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Abstract

The bodily change in infancy due to growth
is a fundamental challenge for the bootstrap-
ping of sensorimotor coordination. We argue
that learning by doing, and thus a babbling
of goals instead of motor commands provides
an appealing explanation for the success of
infants in that bootstrapping. We show that
Goal Babbling allows to bootstrap reaching
skills during different growth patterns on a
robot arm with five degrees of freedom and
on the infant like humanoid iCub.

1. Introduction

While infants bootstrap their repertoire of sensori-
motor skills, their bodies undergo massive changes
in overall size and weight, segment lengths as
well as mass distribution. Until infants mas-
ter reaching around the age of one year, they
have grown (on average) by 50% of their body
length at birth. The change of morphology is
non-linear in many ways. The growth proceeds
very rapidly in the first few months before it
slows down (Kuczmarski et al., 2002). Also, dif-
ferent body segments grow with different speeds,
changing the body proportions. For instance, the
upper arm typically grows faster than the fore-
arm (Wells et al., 2002).

How can infants develop stable sensorimotor skills
during such ongoing and non-linear change in mor-
phology? The control of tasks like reaching can be
well understood with the notion of internal models
(Wolpert et al., 1998). Internal models describe re-
lations between motor commands and their conse-
quences. Once internal models are established for
a certain task, a forward model predicts the conse-
quence of a motor command, while an inverse model
suggests a motor command necessary to achieve a de-
sired outcome. Before internal models can be applied
for goal-directed control, experience must be gained
by exploration. The question how, and when to ex-
plore is particularly delicate in the case of growth.
Any experience that is gathered by exploration is,
strictly speaking, void as soon as the body changes
– and so are internal models.

Piaget suggested that human development pro-
gresses in several stages (Piaget, 1953). At first
infants react purely reflexive. Meltzoff and Moore
(Meltzoff and Moore, 1997) suggested the concept
of “body babbling” as an initial stage in which
experience is gathered. Infants can then use this
knowledge to attempt goal-directed actions and fine-
tune their skills on the fly. This idea of an explicit,
early exploration strategy has been frequently picked
up in computational models for the development of
reaching skills. A random exploration of all possible
motor commands is performed under the notion
of “motor babbling” (Demiris and Dearden, 2005).
Several models also include a later fine-tuning which
is done on the fly (Jordan and Rumelhart, 1992,
D’Souza et al., 2001), while performing goal-
directed movements.

However, models that separate exploration from
goal-directed movement can hardly explain how in-
fants master growth during sensorimotor develop-
ment. It is rather implausible that infants spend
their entire first months babbling randomly, while
growth outdates the gathered experience. In par-
ticular, they cannot explain findings of early goal-
directed movements in newborns: Statistics revealed
that already days after birth, infants attempt goal-
directed action by means of arm and finger move-
ments (von Hofsten, 1982). This finding contradicts
the Piagetian view of purely reflexive movements and
also purely random movements. Von Hofsten has re-
peatedly highlighted the role of goal-directed action
for infant motor development. “Before infants mas-
ter reaching, they spend hours and hours trying to
get the hand to an object in spite of the fact that they
will fail, at least to begin with.” (von Hofsten, 2004)

Early goal-directed movements in infants suggest
an important role of “learning by doing”: infants
learn to reach by trying to reach. In the case of
voluntary control we previously denoted this kind of
learning as Goal Babbling (Rolf et al., 2010). Dif-
ferent goals are tried to achieve and thereby sen-
sorimotor coordination is bootstrapped. Such goal-
directed bootstrapping has been previously possible
with Feedback-Error Learning (Kawato, 1990), but
only with prior knowledge that is unlikely to be avail-



Figure 1: Robot arm (length 1m) with two joints. The
left side shows the joint space. Multiple configurations
(see postures a-c) can be used to apply the same height
of the end effector, but can not be averaged without leav-
ing the desired height (see posture d). The sets of joint
angles that apply the same height are marked by colored
contours in the joint space.

able for complex motor skills. Goal-directed boot-
strapping appears to be a “chicken or egg” dilemma:
Goal-directed movements require an inverse model,
but inverse models require previous exploration in or-
der to work. However, we have previously shown that
even an entirely untrained inverse model is enough
for starting a successful bootstrapping.

This paper extends previous lines of research
on Goal Babbling. We show that Goal Babbling
can bootstrap reaching skills while the morphology
changes, i.e. while the body is growing. Our algo-
rithm can do so without explicit knowledge of when
a change occurs or what that change is, which shows
the conceptual strength of Goal Babbling, or learning
by doing in general. In the following, we introduce
the learning problem in Sec. 2. and shortly describe
our algorithm for Goal Babbling. We present experi-
mental results with different growing speeds and un-
proportional body changes on redundant morpholo-
gies in Sec. 3. and conclude in Sec. 4.

2. Goal Babbling

In the present work, we investigate the kinematic
control of redundant systems. Formally, we consider
the relation between joint angles q ∈ Q ⊂ Rm and
effector poses x ∈X ⊂ Rn (e.g. the position of the
hand). Thereby m is the number of degrees of free-
dom (DOF) and n is the dimension of the target vari-
able (e.g. n =3 for the spatial position of a hand).
The forward kinematics function f(q) = x uniquely
describes the causal relation between both sizes. If
the hand needs to be positioned at some desired co-
ordinate x∗, an inverse model g(x∗)=q is needed to
find appropriate joint angles q (f(g(x∗))=x∗). Such
a function is not uniquely defined if the number of
joint angles m exceeds the number of controlled di-
mensions n. An example is shown in Fig. 1: a robot

arm with two joints (m = 2) and a total length of
1m. Since we want to consider a redundant struc-
ture, the goal here is to control only the height of the
effector (n=1). The redundancy appears in form of
manifolds through the joint-space, on which all joint-
angles apply the same effector height. An inverse
kinematics function in this example must suggest
joint angles q ∈ R2 for each desired effector height
x∗ ∈ R1.

2.1 Related work

Existing approaches to the exploration and learning
of inverse kinematics split into two groups: error-
based and example-based methods. Error-based
methods follow the “learning by doing” approach.
An estimate g(x∗) of the inverse kinematics is used
for trying to reach for a target position. Using the
joint angles q = g(x∗) suggested by the inverse esti-
mate, the resulting position of the effector is evalu-
ated with the forward kinematics function x = f(q).
One group of mechanisms is based on the “motor
error”, which is a correction ∆q of the joint angles
in order to improve the performance. In Feedback-
error learning (Kawato, 1990) it is simply assumed
that a mechanism to compute that motor error is
already available. In Learning with distal teacher
(Jordan and Rumelhart, 1992) a forward model f̂(q)
must be learned beforehand which requires a not
goal-directed exploration. A motor error can be
derived analytically by differentiating the forward
model. Both methods can in principle deal with re-
dundant systems. The critical problem is that the
motor error is not directly observable, and on its
own subject to redundancy. Thus current motor er-
ror schemes can not explain infants ability to fully
bootstrap sensorimotor coordination.

Example-based methods use example configura-
tions (f(q), q) for the learning of an inverse esti-
mate g(x). The existing approaches differ in the way
how such examples are generated. Motor babbling
(Demiris and Dearden, 2005) is a pure random form
of exploration. It has been proposed as an implemen-
tation of the “body babbling” introduced by Meltzoff
and Moore, but was used also before body babbling
was introduced (Bullock et al., 1993). Joint angles
are randomly chosen from the set of all possible con-
figurations qi ∈ Q. This approach can find solutions
for all possible targets, if enough examples are gen-
erated. However, it is subject to the non-convexity
problem: Non-convex solution sets (see Fig. 1)
prohibit learning from multiple solutions. Also
goal-directed exploration approaches have been in-
vestigated (Oyama and Tachi, 2000, Sanger, 2004),
which we discuss and extend in the next section.
The approach – as previously discussed in litera-
ture – does not find appropriate inverse estimates
in a reliable fashion. Example-based learning of in-



verse kinematics has only been shown to be success-
ful if training data without inconsistent solutions is
already available (Rolf et al., 2009).

2.2 Goal Babbling Algorithm

With “Goal Babbling” we generally refer to the suc-
cessful bootstrapping of some motor skill by the (i)
repeated process of (ii) trying to accomplish (iii)
multiple goals related to that skill. Goal babbling
means learning by doing from scratch. We use this
terminology in order to highlight the similarities but
also differences to previous concepts. The explo-
ration process focuses on the goals of action instead
of the means (motor-commands). The emphasis in
this approach is on “trying to accomplish”, which
means to generate paths towards the given goal with
the currently learned system and to evaluate samples
along this path. In the present work we use target
positions as a rather simple notion of goals and se-
lect randomly which goal is tried to achieve next. In
an integrated, physical system this might be done by
presentation of external stimuli which the agent is
motivated to reach for.

Goal-directed exploration In a goal-directed
exploration (Oyama and Tachi, 2000, Sanger, 2004),
examples (f(q), q) are generated with an untrained
or inaccurate inverse estimate g(x, θ), where θ are
the parameters adaptable by learning. If the param-
eters are not necessary for the discussion, we will
write g(x) for short. Initially, a target motion is cho-
sen and represented as a temporal sequence of target
positions: x∗t ∈ X∗ ⊆ X, t = 1...T . The inverse
estimate is then used for trying to reach for those
targets: qt = g(x∗t ), xt = f(qt). After the adaption
of the parameters, the process is repeated.

Inconsistencies In this approach inconsistent ex-
amples can be detected, and excluded by considering
paths on the n dimensional manifold inside the joint
space on which examples are generated. This man-
ifold is defined by the inverse estimate and spanned
by the set of target positions: Qexpl =g(X∗).

Two samples (x1, q1) and (x2, q2) are inconsistent,
if they represent the same effector pose x1 = x2

but different joint angles q1 6= q2. We have previ-
ously shown (see (Rolf et al., 2010) for the details)
that such examples can only be generated by goal-
directed exploration, if there are either unintended
changes of movement direction or inefficient move-
ments. Thus, if we generate examples with goal-
directed exploration and exclude both unintended
changes of movement direction and inefficient move-
ments, the remaining examples must not contain in-
consistencies.

In order to realize this exclusion, we assign weights

(a) The inverse estimate is initialized around the home posture.

(b) The inverse estimate has aligned with the optimal movement
direction and starts to expand.

(c) The performance increases rapidly. Until the ridge of the for-
ward function is hit.

(d) The inverse estimate finds the necessary non-linearities to
reach for extreme positions.

Figure 2: Inverse kinematics learning with Goal Bab-
bling. The images show successive stages of the learning
process. The inverse estimate is initialized around the
home posture. It spreads successively and ends up with
an accurate solution.



wt ∈ R for each example (xt, qt). Unintended
changes of movement direction can be tackled with
the following scheme:

wdir
t =

1
2
(
1 + cos^(x∗t − x∗t−1, xt − xt−1)

)
. (1)

Thereby ^(x∗t −x∗t−1, xt−xt−1) is the angle between
the intended and actual movement direction of the ef-
fector. If both are identical the angle is 0.0° and the
weight becomes wdir

t = 1.0. If the observed move-
ment has the exact opposite direction, the angle is
180.0° and the weight becomes wdir

t = 0.0. Inconsis-
tencies evoked by unintended movement directions
can therefore be broken.

Inefficient movements can be excluded by weight-
ing with the ratio of effector motion and joint mo-
tion, which is 0.0 if the joints move without effector
motion:

weff
t =

||xt − xt−1||
||qt − qt−1||

. (2)

Since both weights are necessary for inconsistency
resolution, they are combined by multiplication, such
that an example is ignored if any of the two criteria
assigns a weight zero:

wt = wdir
t · weff

t . (3)

The weighting scheme relies on time, since the ac-
tual and the last sample is taken into account. In
particular, it relies on goals: unintended changes of
movement direction can only be detected if there is
an intended direction.

Structured Variation for Efficient Exploration
So far, only those examples are explored that are ex-
actly on the manifold of the inverse estimate. Such
behavior is highly unrealistic for human motor devel-
opment. If a motor command is sent twice, neural
and muscular noise as well as external perturbations
can cause slightly different outcomes. In our simu-
lation we need to introduce such perturbations arti-
ficially. Therefore we add a small disturbance term
Ev(x) to the inverse estimate:

gv(x) = g(x) + Ev(x). (4)

Examples are then generated with this variation in-
stead of the actual inverse estimate: qv

t = gv(x∗t ),
xv

t = f(qv
t ). For a set of examples, generated with

a variation gv(x), the weighting scheme can be ap-
plied as proposed above. The index v is added to
identify weights for examples of a specific variation:
wv

t = wvdir

t · wveff

t .
Although exploration is fundamental in infancy,

infants do not try to reach for an object forever. At
a time, they stop exploration, relax their muscles
and rest. Learning is possible from such a “neutral”

motor command, since there is still a resulting ef-
fector pose. At the level of kinematics, we denote
a home posture qhome as neutral motor command.
The result f(qhome) can be observed and be used for
learning as any other example. We add the exam-
ple qv

0 = qhome, xv
0 = f(qhome) = xhome to each set

generated with goal-directed exploration:

Dv ←− {(f(qhome), qhome)} ∪ Dv (5)

The “home” example receives the full weight wv
0 =

1.0.
A home posture is a stable point in exploration,

and thus in learning. The inverse estimate will gener-
ally tend to reproduce the connection between qhome

and xhome if it is used for learning: g(xhome) ≈
qhome. This stable point largely prevents the inverse
estimate to drift away. Learning can start around
the home posture and proceed to other targets.

Learning Example data (and correspond-
ing weights) from multiple different variations
gv(x∗), v = 1...V is combined for learning, where
V ∈ N is the number of different variations. In
the learning step, the parameters θ of the inverse
estimate g(x, θ) are updated using the generated
examples (xv

t , q
v
t ), t = 0...T (including the home

posture) and weights wv
t in a reward weighted

regression manner. Thereby the weighted command
error

EQ
w (θ) =

∑
v

∑
t

wv
t · (g(xv

t , θ)− qv
t )2 (6)

is minimized. Any regression algorithm can be used
for this step (e.g. linear regression schemes).

The overall procedure works in epochs. The in-
verse estimate is initialized with some parameters
θ. We generally use a random initialization, but
such that the inverse estimate generates joint con-
figurations closely around the home posture for all
goal positions. There is no a priori knowledge about
the structure of the kinematics. Within one epoch,
examples are generated from multiple variations,
weights are assigned and the learning is done with
the examples. The next epoch repeats the procedure
with the updated inverse estimate.

An example of inverse kinematics learning with
Goal Babbling on the 2 DOF arm (see Fig. 1) is
shown in Fig. 2. The inverse estimate is visual-
ized by a one dimensional manifold through the joint
space. For several target heights x∗, the joint an-
gle estimates are shown by colored markers on the
manifold (the joint angles are furthermore visual-
ized by corresponding postures in the 3D simula-
tion). An accurate inverse estimate places all col-
ored markers on the redundancy manifold with the
same color. Small green markers show the examples
used for learning. The inverse estimate is initialized



in a small region around the home posture, which
we set to qhome = (0.0, 0.0). The next images show
the progress of the method after several epochs. The
aim is to control the effector’s height within the full
range from −1.0m to 1.0m. Initially, only heights
around f(qhome) = 0m are reachable.

3. Experiments

In this section we present results of Goal Babbling
for various growth patterns on a simulated 5 DOF
robot arm and a simulated growth on the iCub hu-
manoids robot. In all experiments we use polynomial
regression (Poggio and Girosi, 1990) to represent the
inverse estimate g(x∗, θ). The input vector x ∈ Rn is
expanded by a feature mapping ΦP (x) ∈ Rp which
calculates all polynomial terms of the entries of x.
Thereby we use a polynomial degree of P = 3. A
standard linear regression with parameters θ = M
operates on these features:

g(x∗,M) = M · ΦP (x∗), M ∈ Rp×m. (7)

The entries of the regression matrix M are adapted
during learning with a gradient descent of the
weighted command error as defined in equation 6.
Before exploration and learning proceed, we first set
M to zero and make some random adaptions such
that g(x∗,M) produces joint angles in a range of 0.1
radian around the home posture. For the exploration
we use linear disturbance terms:

Ev(x) = A · x+ b, A ∈ Rm×n, b ∈ Rm (8)

The values of A and b are chosen randomly, such
that the disturbance never exceeds a range R within
the bounded set of target positions X∗:

Ev(x) = (e1, ..., em)T , |ei| <= R ∀ i = 1 . . .m, x ∈ X∗

3.1 2D proportional Growth

We start with a simulated arm with five joints (m=
5). The aim is to reach for a subset of all reachable
positions (n=2) as shown in Fig. 3a. The home pos-
ture has a slightly curved shape. A new sequence of
targets x∗t is generated in each epoch. K = 15 posi-
tions x∗k·L ∈ X∗, k=0 . . .K−1 are randomly selected
from the target grid shown in Fig. 3b. One after the
other is connected by a linear target motion with
L=7 intermediate target positions (l = 0 . . . L− 1):

x∗k·L+l =
L− l
L
· x∗k·L +

l

L
· x∗(k+1)·L (9)

We used an exploration range of R = 0.2 and
V = 20 variations. In the first epoch the arm is
0.5m long. During the first TG epochs, the arm’s
length increases to 1.0m linearly and remains con-
stant afterwards. All segments of the arm grow pro-
portionally. For the duration of 100.000 epochs we

evaluated the absolute performance error, indicating
the average positioning error in meters:

EX
abs(θ) =

1
N

∑
t

(xt − x∗t )2 (10)

Results for different growth periods TG ∈
{10, 100, 1000, 10000} are shown in Fig. 4. As ref-
erence, performance trajectories are also shown for
Goal Babbling without growth: one with a constant
short length (0.5m) and one with a constant length
of 1.0m. Both with and without growth the Goal
Babbling algorithm finds an accurate solution with
an accuracy of approx. 2cm. A significant tempo-
rary increase of the performance error can be seen
for TG ∈ {10, 100, 1000} during the growth period.
This effect does, however, not display a degeneration
of the inverse model, but is caused by more distant
targets. During growth, we scale the set of target
positions together with the overall length of the arm
(compare Figures 3a and 3b). A linear scaling of the
targets therefore automatically increases the abso-
lute performance error. In order to account for this
effect, we also evaluated the relative performance er-
ror, i.e. the position error relative to the body size:

EX
rel(θ) =

1
N

∑
t

(xt − x∗t )2

S
(11)

where we write S = 1.0 for the full length of the arm
and S = 0.5 for half of the length correspondingly.
Results are shown in Fig. 4b. The graph shows a
very smooth blending between the performance er-
rors of the short reference curve and long reference
curve for very rapid growth (TG =10) as well as slow
growth (TG = 10000). There is no degeneration and
the error decreases continuously, resulting in an ac-
curate solution. An example of the performance after
proportional growth is shown in Fig. 3b.

3.2 2D un-proportional Growth

The results for proportional growth show that our
Goal Babbling algorithm can deal with growth of
different speeds on the fly. Proportional growth is
rather simple in the sense, that such growth could
be equally compensated by an interal re-scaling of
the effector positions. If all segments are scaled by a
factor α, also the effector positions scale with α. Of
course, this knowledge is not build into the algorithm
and the inverse estimate has to change constantly
while the body grows. However, we can complement
these results with un-proportional growth. In this
case, we let only the first, third and fifth segment
grow (see Fig. 3c). We repeated the same evalua-
tion for un-proportional growth as for the previous,
proportional pattern. The results are shown in Fig.
5. The learning curves have the exact same charac-
teristics as in the previous experiment and the boot-
strapping is successful in all cases.



(a) Initial conditions. (b) Result after proportional growth. (c) Result after un-proportional growth.

Figure 3: Goal Babbling on a growing 5 DOF arm. Grey grids show the set of target positions. Black grids show the
finally reached positions. Several postures produced by the inverse estimate show how the redundancy is resolved.
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Figure 4: Goal Babbling performance on a planar arm (n = 2, m = 5) for proportional segment growth from a total
length of 0.5m to 1.0m. Results are averaged over 20 independent trials.
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Figure 5: Goal Babbling performance on a planar arm (n=2, m=5) for un-proportional segment growth from a total
length of 0.5m to 1.0m. Results are averaged over 20 independent trials.



(a) iCub (b) Initial conditions. (c) Result after proportional growth.

Figure 6: Goal Babbling on a growing iCub

3.3 iCub Growth

We complete our experimental evaluation with a
kinematic simulation of the humanoid robot iCub
(Tsagarakis et al., 2007) (see Fig. 6a). The goal is
the 3D position control of the right hand (n=3). Ten
degrees of freedom (m=10) are controlled: three de-
grees of freedom in the hip, three in the shoulder,
one in the elbow and three in the forearm. The
model therefore resembles iCub’s kinematic chain
reaching from the hip to the right hand1. Since
the ranges of the possible angles differ significantly
between different joints, we normalize the range to
qi ∈ [−1.0; 1.0] ∀i= 1...10. Initially, the kinematic
model has only half of iCub’s original size (see Fig.
6b). During the growth period, all joints grow pro-
portionally to the full size.

For iCub we used V = 20 variations with range
R = 0.1. Target sequences are generated between
K = 30 different targets with L = 10 intermediate
steps each. Fig. 7 shows results over time for the
same growth periods as used in the planar arm ex-
periments. Again, the change induced by growth is
clearly visible by an increase of the absolute perfor-
mance error. However, the bootstrapping is success-
ful as the error reaches a stable, low level. The rel-
ative performance errors the same smooth blending
between the two reference curves that has been ob-
served on the planar arm. The final performance er-
rors are in the range of 6mm. Fig. 6c shows several
postures produced by an inverse estimate in order to
show how the redundancy is resolved. The results
show that Goal Babbling also allows to track growth
on a complex, three dimensional morphology.

4. Discussion

Our Goal Babbling algorithm (Rolf et al., 2010) al-
lows to bootstrap reaching skills in an entirely goal-
directed manner. We have shown that different

1For the kinematic parameters see:
http://eris.liralab.it/wiki/ICubFowardKinematics right

growth rates and unproportional growth patterns
during the bootstrapping can be handled and pre-
sented results for the infant-like humanoid iCub.

Bodily change obviously requires to keep on
learning once a sensorimotor skill is established.
The hierarchical, lifelong acquisition of new skills
“on top” of each other (Demiris and Dearden, 2005,
Prince et al., 2005) is only possible, if the perfor-
mance of older skills is stable. Given an already
developed skill, models that include a later on fine-
tuning can explain the adaptation to growth. But
what if a skill is not yet fully developed and the body
undergoes continuous change? The batch character
of staged models lacks the flexibility to deal with
such changes. In contrast, goal-directed exploration
is entirely incremental which permits adaptation to
changes at any time – without explicit knowledge of
when changes occur and what those changes are.

While models with separate exploration might be
formulated more incrementally, the major explana-
tory strength of Goal Babbling is its simplicity and
efficiency. The model can explain how infants learn
to reach with a single mechanism: the only neces-
sity is to keep on trying to reach. The approach
is thereby not only compatible with the evidence of
early goal-directed action in infants. It explains the
function and relevance of these reaching attempts
because this strategy leads to the successful acqui-
sition of skills. Trying to reach is a very efficient
strategy as it allows to focus on behaviorally rele-
vant motor commands. It can explain how infants
can explore their very high-dimensional motor sys-
tem, while unstructured approaches like motor bab-
bling are unapplicable in high-dimensional domains.
This efficiency contributes to the mastery of growth
because only relevant motor commands need to be
re-explored once the body has changed.
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