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Abstract

This paper presents a speech recognition system for a mobile
robot that attains a high recognition performance, even if the
robot generates ego-motion noise. We investigate noise sup-
pression and speech enhancement methods that are based on
prediction of ego-motion and its noise. The estimation of ego-
motion is used for superimposing white noise in a selective
manner based on the ego-motion type. Moreover, instantaneous
prediction of ego-motion noise is the core concept to estab-
lish the following techniques: ego-motion noise suppression by
template subtraction and missing feature theory based masking
of noisy speech features. We evaluate the proposed technique
on a robot using speech recognition results. Adaptive super-
imposition of white noise achieves up to 20% improvement of
word correct rates (WCR) and the spectrographic mask attains
an additional improvement of up to 10% compared to the single
channel recognition.
Index Terms: speech enhancement, noise reduction, ASR

1. Introduction
Robots with listening capabilities are being equipped withau-
dio signal processing techniques against environmental noises
[1], [2]. However, these methods are not effective against
robot’s own noise, in particular ego-motion noise, which arises
when the robot performs a task, action or motion using its
motors. Ego-motion noise is rather challenging due to its
close proximity to the microphones and non-stationarity, there-
fore conventional noise reduction methods like spectral subtrac-
tion [3] do not work well in practice. A directional noise model
such as assumed in case of interfering speakers [1] or a dif-
fuse background noise model [2] does not represent ego-motion
noise characteristics entirely either. Especially because the mo-
tors are located in the near field of the microphones and are
covered with body shells, they emit sounds having both diffuse
and directional characteristics. Nishimuraet al. [4] and Ito et
al. [5] tackled this problem by predicting and subtracting ego-
motion noise using templates recorded in advance for each mo-
tion and gesture involving activity of several motors at a time,
but their methods work only for limited number of gestures and
motions with fixed trajectories. By exerting Missing Feature
Theory (MFT), Yamamotoet al. [1] and Takahashiet al. [10]
proposed models for mask generation to eliminate leakage noise
in a simultaneous speech recognition task of several speakers,
however their models are unable to deal with ego-motion noise.

In this work, we target to eliminate the diminishing effects
of ego-motion noise in the context of automatic speech recogni-
tion (ASR). In order to generate speech features we use an envi-
ronmental noise robust feature extraction framework that con-

sists of Sound Source Localization (SSL), Sound Source Sep-
aration (SSS), and Speech Enhancement (SE), which we have
adopted from already existing studies. To enhance the acous-
tic features further, we propose to incorporate three methods
into this framework that are based on instantaneous informa-
tion extracted from ego-motion related processes: (1) selective
white noise superimposition based on the motion type, (2) pa-
rameterized template subtraction, and (3) MFT-based masking
on speech features. We demonstrate that the proposed system
achieves a high noise cancellation performance and improves
ASR accuracy.

2. Noise Robust Feature Extraction
In this section, we describe a standard multi-talker speech
recognition system using a microphone array, which is robust to
environmental noise and interfering speakers (see Fig. 1).The
chain starts with an SSL module. In order to estimate the lo-
cation of the speaker, we use one of the most popular adaptive
beamforming algorithms called MUltiple Signal Classification
(MUSIC). It detects the locations of sources by performing an
eigenvalue decomposition on the correlation matrix of the noisy
signal and sends them to SSS stage, which is a linear separation
algorithm called Geometric Source Separation (GSS) [1]. Itis
based on a hybrid algorithm that exerts Blind Source Separa-
tion (BSS) and beamforming. Current GSS implementation is
an adaptive algorithm that can process the input data incremen-
tally, and makes use of the locations of the sources explicitly.
To estimate the separation matrix properly, GSS introducescost
functions that must be minimized in an iterative way [2].

After the separation process, a multi-channel post-filtering
(PF) operation proposed by Cohen [6] is applied, which can
cope with nonstationary interferences as well as stationary types
of noise. This module treats the transient components in the
spectrum as if they are caused by the leakage energies that may
occasionally arise due to poor separation performance. Forthis
purpose, noise variances of both stationary noise and source
leakage are predicted. Whereas the former one is computed us-
ing the Minima Controlled Recursive Averaging (MCRA) [7],
to estimate the latter the formulations proposed in [2] are used.

In order to achieve an optimum recognition performance,
we create an acoustic model matched with a known noise.
Therefore, a censequent additive white noise step applied after
post filtering improves the speech recognition results by gener-
ating an artificial floor in the spectrum of speech signal. Details
about the improvement of this module is subject to further dis-
cussion in Sec. 4.1. Finally, acoustic features are generated by
calculating Mel-Scale Log Spectrum (MSLS) [8] that does not
spread distortions to all coefficients of the cepstrum unlike Mel-
Frequency Cepstral Coefficients (MFCC).
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Figure 1: Proposed multi-talker speech recognition system

3. Ego-motion Noise Prediction
The underlying motivation of using templates for noise predic-
tion resides in the fact that the duration and the envelope ofthe
motor noise signals does not change drastically for the same
motions when the motion is performed again. However, a con-
ventionalblockwise template prediction[4] that extracts tem-
plates as a single block has several shortcomings, e.g. it could
be performed properly only after the detection of the exact start-
ing moment of the template. Another drawback is that it re-
quires a large collection of data consisting of the motor noise
statistics for each joint of different combinations of origin, tar-
get, position, velocity and acceleration parameters. To over-
come these deficits, we implementparameterized template pre-
diction technique [9] that fragments a discrete audio segment
into frames by associating them with the current status of the
motors. The data is provided by the joint angle sensors that
measure the angular positions of all joints separately.

3.1. Motion Prediction and Template Database Generation

We make the following assumptions:

1. Current motor noise depends on position, velocity and
acceleration of that specific motor.

2. Similar combinations of joint status will result in similar
motor noise spectral vectors at any time instance.

3. The superposition of single joint motor noises at any ar-
bitrary time equals to the whole body noise at that spe-
cific time instance.

During the motion of the robot, actual position (θ) in-
formation regarding each motor is gathered regularly. Us-
ing the difference between consecutive sensor outputs, veloc-
ity (θ̇) and acceleration (̈θ) values are calculated. Consider-
ing thatJ joints are active,3J attributes are generated. Each
feature is normalized to [-1 1] so that all features have the
same contribution on the prediction. Resulting feature vector
has the form of[θ1(k), θ̇1(k), θ̈1(k), . . . , θJ (k), θ̇J (k), θ̈J (k)],
wherek stands for the time-frame. At the same time, mo-
tor noise is recorded and background noise is removed from
the recordings. The spectrum of the motor noise is given by
[D(1, k), D(2, k), . . . , D(F, k)], whereF represents number
of frequency bins. Both feature vectors and spectra are contin-
uously labeled with time tags so that corresponding templates
are generated when their time tags match.

3.2. Parameterized Template Prediction

The prediction phase starts with a search in the database forthe
best matching template of motor noise for the current time in-

stance (Fig. 2). We implemented a Nearest Neighbor search to
find the correct template with most similar joint configuration
among all templates in the database. The prediction processis
applied for every frame. In that sense, the conventional ”block-
wise template” for a single arbitrary motion can be regarded
as the concatenation of smaller templates that are predicted ac-
cording to the above-mentioned approach on a frame-by-frame
basis.
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Figure 2: Parameterized template prediction method and itsap-
plications for ego-motion noise robust speech recognition

4. Ego-motion Noise Robust Speech
Recognition

4.1. White Noise Superimposition

Since there are many different types of noise in a real-worlden-
vironment, it is impractical to create matched models for each
type of noise, especially for each ego-motion. Therefore, dur-
ing the training phase we add white noise with a fixed amplitude
value as a known noise source, whereρ [dB] represents its mag-
nitude relative to clean speech magnitude. The second advan-
tage of using white noise is that it blurs the musical noise dis-
tortions caused by the spectral subtraction of the post-filter. Be-
cause the artifacts of high motor noise (i.e. head motion noise)
is more harmful compared to the artifacts of arm-motion noise,
leg motion noise, robot fan or background noise, we propose
a switching mechanism for white noise level adjustment inside
the noise superimposition module. The mechanism performesa
decision between two white noise levels, which is triggeredby
the motion predictor. The motion predictor is able to discrimi-
nate, which joints are actively involved in the motion by calcu-
lating and checking their velocities. By doing that it determines,
which motion is being performed at that moment. This method
is applicable to all robotic systems and is scalable by the phys-
ical conditions regarding microphones, motors, their distances



and properties. Based on our preliminary experiments with our
robot, we propose to implement the following rule-based rout-
ing in the switch:

ρ(k)=

{

−20dB, if any |θ̇HeadJoint(k)| > ǫ

−40dB, otherwise
, (1)

where|θ̇HeadJoint(k)| denotes absolute velocity of the pan
or tilt motion of the head andǫ is a certain speed value.ǫ,
instead of zero, is used to prevent the activation of the switch
during thetail motionof the head. It is used as a countermea-
sure to the situation where the motion has stopped, but the joint
sensors still send very small position differences. Pleasenote
that the additive white noise will be cancelled out in the spec-
tral mean normalization module of ASR.

4.2. Template Subtraction

Let us start by definingS(ω, k) andD(ω, k) as the short-time
basis frequency spectra of speech signal and distortion (motor
noise only), respectively, whereω stands for the discrete fre-
quency representation. So, the spectrum of the observed signal
X(ω, k) can be given as:

X(ω, k) = S(ω, k) +D(ω, k). (2)

The spectrum of the useful signal can be obtained by using
the inverse operation of Eq. (2):

Sr(ω, k) = X(ω, k)− D̂(ω, k), (3)

where D̂(ω, k) denotes the estimated noise template and
Sr(ω, k) stands for the signal comprising the useful sound and
residual motor noise. The reason of this residual noise is that
the original motor noiseD(ω, k) deviates from the predicted
one. To compensate this error, we further suggest to use spec-
tral subtraction approach that exploitsoverestimation factor, α,
and spectral floor, β. α, allows a compromise between per-
ceptual signal distortion and noise reduction level, whereasβ is
required to deal withmusical noise[3]. Finally, we calculate the
gain coefficients,̂HSS(ω, k), and multiply them with the signal
X(ω, k) as in Eq. (5):

ĤSS(ω, k) = max

(

1− α
D̂(ω, k)

X(ω, k)
, β

)

, (4)

Ŝ(ω, k) = X(ω, k) · ĤSS(ω, k) (5)

4.3. Missing Feature Mask Generation

GSS lacks the ability to catch motor noise originating from the
same direction of the speaker and suppress it, because the noise
is considered as part of the speech. Moreover, when the position
of the noise source is not detected precisely, GSS cannot sepa-
rate the sound in the spatial domain. As a consequence, motor
noise can be spread to the separated sound sources in small por-
tions. However, it is optimally designed for ”simultaneousmul-
tiple speakers” scenarios with background noise and demon-
strates a good performance when no motor noise is present.

On the other hand, template subtraction does not make any
assumption about the directivity or diffuseness of the sound
source and can match a pre-recorded template of the motor
noise at any moment. The drawback of this approach is, how-
ever, due to the non-stationarity, the characteristics of predicted
and actual noise can differ to a certain extent.

As stated above, the strengths and weaknesses of both ap-
proaches are distinct. Thus, they can be integrated into an MFT-
based mask in a complementary fashion. A speech feature is
considered unreliable, if the difference between the energies of
refined speech signals generated by multi-channel and single-
channel noise reduction systems is above a thresholdT . Com-
putation of the masks is performed for each frame,k, and for
each mel-frequency band,f . First, a continuous mask is calcu-
lated like following:

m(f, k)=
|Ŝm(f, k)− Ŝs(f, k)|

Ŝm(f, k) + Ŝs(f, k)
, (6)

whereŜm(f, k) and Ŝs(f, k) are the estimated energy of
the refined speech signals, which were subject to multi-channel
noise reduction and resp. single-channel template subtraction.
The numerator term represents the deviation of the two outputs,
which is a measure of the uncertainty or unreliability. The de-
nominator term, however, is a scaling constant and is given by
the average of the two estimated signals. (To simplify the equa-
tion, we remove the scalar value in the denominator, so that
m(f, k) can take on values between 0 and 1.) A soft mask as in
Eq.(7) [10] is used in the MFT-ASR:

M(f, k)=







1

1 + exp(−σ(m(f, k)− T ))
, if m(f, k) < T

0, if m(f, k) ≥ T
,

(7)
whereσ is the tilt value of a sigmoid weighting function.

5. Evaluation
5.1. Experimental Settings

We used 8 microphones located on top of the head of the robot.
We recorded (1) random whole-arm pointing behavior in the
reaching space of the body asarm motionand (2) random head
rotation (elevation=[-30◦ 30◦], azimuth=[-90◦ 90◦]) as head
motion. In terms of noise energy, head motions were 8.4dB
higher compared to arm motions in average and show the spec-
tral characteristics as in Fig. 3. Sensors give the angle of the
joints every 5 ms and the length of the audio frames is 10 ms.
We used constant values forα=1 andβ=0.5 as template sub-
traction parameters, because in our previous study we observed
that an increase inβ improves ASR accuracy considerably com-
pared for the case ofβ=0. For detailed evaluations regarding
theα andβ parameters, please refer to [9]. MFM parameters
are selected as follows:T=0.75 andσ=10.
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Figure 3: Spectrograms of arm and head ego-motion noise

Because the noise recordings are comparatively longer than
the utterances used in the isolated word recognition, we selected



those segments, in which all joints of the corresponding limb
contribute to the noise. To generate precise SNR conditionsbe-
fore mixing, we amplified clean speech based on its segmental
SNR. The noise signal consisting of ego noise (incl. ego-motion
noise) and environmental background noise is mixed with clean
speech utterances used in a typical human-robot interaction di-
alog and recorded by us. The audio data is converted to 8 ch.
data by convoluting with a transfer function of the microphone
array. This Japanese word dataset includes 236 words for 4 fe-
male and 4 male speakers. Acoustic model is triphone HMM
(phonetic tied mixture) with 32 mix/state and 2000 mixtures. It
is trained with Japanese Newspaper Article Sentences (JNAS)
corpus, 60-hour of speech data spoken by 306 male and female
speakers, hence the speech recognition is a word&speaker-open
test. We created a matched acoustic model for multi-channel
noise reduction (GSS+PF) methods by adding a white noise of
−40dB. We used 13 static MSLS features, 13 delta MSLS fea-
tures and 1 delta power feature. Speech recognition resultsare
given as average word correct rates (WCR) of instances from
the noisy test set. The position of the speaker is kept fixed at
0◦ throughout the experiments. The recording environment is a
room with the dimensions of 4.0 m×7.0 m×3.0 m with a rever-
beration time (RT20) of 0.2s.

5.2. Results

We superimpose white noise of various SNR’s
(−20,−30,−40,−infdB) and evaluate WCRs with and
without MFMs. Fig. 4 illustrates the ASR accuracies for all
methods under consideration. Single-channel results obtained
with clean and noise matched acoustic models and without any
processing are used as a baseline. We found out that the white
noise level plays a crucial role in the final results. In case of
arm motion, which is considered as a relatively weaker noise,
white noise of the same intensity level used in the acoustic
model training has shown the best performance. On the other
hand, best ASR accuracy during a head motion with high noise
intensity is achieved with an additive white noise of−20dB.
This proves also that the musical noise effects after noise
suppression can be tackled with the white noise addition.
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Figure 4: Recognition performance for different types of ego-
motion noise

We also observe that the MFT-ASR outperforms standard
ASR without MFMs. Although there is little gain of using
MFM for the−20dB white noise (See Fig 4(a) and Fig 4(b)), it
is very beneficial to use the masks for all other cases. While
the masks eliminate unreliable speech features contaminated
with motor noise, they also compensate the erroneous effects of
voice activity detection due to additive motor noise that contains
a large portion of energy. They prevent misdetection of motor
noise as speech, even though the speech has not started yet, or
is already over. The reader should also note that in a real-time,
real-world scenario with a robot, where the SNR is[0 5]dB for
the arm motion and[−5 0]dB for the head motion noise de-
pending on the distance and loudness of the speaker, 15% and
18% average WCR improvement is attained compared to the
WCRs obtained by ego-motion noise matched single-channel
speech recognition.

6. Conclusion
In this paper, we presented methods for eliminating ego-motion
noise from speech signals. The system we proposed utilizes
(1) a selective white noise superimposition scheme based on
the motion type, (2) a template subtraction technique to re-
move the ego-noise, and finally (3) a masking stage to im-
prove speech recognition accuracy. The experimental results
indicate that WCRs based on soft masking are improved up to
10% compared to conventional recognition system. Further-
more, we have shown that selective white noise superimposi-
tion method contributes to 20% improvement for the problem-
atic head-motion noise.
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