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Abstract. Having a good description of an object’s appearance is cru-
cial for good object tracking. However, modeling the whole appearance
of an object is difficult because of the high dimensional and nonlinear
character of the appearance. To tackle the first problem we apply nonlin-
ear dimensionality reduction approaches on multiple views of an object
in order to extract the appearance manifold of the object and to embed
it into a lower dimensional space. The change of the appearance of the
object over time then corresponds to a walk on the manifold, with view
prediction reducing to a prediction of the next step on the manifold.
An inherent problem here is to constrain the prediction to the embed-
ded manifold. In this paper, we show an approach towards solving this
problem by applying a special mapping which guarantees that low di-
mensional points are mapped only to high dimensional points lying on
the appearance manifold.

1 Introduction

One focus of the current research in computer vision is to find a way to represent
the appearance of objects. Attempts of full 3D modeling of an object’s 3D shape
turned out to be not reasonable as it is computationally intensive and learning
or generating appropriate models is laborious. According to the viewer-centered
theory [1–3] the human brain stores multiple views of an object in order to
be able to recognize the object from various view points. For example in [4]
an approach is introduced that uses multiple views of objects to model their
appearance. Thereto the desired object is tracked and at each time step the pose
of the object is estimated and a view is inserted into the model of appearance if
it holds new or better information. Unfortunately, this is very time consuming
as this approach works directly with the high dimensional views.

Actually, the different views of an object are samples of the appearance
manifold of the object. This manifold is a nonlinear subspace in the space of
all possible appearances (appearance space) where all the views of this partic-
ular object are located. In general, the appearance manifold has a much lower



dimensionality than the appearance space it is embedded in. Non-Linear Dimen-
sionality Reduction (NLDR) algorithms, like Locally Linear Embedding (LLE)
[5], Isometric Feature Mapping (Isomap) [6] or Local Tangent Space Alignment
(LTSA) [7], can embed a manifold into lower dimensional spaces (embedding
space) by means of a sufficient number of samples of the manifold. Elgammal
and Lee [8] use embedded appearance manifolds for 3D body pose estimation of
humans based on silhouettes of persons and LLE. Pose estimation is realized via
a RBF1-motivated mapping from the visual input to the embedded manifold and
from there to the pose space. Note that they model the embedded manifold with
cubic splines in order to be able to project points mapped into the embedding
space onto the manifold. Lim et al. [9] follow a similar approach but in contrast
to Elgammal and Lee they use the model of the embedded manifold to predict
the next appearance. Actually, both approaches are limited to one-dimensional
manifolds as the views were sampled during motion sequences and the modeling
of the manifold is based on the available time information. In [10] Lui et al.
use an aligned mixture of linear subspace models to generate the embedding of
the appearance manifold which does not dependent on additional time infor-
mation. Using a Dynamic Bayesian Network they infer the next position in the
embedding space and based on this the position and scale parameters.

The approach of Lui et al. is able to handle manifolds with more than one
dimension but the prediction process is not constrained to the structure of the
manifold. This, however, is very important for predictions over a larger time
span as without this constraint the prediction would tend to leave the manifold,
leading to awkward views when projected back to the appearance space or to
wrong pose parameter estimates. Unfortunately, this constraining is quite diffi-
cult because of the highly nonlinear shape of the manifold. In the work presented
here, we do not attempt to tackle this problem directly. Instead, we just use a
simple non-constrained linear predictor in the low dimensional embedding space
and leave the work of imposing the manifold constraint to the mapping proce-
dure between the low dimensional embedding space and the high dimensional
appearance space.

The rest of this paper is organized as follows. In Sect. 2 we show what kind of
objects we used to investigate our approach and we discuss the shape of appear-
ance manifolds of rigid objects in the light of our way of sampling views. Section 3
introduces our approach for mapping between the spaces which guarantees to
map only to points lying on the manifold and its embedding. Then Sect. 4 pro-
vides the workflow of our view prediction approach. In Sect. 5 we describe the
experiments conducted for analyzing our view prediction approach and present
the results. Finally, Sect. 6 summarizes this paper and outlines future work.

2 Appearance Manifolds and Embedding

All possible views of an object together form the so-called appearance manifold.
By embedding such a manifold in a low dimensional space one gets a low di-
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mensional equivalent of this manifold. If one is able to correctly map between
the spaces one can work efficiently in the low dimensional space and project the
results to the high dimensional space. For example series of views exhibit as a
trajectory on the appearance manifold. Mapping such a trajectory into the low
dimensional space eases the processing as the trajectory’s dimensionality and
nonlinearity is reduced. Figure 1 shows a simple band-like manifold resident in
the three-dimensional space and its embedding in the two-dimensional space.

Fig. 1. A trajectory on a two-dimensional band-like manifold. On the left we see the
actual manifold and on the right its two-dimensional embedding.

We used the POV-Ray2 tool for generating views of virtual objects3 (see
Fig. 2). This way we are able to verify our approach under ideal conditions and,
for now, we do not have to deal with problems like segmenting the object from
the background. A view of an object is described mainly by the orientation pa-
rameters of the object. These could for example comprise: scaling, rotation about
the three axis of the three dimensional space, deformation and translation. How-
ever, we will concentrate only on the rotation here. While tracking deformation
would considerably blow up the complexity of the problem, scaling can be han-
dled by a resolution pyramid. Furthermore, it makes sense to use views which
are centered because this could be dealt with by a preprocessing step, like a
translational tracker. So we are left with a three-dimensional parameter space
spanned by the three rotation angles. In addition, sampling views over all three
angles is not feasible as this would lead to a too large number of views. Therefore
we decided to sample views by varying only 2 axes. Unfortunately, experiments
have shown that, in general, the views sampled varying 2 axes are not embed-
dable in a non-pervasive manner in a low dimensional (three-dimensional) space.
Hence we reconsidered to rotate the objects full 360◦ only about one axis.

We sampled views every 5◦ while rotating the object 360◦ about its vertical
axis (y-axis) and tilting it from −45◦ to +45◦ about its horizontal axis (x-axis).
Each 360◦ rotation for itself leads to a cyclic trajectory in the appearance space.
As these trajectories are neighboring, all views together form a cylindric appear-

2 POV-Ray is a freely available tool for rendering 3D scenes.
3 the objects we used are templates from http://objects.povworld.org



Fig. 2. The objects used for analyzing our view prediction approach.

ance manifold. This can be seen exemplarily at the embedding of the views of
the bee and the bird in Fig. 3. For embedding the appearance manifold into a
low dimensional space we use the Isomap approach because comparisons of LLE
[5], LTSA [7] and Isomap [6] have shown that Isomap is most appropriate for
this purpose.
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Fig. 3. Three-dimensional embeddings of the views of the bee (left) and the bird (right)
generated with Isomap. Views were sampled in an area of 360◦ vertical and from −45◦

to +45◦ horizontal. The colors encode the rotation angle about the vertical axis from
blue 0◦ to red 360◦. As each full rotation about the vertical axis exhibits as a cyclic
trajectory in the appearance space and since all cyclic trajectories are neighboring, the
embedding of the views leads to a cylinder-like structure (appearance manifold).

3 Mapping Between the Spaces

We prefer not to predict views directly in the high dimensional appearance space
but on the low dimensional embedding of the appearance manifold. Two prob-
lems arise. First, most NLDR algorithms do not yield a function for mapping
between appearance space and embedding space, and second, it is difficult to
ensure that the prediction does not leave the manifold. In order to actually en-
sure that the prediction is done only along the manifold one has to constrain
the prediction with the nonlinear shape of the manifold. This, however, is very
problematic because appearance manifolds often exhibit highly nonlinear and



wavy shapes. Take for example a simple linear prediction. Such a prediction is
quite likely to predict positions that do not lie on the manifold as can be seen
in Fig. 4 a).
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Fig. 4. These two figures show a subsection of a one-dimensional cyclic manifold.
a) A linear prediction using the last two positions (light blue) on the manifold leads
to a point (red) not belonging to the manifold. Reconstructing this point by convex
combination of its nearest neighbors (orange) projects it back to the manifold.
b) Reconstruction using the LLE idea does not ensure positive weights. However, iter-
ative repetition of the reconstruction (yellow-to-green points) makes the weights con-
verge to positive values. The reconstruction weights after 4 iterations are displayed.

Leaving the manifold in the low dimensional space means also leaving the
appearance manifold, i.e. for a point in the low dimensional space which is not
lying on the embedded manifold there is simple no valid corresponding view of
the object. Usual interpolation methods cannot handle this problem. They just
try to find an appropriate counterpart but in doing so they are not directly
constrained to the appearance manifold. This means that the views they map
those points to are no valid views of the object and often show heavy distortions.

A possible way out of this dilemma is the reconstruction idea upon which
LLE [11] is based. What we want to do is to map between two structures whereas
one is a manifold in a high dimensional space and the other its embedding in
a low dimensional space. By assuming a local linearity (which is a fundamental
assumption of most NLDR algorithms anyway) it is possible to calculate recon-
struction weights for a point on one of these structures that accounts for both
spaces, i.e. it is possible to calculate the reconstruction weights for a point in
either of the two spaces and by means of these the counterpart of this point in
the other space can be reconstructed. The weights in the appearance space are
calculated via minimizing the following energy function

E(wi) =
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where x is a D-dimensional point in the appearance space, xi is the point to
reconstruct, Ni = {j|xj is a k-NearestNeighbor of xi} and wi is the vector hold-
ing the reconstruction weights. After the weights are determined the counterpart
yi of xi in the embedding space can be calculated by

yi =
∑

j∈Ni

w
j
i · yj , (2)

with the yj ’s being the d-dimensional embedding counterparts of the xj ’s.
Naturally d < D but in general d ≪ D. Reconstructing a xi from a yi works
in an analogous way. The neighbors Ni of a data point are chosen only among
those data points whose mapping is known, namely the data points that were
used for the nonlinear dimensionality reduction.

If one demands the reconstruction weights to be larger than zero and sum-
ming up to one, then the reconstructed points always lie on the manifold. The
reason is that this corresponds to a convex combination whose result is con-
strained to lie in the convex hull of the support points. Together with the local
linear assumption this leads to reconstruction results where the reconstructed
points always lie on the manifold. So even if a point beyond the manifold is
predicted the mapping by reconstruction ensures that only valid views of the
object are generated because it inherently projects the point onto the manifold.
This can be seen in Fig. 4 a).

In [11] it has been shown that the energy function (1) can be rewritten as a
system of linear equations. This enables to directly calculate the weights using
matrix operations. Although the calculated weights are constrained to sum up
to one they are not constrained to be positive. This is a problem as it violates
the convex combination criteria and hence it is not ensured that a reconstructed
point lies on the manifold. However, an iterative repetition of the reconstruc-
tion, i.e. reconstructing the reconstructed point, projects the reconstructed point
onto the manifold. During this process the weights converge to positive values.
Figure 4 b) depicts an example.

4 View Prediction

Embedding a set of views of an object into a low dimensional space leads to
tuples (xi,yi) of views xi in the appearance space and their low dimensional
counterparts yi. With this representation of the object’s appearance the process
of view prediction is as follows:

1) At each time step t the current view xt of the object is provided e.g. from a
tracking or a detection stage.

2) Determine the k nearest-Neighbors among the represented views.
Nt = {i|xi is a k-NearestNeighbor of xt}

3) Calculate the reconstruction weights wt in the appearance space.

ŵt = arg minwt

∣

∣xt −
∑

i∈Nt
wi

t · xi

∣

∣

2
,

∑

i∈Nt
wi

t = 1



4) Calculate the mapping to the embedding space by reconstructing the low
dimensional counterpart of view xt.
yt =

∑

i∈Nt
ŵi

t · yi

5) Predict the next position in the low dimensional embedding space, e.g. using
the last two views.
yt−1,yt → y

pred

t+1

6) Determine the reconstruction weights wa in the embedding space by iterative
reconstruction.
Set ya = y

pred

t+1
and repeat the following steps:

(i) Na = {i|yi is a k-NearestNeighbor of ya}

(ii) ŵa = arg minwa

∣

∣ya −
∑

i∈Na
wi

a · yi

∣

∣

2
,

∑

i∈Na
wi

a = 1

(iii) ya =
∑

i∈Na
ŵi

a · yi

7) Map back to the appearance space.
x

pred

t+1 =
∑

i∈Na
ŵi

a · xi

As explained in the last section, the iterative reconstruction assures that
only valid object views are generated. We denote this procedure embedding view

prediction.

5 Experiments

In order to analyze the embedding view predictor we conducted some experiments
where we compared this view predictor with two view predictors working directly
in the high dimensional appearance space.

The first predictor predicts linearly the next view directly in the appearance
space from the last two views. In general, this predicted view will lie beyond
the manifold of the views. In order to be comparable to the embedding view
predictor, the nearest neighbor of the linearly predicted view is determined and
returned as the actual predicted view. We denote this view predictor the nearest

neighbor view predictor.
The second view predictor works like our embedding view predictor but in

contrast to this it works directly in the high dimensional appearance space. This
means that it linearly predicts views in the appearance space and projects the
predicted views onto the appearance manifold using the iterative reconstruction
idea. We denote this view predictor the iterative reconstruction view predictor.

To validate our view prediction we generated two trajectories in the appear-
ance space for each object. The trajectories are depicted exemplarily with the
views of the bird in Fig. 5. It can be seen that the views of the trajectory do
not correspond to already represented views in the set of sampled views as in-
troduced in Sect. 2.

The tests we conducted surveyed only the prediction ability of the embedding
view predictor compared to the other two view predictors. The view predictors
had to predict the views along the discussed trajectories. Thereto each view is



Fig. 5. From left to right the views in the two rows show the two variants of trajectories,
the view predictors are tested with. The upper is a simple rotation about the vertical
axis. The lower starts at 320◦ horizontal and 2.5◦ vertical and goes straight to 40◦

horizontal and 360◦ vertical and consist of 72 equally distributed views. In order to
distinguish between these two trajectories, the first is called “rotate” and the second
“whirl”. The degrees in the top left corners of the images denote the horizontal rotation
and in the top right corners the vertical rotation.

predicted using its two predecessors in the trajectory. The predicted views are
compared with the actual next views by means of a sum of absolute difference.

Figure 6 shows the prediction error of the three view predictors applied on
the two trajectories rotate and whirl (see Fig. 5) of the bee and the bird. It can
be observed that the prediction in the low dimensional space is comparable to
the predictors operating directly in the high dimensional appearance space. In
general, the embedding view predictor is even slightly better. Sometimes, how-
ever, it tends to predict views with a large error which appear as single high
peaks in the error curve. A closer look revealed that this may be due to topolog-
ical defects of the embedded appearance manifolds. The strong peaks occur more
often when predicting the bird than the bee and indeed the embedding of the
bird’s appearance manifold is more distorted than that of the bee (see Fig. 3).

Furthermore, we analyzed the three predictors concerning their ability to pre-
dict further views without being updated with actual views, i.e. we simulated an
occlusion of the objects. To this end the three view predictors were again applied
to the whirl and rotate trajectories but this time they had to rely solely on their
own prediction from the 10th time step on. The results are shown in Fig. 7. It
strikes that the embedding view predictor is able to reliably predict up to 10
further views while the other two predictors are only able to predict 2-3 further
views. A possible explanation could be the higher ambiguity in the high dimen-
sional appearance space. This is a hint that predicting on the embedding of the
appearance manifold in a low dimensional space is more appropriate for track-
ing the appearance of objects than predicting directly in the high dimensional
appearance space.

6 Conclusion

We introduced an approach for predicting views of an object by means of its
appearance manifold. By applying Isomap to the various views of an object
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Fig. 6. This figure displays the prediction error of the embedding view predictor, near-
est neighbor view predictor and iterative reconstruction view predictor for the two
trajectories rotate and whirl of the bird and the bee. The error is a sum of absolute
difference between the predicted and the actual view. Almost all time the embedding
view predictor is superior to the other two.
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Fig. 7. This figure shows the prediction error of the three view predictors applied to
the two trajectories rotate and whirl of the bird and the bee. From the 10th time step
(view) on the objects are considered to be completely occluded. This means that the
predictors have to rely entirely on their own prediction. It can be observed that the
embedding predictor can reliably predict up to 10 further views while the other two
predictors cannot predict more than two to three views.



the appearance manifold of that object can be extracted and embedded into
a lower dimensional space. A change of object appearance corresponds to a
trajectory on the appearance manifold as well as its embedding. By keeping track
of the position of the object on the embedded manifold it is possible to forecast
the upcoming appearance. We used an iterative version of the reconstruction
idea of LLE in order to map points from the embedding space back into the
appearance space and showed that this maps points from the embedding space
only to points on the appearance manifold, i.e. only valid views of the object
are predicted. Simulations have shown that following the trajectory (and by
doing so predicting views) is less error prone using the embedded manifold than
its high dimensional equivalent. Furthermore, we have shown that predicting
the appearance for several following time steps is also more accurate using the
low dimensional embedding. We want to stress that the introduced approach is
no full-fledged real object tracking system but rather a scheme for predicting
complex views.

In future work we want to investigate the possibility of using the simplex
method for calculating the reconstruction weights as it implicitly constraints the
weights to a convex combination. Furthermore, we want to analyze our approach
with real objects and integrate it into a tracking architecture based on a view
prediction and confirmation model, hopefully boosting the performance of the
tracker strongly.
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