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NEATfields: Evolution of neural fields for visual
discrimination and multiple pole balancing tasks

ABSTRACT
We have developed a novel extension of the NEAT neuroevo-
lution method, termed NEATfields, to solve problems with
large input and output spaces. NEATfields networks are lay-
ered into two-dimensional fields of identical or similar sub-
networks with an arbitrary topology. The subnetworks are
evolved with genetic operations similar to those used in the
NEAT neuroevolution method. We show that information
processing within the neural fields can be organized by pro-
viding suitable building blocks to evolution. NEATfields can
solve a number of visual discrimination tasks and a newly
introduced multiple pole balancing task.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning—Connectionism and

neural nets

General Terms
Algorithms

Keywords
neuroevolution,NEAT

Track: Generative and developmental systems

1. INTRODUCTION

1.1 Evolving artificial neural networks
Artificial neural networks are computational models of an-

imal nervous systems and have found a wide range of suc-
cessful applications, such as system control and image pro-
cessing. Due to their nonlinear nature it is often difficult
to manually design neural networks for a specific task. To
this end, evolutionary algorithms have been widely used for
automatic design of neural networks [20, 3]. An important
advantage of designing neural networks with evolutionary
algorithms is that both weights and topology of the neural
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networks can be optimized. However, a few challenges have
to be addressed. For example, it is desirable that the exist-
ing function of a network should not be fully disrupted when
adding new elements to the network. It is also not obvious
how to recombine neural networks with arbitrary topologies,
or genomes of neural networks with variable lengths.

Another grand challenge in evolving neural networks is
the scalability issue: the evolution of solutions for tasks of a
large dimension. This problem is particularly serious when
a direct encoding scheme is used for representing the neural
network, where the length of the genome grows linearly with
the number of connections.

In contrast, indirect encoding of neural networks [20], in
which the weights and topologies are generated using, for
example, grammatical rewriting rules or grammar trees, can
achieve a sublinear growth of the genome. These methods
use a domain specific decompression algorithm in order to
make a large phenotype from a small genotype. Typically,
the class of encodable phenotypes is biased towards pheno-
types that possess some kind of regularity [10], some identi-
cal or similar repeated structure. Indeed many neural net-
works, whether occurring in nature or in technical applica-
tions, possess repeated elements. For example, the cerebral
cortex is organized into columns of similar structure. Brain
areas concerned with visual processing contain many mod-
ules, in which similar processing of local features is done for
different regions of the field of view in parallel. This occurs
in brain locations whose spatial arrangement preserves the
topology of the input [1].

Two ways of generating repeated structure can be con-
sidered: The first approach is to duplicate existing genes,
which is believed to be an important mechanism in natural
evolution[21]. The duplicated genes can subsequently di-
versify in their function. The second approach is known as
co-option, where existing genes can be employed in new con-
texts [7]. While the first process generates modular or even
redundant structures, the second can achieve decompression
of genotypes into larger phenotypes. Both processes seem to
be useful for the evolution of neural network topologies.

Recently, a lot of research has been performed on apply-
ing artificial embryogeny to neuroevolution [17, 8]. These
methods are mainly inspired from biological mechanisms in
morphological and neural development such as cell growth,
cell division, and cell migration under the control of genetic
regulatory networks. Here we take a different approach. We
start with a direct encoding and augment it with duplica-
tion and co-option mechanisms in order to generate large
phenotypes with repeated structures from small genomes.



1.2 The NEAT neuroevolution method and deriva-
tives

The NEAT method [16, 14] is a well known and compet-
itive direct encoding method that introduces a number of
techniques to successfully deal with common problems in
neuroevolution. One idea is to track genes using historical
markings. This is achieved by assigning a globally unique
reference number to each gene once it is generated by mu-
tation. These numbers are used to solve the permutation
problem and make recombination effective. Similar to re-
combination in nature, genomes are aligned first, and their
offspring get exactly one copy of each gene that is present in
both parents. Another idea is to protect innovation through
speciation. For example, if a network with a larger topology
arises by mutation, initially it may not be able to compete
against networks with a suboptimal but time-tested topol-
ogy. By using reference numbers, the population is parti-
tioned into species based on their phenotype similarity. The
number of offspring a species has is proportional to its mean
fitness. This prevents a slightly superior species from taking
over the whole population, and enables innovative yet cur-
rently inferior solutions to survive. Recombination is usually
only allowed to occur within a species, such that parents look
rather similar to each other and the offspring look similar
to its parents. Evolution starts with the simplest possible
network topology in NEAT and proceeds by complexifica-
tion, that is by adding neurons and connections. Neurons
are only added between two connected neurons in such a
way that the function of these connections changes as little
as possible.

Due to the success of the method, quite a few deriva-
tives have been developed. For example in [13], NEAT net-
works are used as modules and co-evolved with blueprints.
Blueprints are lists of modules together with specifications
on how to map module inputs and outputs on network in-
puts and outputs. In the MBEANN method [11], initially
everything is in a module m0. A new module is created every
time a node is added that connects to at least one element in
m0. New connections are established either within a given
module or between a given module and m0. In another ap-
proach, sets of rules are evolved with NEAT-like speciation
that implicitly define a neural network [12]. In HyperNEAT
[2, 5], very large neural networks can be generated by us-
ing indirect encoding. Their topology is determined by the
task geometry, while the connection weights are generated
by giving neuron coordinates as input to another network,
which is termed “compositional pattern producing network”
[15] and evolved according to a slightly extended NEAT
method. HyperNEAT networks can be very large and have
shown impressive scaling ability. In the NEON method [9],
NEAT mutation operators are used as developmental opera-
tors, and a gene can encode arbitrary numbers of operations
by referring to a data pool.

1.3 NEATfields: Goals and approach
While there are already other methods for evolving large

networks, NEATfields has been designed to make use of two
particular features of the NEAT method: First, the genetic
operators for changing network structure in NEAT were
carefully designed to avoid producing redundant structures
and disrupting existing functional elements. We believe that
these operators are also helpful in evolving large neural net-
works. Second, complexification from small structures, i.e.

gradual growth of the networks during the course of evo-
lution, has been shown to be an important reason for the
success of the method [16]. Therefore, exploration of the
search space by gradual complexification is used as a strat-
egy by NEATfields as well.

In order to evolve large networks with mutation operators
known from direct encodings, the assumption that the input
and output spaces of a task can largely be decomposed into
a number of equal or similar subspaces is built into NEAT-
fields. Many real-world tasks indeed require one or two di-
mensional fields of networks that do the same or similar cal-
culations. For example, an eye or a camera provides large
amounts of sensory data with a natural two-dimensional
topology. Also, robots with actuated limbs often require
a number of similar controllers in addition to a coordinating
mechanism.

NEATfields uses small NEAT networks as elements of
fields with arbitrary sizes. In contrast to some of the pre-
viously mentioned methods derived from NEAT, here the
whole network architecture is specified by each individual,
so there is only a single population by default. The encoding
of the networks is strongly biased towards two dimensional
fields, although any other network topology could evolve in
principle. NEATfields starts evolution with a single field of
size 1 × 1. If the mutation operators that are specific to
NEATfields are switched off, it will reduce to a plain NEAT
implementation. That means we can use it as a rather gen-
eral methods to evolve solutions for tasks that are hard to
solve because of being nonlinear control problems that re-
quire fast reaction, or for tasks that require internal memory.
Double pole balancing and sequence recall are examples for
such tasks and have been solved using NEAT implemen-
tations [16, 9]. We can also expect that these abilities of
NEAT transfer to cases where many inputs and outputs are
present. This will be demonstrated below.

2. METHODS

2.1 Neural networks
Like in most artificial neural networks, the activation of

the neurons in NEATfields is a weighted sum of the out-
puts of neurons j ∈ J to which they are connected, and
a sigmoid function is applied on the activation: oi(t) =
tanh(

P

j∈J wijoj(t−1)). Here, connection weights are within

the range [−3, 3].
A NEATfields network module (also called field element)

is a recurrent neural network with almost arbitrary topol-
ogy, although the used operators will ensure that no dis-
connected neurons exists and that there exist only one con-
nection at most between all pairs of neurons. A field is a
two-dimensional array of field elements. In special cases,
the field size along one or both dimensions is 1. A com-
plete NEATfields network consists of at least one internal
field, and fields for network input and output as specified
by the given task. There can be several input and output
fields with different dimensions. Typically, a bias input is
provided within its own input field of size 1× 1. Within the
NEATfields network, connections can be local (within a field
element), lateral (between field elements of the same field),
or global (between two fields, possibly including the input
and outputs fields). For all experiments reported here, evo-
lution starts with a single internal field of size 1 × 1 that is
connected to all input and output fields (but in principle, it



Figure 1: Encoding and architecture of NEATfields
networks. A schematic representation of the genome
is shown at the bottom. The gray circles contain ei-
ther the input and output nodes structured as fields
or the NEAT subnetworks. Within the fields, they
are displayed as black dots. So each black dot in
these fields stands for a whole subnetwork. Global
or lateral connections are not shown here.

is possible to start with several internal fields that are con-
nected to a subset of input and output fields each, thereby
imposing some network modularity from the start). The in-
ternal field of the common ancestor contains one neuron for
each different output, i.e. for each different output within
the same output field element. In contrast, corresponding
outputs in different elements of a field are treated as one,
so if the output field is of dimension n × n, for example,
a neuron in the internal field will project to n2 neurons in
the output field. This number can shrink during evolution
as the size of the internal field grows. The next subsection
contains more information about how fields are connected.

2.2 Encoding
Each field has a corresponding genetic element (called

chromosome for convenience) that encodes all its parame-
ters (see Figure 1). The first gene in a chromosome specifies
the field size. Next, there are as many node and connec-
tion genes as needed to specify one field element. All genes
contain a unique reference number that is assigned once the
gene is generated through a mutation. In addition, con-
nection genes contain a connection weight, a flag indicating
whether the connection is active, and the reference numbers
of the source and target neurons (as well as additional data
that is explained below).

There is a special“global”chromosome that contains genes
coding for global connections. These genes basically contain
the same information as the connection genes mentioned be-
fore, but the addressing method is slightly different to ensure
that network input and output can be referenced.

If the genome contains a global connection gene for con-

Figure 2: Global connections between elements of
different fields (shown here as one dimensional) are
wired in such a way that neighborhood between field
elements is preserved and with automatic averag-
ing (left) or projection (right) if fields have different
sizes.

necting fields with the same size, every field element in the
target field will get a connection from the field element in the
source field that has the same relative position in its field.
Their connection weights are all the same because they are
all derived from a single gene. If field sizes are different in
a dimension, then NEATfields will still use a deterministic
and topology preserving method of connecting the fields (see
figure 2): if the source field is smaller than the target field,
outputs are projected evenly to the target field (e.g., if it
has only half the size of the target field, each field element
projects to two adjacent target field elements); if the source
field is larger than the target field, the target field elements
get averaged input from an evenly distributed number of ad-
jacent source field elements. In other words, the genetically
specified weight is then divided by the number of connec-
tions coming to a single target field neuron from the source
field neurons.

2.3 Mutation operators

2.3.1 Mutations for small subnetworks
NEATfields uses mutation operators that are very similar

to those of NEAT. The most common operation is to choose
a fraction of connection weights and either perturb them us-
ing a normal distribution with standard deviation 0.18, or
(with a probability of 0.15) set them to a new value. The
application probability of this weight changing operator is
set between 0.89 and 0.94, depending on the other operators
used. An operator to connect neurons is used with proba-
bility 0.02, while an operator to insert neurons is used with
probability 0.001. The latter inserts a new neuron between
two connected neurons. The weight of the incoming connec-
tion to the new neuron is set to 1.0, while the weight of the
outgoing connection keeps the original value. The existing
connection is deactivated but retained in the genome. There
a two additional operators, one toggles the active flag of a
connection and the other sets the flag to 1. Both are used
with probability 0.01.

2.3.2 Evolving large scale topology
For evolving the large scale topology, NEATfields intro-

duces some new operators. One operator doubles the field
size along one dimension (at a probability of 0.004) and an-
other increases the dimension by one (at a probability of
0.004). In addition, there is an operator that inserts global



Figure 3: Lateral connections are established be-
tween a field element and its four neighbor elements
(if it is not at the border). They are shown only for
the central element as dotted lines here.

connections (at a probability of 0.01) and an operator that
inserts a field of size 1 × 1 into an existing global connec-
tion(at a probability of 0.001). An existing field can also be
duplicated, where all elements of the new field received new
reference numbers. However, we do not use this operator
here in most experiments.

2.3.3 Flow of information within neural fields
Lateral connections between field elements can enable flow

of information within a neural field. Here, each field element
is connected to its up to four neighbors (see figure 3). The
connection is actually not between fields as such, but be-
tween neurons in the respective fields. The gene coding for
a lateral connection specifies source and target neuron ref-
erence numbers just as genes coding for local connections
do; it is also located in the same chromosome. But it has
a lateral flag set to 1, and is created by a lateral connect
operator (at a probability of 0.02).

2.3.4 Dehomogenizing neural fields
By default, corresponding connections in different field el-

ements all have the same strength so they can be represented
by one gene. The same is true for the global connections be-
tween field elements of two fields. For some tasks, it may
be useful to have field elements that react slightly different
to input, which can create what has been called “repeti-
tion with variation” [15]. One way to realize this is to have
larger connection weights in a neighborhood of some cen-
ter coordinates on the field. Here, connection weights are
scaled according to exp(−ǫ( distance

field size
)2) (in our implementa-

tion, this is done separately for different dimensions), where
ǫ = 5.0 means that connections close to the center have a
large weight and the rest will have weak weights. The cen-
ter coordinates are specified in the following way: There are
two eight bit values in the gene encoding a connection, one
for each dimension. These are converted to two numbers be-
tween −1 and 1. If a number is between -0.15 and 0.15, the
connection weights are homogeneous in the corresponding
direction. This is the default for all connections. If a value
is outside this range, on the other hand, then it is mapped

linearly to a position between the two field borders. There
is a mutation operator that (at a probability of 0.03) sets
the values for a single connection gene.

In principle, a field can be completely dehomogenized by
many of these connections with what we call “focal areas”,
but there is a faster way of doing so. The connection weights
corresponding to a single gene can also be scaled by a factor
that is random with respect to position in the field. Here, a
random factor does not mean that the factors are randomly
drawn every time the network is created. Instead, the inno-
vation number of the gene is used as a pointer to a “random
data pool” that remains constant. A similar technique has
been used in previous work [9]. Technically, the innovation
number is used as a seed for a common random number
generator that generates the required amount of data. Of
course, learning of the randomization is impossible because
it is fixed, but evolution can add randomization to arbitrary
many connection genes, so a desired pattern may be achieved
by interaction of several available patterns. Fine tuning the
dehomogenization can also be done subsequently by using
the focal area dehomogenization described above.

Randomization of connection weights is specified by a flag
in the connection gene. In those experiments that use this
technique, we create 25% of all connections with the flag set.
The flag does not mutate subsequently.

2.4 Selection methods
NEATfields uses speciation selection with variable speci-

ation threshold like in some variants of NEAT [14, 6]. The
dissimilarity between two networks is calculated as follows:

d = cn#refn + cr#refc + cw

X

∆w

+cf#reff + cs

X

log(1 + ∆sx + ∆sy)

where #refn is the number of nodes present in just one of
these networks, #refc is the number of connections present
in just one of these networks, #reff is the number of fields
present in just one of these networks, ∆w are the connec-
tion weight differences (summed over pairs of connections
that are present in both networks), the ∆s are the field size
differences in the x and y dimension (summed over pairs
of fields present in both networks), and the c variables are
weighting constants.

Using this measure, the population is partitioned into
species by working through the list of individuals. An indi-
vidual is compared to representative individuals of all species
until the dissimilarity between it and a representative is be-
low a certain threshold. It is then assigned to this species.
If no compatible species is found, a new species is created
and the individual becomes its representative. The number
of offspring a species has is proportional to its mean fitness.
Inside the species, the worst 60% of its members are deleted,
after which uniform selection is used for the rest. Species
with an offspring size greater than five also keep their best
performing individual. If the maximum fitness of a species
has not increased for more than 200 generations and it is
not the species containing the best network, its mean fitness
is multiplied by 0.01, which usually results in its extinction.
Also, in order to keep the number of species in a specified
range, the dissimilarity threshold is adjusted in every gen-
eration if necessary.

For the experiments reported here, we use an initial speci-
ation threshold of 4.0, and set cn = 0.0, cr = 1.0, cw = 2.0,



cf = 1.0, cs = 2.0. We use four different population sizes,
each with a different target number of species: 100 (2 to 8
species), 150 (3 to 9 species), 200 (4 to 10 species), and 1000
(35 to 45 species).

2.5 Experimental Procedure
20 runs were performed for each experiment. For statisti-

cal comparisons, we use the Wilcoxon rank-sum test, where
we rank the outcomes of successful runs according to the
number of evaluations. All unsuccessful runs get a lower
rank than the successful runs, while ranking between them
is done according to the highest fitness in the final genera-
tion.

3. EXPERIMENTS AND RESULTS

3.1 Finding the large square
This task has been implemented following the description

given in [5], although without the generalization and scaling
tests described there. The network input is a visual field of
11× 11 pixel plus bias input, while the output is also a field
of size 11× 11. On the input field, the networks can see two
“black” squares on a “white” background. The first square
is of size 3 × 3 pixel, while the second is just a single pixel.
The task for the network is to indicate the position of the
center of the large square by its highest output activation.
Performance is tested in 75 episodes that are generated at
the beginning of the experiment as follows: 25 positions for
the small square are chosen randomly. For each position,
three trials are generated by positioning the large square 5
pixels down, right or down and right. The grid is taken to be
a toroid here, so if the small square is already at the lower
margin of the grid, the large square will appear above it.
If the larger square is divided by this procedure, it will be
moved such that it appears on the grid as a single object.

Here, the network is allowed to compute for 20 time steps
before the output is read. The fitness is calculated as f =
P

75

trial=1
(200− (xtgt −xout)

2
− (ytgt −yout)

2) to ensure pos-
itive fitness values (the maximum difference between target
position and highest output position could be 10 pixels). For
comparison with other approaches, the fitness can be used to
compute the average distance to the correct target position,
where the size of the whole field is set to 2.0 × 2.0. From
the literature, HyperNEAT achieves an average distance of
about 0.1 (and sometimes finds perfect solutions) after 250
generations using a population size of 100, while a fully con-
nected NEAT network without structural operations used
as a control achieves a distance of about 0.5 [5].

We used six different configurations for each visual dis-
crimination task. The first (“plain”) just uses NEATfields
without any lateral connections or dehomogenization tech-
niques. The second (“LC”) uses NEATfields with lateral con-
nections, but without dehomogenization. The third (“1f”) is
similar to the LC configuration, but with the insert field
operator switched off, so just one field is used during the
whole course of evolution. The fourth (“LC-F”) uses lat-
eral connections and focal area dehomogenization, the fifth
(“LC-R”) lateral connections and dehomogenization by ran-
domized weights, and the sixth (“LC-FR”) uses lateral con-
nections and both dehomogenization methods. For the task
in this subsection, all tasks use a population size of 100.

NEATfields in plain configuration reaches an average fit-
ness of 14949, or an average distance of 0.16 (no perfect

Figure 4: (left) Input patterns for three visual dis-
crimination tasks. The first tasks uses the patterns
in column 1; the second tasks uses the patterns
in column 2; the third task uses the patterns in
columns 2–4. (right) An example pattern for the
task of distinguishing orientations of area borders
in gray scale images.

solutions evolved), while in the LC configuration, NEAT-
fields reaches a perfect solution in 95% of the runs using
13325 evaluations on average. The 1f configuration solved
the task in 100% of the runs using 12186 evaluations on av-
erage, which is not significantly different (p ≈ 0.35) from
LC. The LC-F configuration solved the task in 85% of the
runs, the LC-R in 100% of the runs, and the LC-RF in 80%
of the runs. The numbers of evaluations were similar in the
successful runs for these configurations.

Evolved solutions from the LC configuration used between
120 and 576 neurons (mean 265), and between 1028 and
4384 connections (mean 1907). Their genome consisted of
between 7 and 18 genes (mean 9.1, and out of these, 3.4
code for global connections on average). All solutions had
a primary field of size 12 × 9 at least, but in some cases up
to 32 × 12. On average, this field consisted of 264 neurons.
1 of the 20 solutions had a second field, which contained 12
neurons. The average field element consisted of 1.2 neurons
in all fields. All solutions used at least one active lateral
connection gene. The smallest solution used just one neuron
per field element and one lateral connection.

3.2 Distinguishing orientations of shapes and
textures

The three tasks described here are tasks where dehomog-
enized neural fields can be expected to be useful. The same
11 × 11 input field is used as before (in addition, there is a
bias input), but there are just 4 outputs for classification.
A number of patterns are presented to the network in sep-
arate episodes. The patterns are shown in figure 4. So the
first task is to map the four simple patterns to the four out-
puts. For the second tasks, four different textures have to
be mapped to the four outputs. For the third tasks, twelve
textures have to be classified according to their orientation.
The output with the highest activation after 20 time steps
is considered to be the classification result. The mapping
that has to be learned is pre-specified, for example, the first
pattern has to be mapped to the first output.

For every episode where classification is correct, the net-
work scores 200 fitness points. For the other episodes, the
network scores between 0 and 100 points depending on the
difference between the maximally activated output and the
output that should have been maximally activated. That
value v, which can be between 0.0 and 2.0, determines the
fitness score according to f = 100 − 50v. A population of



200 individuals is evolved for 500 generations.
For the simple patterns task, we find that the plain config-

uration reaches a mean fitness of 695 and a perfect solution
in 10% of the runs. The LC configuration reaches a mean
fitness of 700 and a perfect solution in 10% of the runs. The
1f configuration reaches a mean fitness of 700 and a per-
fect solution in 15% of the runs. The LC-F configuration
reaches a mean fitness of 785 and a perfect solution in 80%
of the runs. The LC-R configuration reaches a mean fitness
of 725 and a perfect solution in 25% of the runs. The LC-
FR configuration reaches a mean fitness of 785 and a perfect
solution in 85% of the runs.

For the four textures task, we find that the plain config-
uration reaches a mean fitness of 740 and a perfect solution
in 40% of the runs. The LC configuration reaches a mean
fitness of 755 and a perfect solution in 55% of the runs. The
1f configuration reaches a mean fitness of 750 perfect solu-
tion in 50% of the runs. The LC-F configuration reaches a
mean fitness of 745 and a perfect solution in 45% of the runs.
The LC-R configuration reaches a mean fitness of 755 and
a perfect solution in 55% of the runs. The LC-RF reaches
a mean fitness of 760 and a perfect solution in 60% of the
runs.

For the twelve textures task, no perfect solutions were
found by any configuration. Mean fitness was 2060 for the
plain configuration, 2088 for the LC configuration, 2107 for
the 1f configuration, 2049 for the LC-F configuration, 2074
for the LC-R configuration, and 2033 for the LC-FR config-
uration.

The differences between the plain and the LC configura-
tion, or between the LC and the 1f configuration, are not
significant for any task here. The LC-F configuration is sig-
nificantly better than LC for the four patterns task, but
not for the other tasks. The LC-R configuration is indistin-
guishable from LC for all tasks. The LC-FR configuration
is significantly better than LC on the four patterns task,
and significantly worse for the twelve textures task. Note
that in this and the following section, a simple t test has
been applied with a significance threshold of 0.05 because
the Wilcoxon rank sum test could not deal with the many
runs that ended with the same maximal fitness (which made
ranking impossible).

3.3 Distinguishing orientations of area borders
in gray scale images

This task again uses an input field of 11×11 and 4 outputs.
This time the patterns are gray scale images with two areas.
There are four classes of images. The orientations of the area
borders for the four classes are those in column 1 of figure
4 again. On one side of the border, color values are in the
range [0, 0.7], on the other side in the range [0.3, 1]. As these
ranges overlap, classification cannot be done depending on
single pixels only. Four instances are generated randomly
for every class at the beginning of the run, so all individuals
are tested on the same patterns in 16 separate episodes each.
Again, the output with the highest activation after 20 time
steps is considered to be the classification result, and the
mapping to be learned is pre-specified. Fitness is calculated
exactly as in the tasks described in the previous paragraph.
Again, we evolve a population of 200 individuals for 500
generations.

For this task, the plain configuration reaches a mean fit-
ness of 2771 and a perfect solution in 0% of the runs. The LC

configuration reaches a mean fitness of 2815 and a perfect
solution in 0% of the runs. The 1f configuration reaches a
mean fitness of 2820 and a perfect solution in 0% of the runs.
The LC-F configuration reaches a mean fitness of 2997 and
a perfect solution in 20% of the runs. The LC-R configura-
tion reaches a mean fitness of 2897 and a perfect solution in
10% of the runs. The LC-FR configuration reaches a mean
fitness of 2964 and a perfect solution in 15% of the runs.
The LC-F and LC-FR configurations are significantly bet-
ter than the LC configuration, but the differences between
LC and plain, or LC and 1f, or LC and LC-R configuration,
are not significant (although it should be noted that LC-R
could evolve perfect solutions, while LC could not).

3.4 Balancing multiple poles
Pole balancing tasks are a family of benchmark tasks, in

which a nonlinear system has to be controlled and fast reac-
tions are required. The input and output spaces are rather
small. A cart can drive back and forth on a track and it
has to balance either a single pole mounted on top of it by
a hinge joint, or two poles, the second being one tenth the
length of the first. Performance is measured by the number
of time steps (a maximum is set at 100000) that the cart
stays within some distance from its point of origin, and both
poles do not deviate from the upright position by more than
a certain angle. Neural networks get cart and pole positions
as inputs, and in a simpler Markovian version, also the cart
and pole velocities. A bias input is also provided. Thus we
have the tasks commonly known as “single pole balancing —
velocity inputs (SPV) “single pole balancing — no velocity
inputs” (SPNV), “double pole balancing — velocity inputs”
(DPV), and “double pole balancing — no velocity inputs”
(DPNV). There is also a more difficult version of DPNV
(“Anti-wiggling” DPNV) with a different fitness function,
where wiggling of the poles is punished and generalization
to at least 200 out of 625 starting angles is required. These
tasks have been described in more detail in [19, 16].

Here we examine performance on a DPNV-based task
where multiple instances of such cart-pole systems must be
controlled simultaneously. The initial angles of the long
poles are evenly spaced between −1.8° and 1.8°. It is ex-
pected, and can be observed, that trajectories of the cart-
pole systems will diverge over time. A field of 4×4 pole sys-
tems is used by default for the pole balancing system. Each
input field element provides four inputs (including a bias
input), while each output field element expects one output
signal as in single instance DPNV. The fitness is the num-
ber of time steps in which all systems are kept balanced.
The goal is to balance all systems for 100000 time steps. A
population size of 150 is used for the experiments here.

A NEAT-like NEATfields configuration (i.e., with a sin-
gle internal field of size 1 × 1 during the whole course of
evolution, no field structure in the inputs and outputs, and
one neuron for each output initially, each connected to all
inputs) can not solve this problem. In fact, the best solu-
tion from 20 runs could only balance the pole systems for an
average of 36 time steps. The plain NEATfields configura-
tion (i.e. without lateral connections or dehomogenization
methods), however, can with probability 1.0 solve the task
using 24934 evaluations on average. Evolved solutions have
between 16 and 1024 neurons (mean 129, median 44) and
between 96 and 6144 connections (mean 694, median 216).
They use between 9 and 28 genes (mean 14.6), of which be-



Figure 5: (left) One of the 16 identical modules of
a network solving the MDPNV task. This is a com-
pletely regular network, and is the simplest solution
possible. Hidden neurons are displayed as circles,
input neurons as diamonds, output neurons as tri-
angles. (right) A partial view of another network
solving the MDPNV task. Four identical field ele-
ments can be seen. Some inputs are processed only
via shared neurons from another field (shown in the
middle). Many connections to other field elements
emerge from these neurons . Hidden neurons are
displayed as circles, input neurons as diamonds, out-
put neurons as triangles.

tween 5 and 12 (mean 7.3) code for global connections. All
evolved solutions use a primary field with sizes between 4×4
and 256× 4. These fields contain 127 neurons on average. 9
of the 20 solutions use further fields (up to 3) that contain
4.1 neurons on average. The elements of all fields contain
1.5 neurons on average. The minimal solution that evolved
several times used a field of size 4 × 4 that contained just
one neuron with a self-connection. How other solutions use
their additional fields is not intuitively obvious. These fields
often contain just a single neuron that is connected to all
field elements in the primary field (see Figure 5).

A ’1f’ configuration solves the task using 15556 evalua-
tions on average, which is significantly better (p < 0.01).
The insert field operation, which is left out in the ’1f’ config-
uration, creates a new field with just one neuron and inserts
it in the same way as the neuron inserting operation. We
also examined the influence of using the field duplication
operation instead of, or in combination with, the field in-
serting operation on the performance (in both cases, we use
the field duplication operation with a probability of 0.001).
This yields success probabilities of 1.0 and 1.0, and eval-
uation numbers of 16851 and 18762, respectively. This is
significantly better than the plain configuration in the first
case (p ≈ 0.02), but not in the second (p ≈ 0.09).

Using a larger range of initial pole angles should make the
task more difficult because of the initial faster reaction time
required. If pole angles are in the range of −3.6° to 3.6°,
NEATfields with a small population can find solutions with
a probability of 1.0 using 22642 evaluations on average. This
is not significantly different from its performance in the case
of standard start angles (p ≈ 0.58).

NEATfields also scales quite well for larger input and out-
put spaces. It can solve a task with a 16 × 16 array of pole
systems with a probability of 1.0 using 158955 evaluations

on average using a population size of 1000.

4. DISCUSSION
The experiments described in this paper show that the

NEATfields method is able to find solutions for a a number of
tasks with large input and output spaces. It is interesting to
know that problems like the“large square task”can be solved
with two conceptually different approaches as HyperNEAT
and NEATfields.

The large square task cannot be solved without lateral
connections. This is understandable because field elements
are more or less responsible for processing a pixel or a group
of neighboring pixels, and there needs to be a way of detect-
ing several adjacent “black” pixels.

The focal area dehomogenization (or using both homog-
enizations) makes NEATfields significantly better only on
the four patterns task, but not on the four or twelve tex-
tures task. This can be explained because the four patterns
can be distinguished by monitoring activation in some local
areas of the input field. This can be done well with focal
area dehomogenization. But the textures have equal acti-
vation in all areas, only the orientation is different, so focal
areas are not very helpful there.

Distinguishing the gray scale images only works with de-
homogenized neural fields. Focal areas are much more use-
ful than randomization here. All in all, while both methods
can dehomogenize a field, evolution, as currently set up in
NEATfields, can only handle the focal areas satisfactorily.

A common pattern in the results is that those features
that make solving some tasks possible will decrease perfor-
mance on the tasks that are solvable without using them.
If evolution has more options, it often takes the wrong way.
However, we used rather small populations and few genera-
tions. It seems that a configuration with lateral connections
and focal area dehomogenization (LC-F) leads to satisfac-
tory results on most tasks examined here if a sufficient num-
ber of evaluations is allowed, so this is a reasonable setup
for further experiments with NEATfields.

Whether the duplication operation is useful on the tasks
tackled here remains unclear. Besides its core effect of chang-
ing the way the search space is explored, the duplication
operation also influences the structural diversity within the
population, and this interacts with speciation selection in
a complex way. It has also been suggested that the field
inserting operator is too disruptive because it can insert a
field of size 1 × 1 between two large fields. So it might be
worth trying a field inserting operator that fits the size of an
inserted field to those of its neighbor fields. Regarding du-
plication, it has been proposed that duplication of the whole
field of neurons have occurred in vertebrate brain evolution
(see [18] for a discussion of this), and this operation may be
useful in artificial evolution for tasks where chains of same
or similar processing elements are advantageous. Perhaps
the tasks examined here are still too easy to make the pres-
ence of several fields an advantage (regardless of the operator
used).

The experiments on multiple pole balancing show that
NEATfields can transfer the ability of NEAT to solve chal-
lenging nonlinear control problems to large input and output
spaces. It could be argued that this task is in a sense trivial
because the easiest solution is simply to make some identical
copies of a controller for a double pole system. The task is
indeed not very difficult for NEATfields because it matches



its underlying assumption so well. But it is still challenging
for evolution to find the appropriate number of instances,
especially while evolving the controller at the same time.
Besides, we expect this problem to be quite difficult for neu-
roevolution methods that do not make similar assumptions.
We consider multiple pole balancing as a starting point for
investigating evolution of controllers for high dimensional
control problems that contain regularities.

Several features of NEATfields have not yet been described
in detail or examined systematically. Besides, it will be in-
teresting to see what is necessary to find solutions for other
tasks with large input and output spaces. Research work is
currently conducted to apply NEATfields to several robotic
tasks. We also continue to work on the twelve textures task
and some other difficult visual discrimination tasks not de-
scribed here. One way of solving them could be to use active
vision [4]. Also of particular interest are tasks that — unlike
those reported here — actually benefit from the use of sev-
eral fields. We hope that with our method, the scalability
of neuroevolution can be enhanced.

HyperNEAT is currently one of the most successful meth-
ods for evolving large neural networks using an indirect en-
coding. This method can learn arbitrary genetic architec-
tures through the use of a neural network-like computational
pattern producing network, and can discover many kinds
of regularities in the phenotype autonomously [15]. These
are desirable abilities, especially if a task becomes gradually
more complex in long term evolution scenarios. NEATfields
is more limited in this regard because its building blocks are
to a large degree externally specified. However, one could
extend the NEATfields method by providing other interest-
ing building blocks, e.g. building blocks inspired by findings
in neuroscience. That way, knowledge about the task can be
embedded into the method, which can make evolution more
efficient for a class of problems.
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