speech has not started yet, o
is already over. The reader should also note that in a ned;ti
real-world scenario with a robot, where the SNR0$|dB for
the arm motion and—>5 0]dB for the head motion noise de-
pending on the distance and loudness of the speaker, 15% and
18% average WCR improvement is attained compared to the
WCRs obtained by ego-motion noise matched single-channel
speech recognition.

6. Conclusion

In this paper, we presented methods for eliminating egdemot
noise from speech signals. The system we proposed utilizes
(1) a selective white noise superimposition scheme based on
the motion type, (2) a template subtraction technique to re-
move the ego-noise, and finally (3) a masking stage to im-
prove speech recognition accuracy. The experimental teesul
indicate that WCRs based on soft masking are improved up to
10% compared to conventional recognition system. Further-
more, we have shown that selective white noise superimposi-
tion method contributes to 20% improvement for the problem-
atic head-motion noise.
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