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Abstract. In this paper we propose a feedforward neural network for
syllable recognition. The core of the recognition system is based on a hi-
erarchical architecture initially developed for visual object recognition.
We show that, given the similarities between the primary auditory and
visual cortexes, such a system can successfully be used for speech recog-
nition. Syllables are used as basic units for the recognition. Their spec-
trograms, computed using a Gammatone filterbank, are interpreted as
images and subsequently feed into the neural network after a preprocess-
ing step that enhances the formant frequencies and normalizes the length
of the syllables. The performance of our system has been analyzed on
the recognition of 25 different monosyllabic words. The parameters of the
architecture have been optimized using an evolutionary strategy. Com-
pared to the Sphinx-4 speech recognition system, our system achieves
better robustness and generalization capabilities in noisy conditions.

Keywords: speechrecognition,robustfeatures,feed-forwardarchitecture.

1 Introduction

Conventional speech recognition systems perform very well in clean scenarios
but their performance drastically decreases in noisy environments. This poor
performance in adverse conditions prohibits the application of such systems for
many scenarios, especially our target scenario, the control of a humanoid robot.
In contrast to this, human speech perception is far less susceptible to such dis-
tortions [1].

In this article we present a speech recognition system with a higher robustness
towards noise and reverberation. This system is based on a feedforward neural
network inspired from an object recognition system.

Several studies have shown that auditory and visual primary cortices show
substantial similarities. In 1988 Sur et al. have shown that the primary auditory
cortex of young ferrets is plastic enough to allow the ferrets to attain visual
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Fig. 1. Overview of the word recognition system

perception via the auditory cortex [2]. More recently Shamma determined the
shape of the time-frequency receptive fields in the primary auditory cortex of
newborn ferrets [3]. They are selective to modulations in the time-frequency
domain and, as in the visual cortex, have Gabor-like shapes. These receptive
fields have been modeled by Chin [4] and used for source separation [5] and
speech detection [6].

As Gabor-like filters are extensively used in object recognition systems [7,8],
we decided to develop a system for speech recognition by adapting the feed-
forward neural network initially developed by Wersing and Körner for object
recognition [8]. This approach is similar to the spectro-temporal features and
the direct recognition on spectrograms proposed by Kleinschmidt in [9].

Syllables are the basic units for speech production and show less coarticu-
latory effects across their boundaries. Therefore, we believe that they are the
adequate speech units for our biologically-inspired system. Moreover, the syl-
lable segmentation required for the training of the system seems biologically
plausible for speech acquisition.

The building blocks of the system (Fig. 1) are detailed in the following sec-
tions. After explaining how we optimized the parameters of the architecture
using an evolutionary strategy, we will compare our results to a state of the art
speech recognition system and conclude with a discussion of the obtained results.

2 Preprocessing of the Spectrogram

The preprocessing mainly aims at transforming a previously segmented speech
signal, corresponding to one syllable, into an ”image” that is fed into the hierar-
chical recognition architecture. A two-dimensional representation of a signal is
obtained by computing its spectrogram. In addition to the phonetic information,
the speech signal also contains many speaker and recording specific information.
As the phonetic information is chiefly conveyed by the formant trajectories, we
enhance them in the spectrograms prior to recognition.
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a. Response of the basilar membrane.
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b. Low-pass filtering.
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c. Preemphasis.
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d. Mexican Hat filtering along the
frequency axis.

Fig. 2. Overview of the preprocessing step for the word ”list” spoken by a female
American speaker. The 128 channels logarithmically span the frequency range from
80Hz to 8 kHz. The harmonic structure has been removed using a filtering along the
frequency axis.

We used a Gammatone filterbank to compute the spectrogram of the signal.
It models the response of the basilar membrane in the human inner ear and
is, therefore, adapted to a biology-inspired system. The signal’s sampling fre-
quency is 16 kHz. The filterbank has 128 channels ranging from 80 Hz to 8 kHz
and follows the implementation given in [10]. Figure 2 shows the response of
the Gammatone filterbank after rectification (a.) and low-pass filtering (b.). To
compensate for the influence of the speech excitation signal, the high frequen-
cies are emphasized by +6 dB per octave resulting in a flattened spectrogram
(Fig. 2 c.). Next, the formant frequencies are enhanced by filtering along the
channel axis using mexican-hat filters (Fig. 2 d.), only the positive values are
kept. For the filtering the size of the kernel is channel-dependent, varying from
90 Hz for low frequencies to 120 Hz for high frequencies. This takes the loga-
rithmic arrangement of the center frequencies in the Gammatone filterbank into
account.

Finally, the length of the spectrogram is scaled using linear interpolation so
that all the spectrograms feeding the recognition hierarchy have the same size.
The sampling rate is then reduced to 100 Hz. By doing so syllables of different
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lengths are scaled to the same length. This relies on the assumption that a
linear scaling can handle variations in the length of the same syllable uttered at
different speaking rates. However, these are known to be non-linear. In particular,
some parts of the signal, like vowels, are more affected by variation in the speech
rate than other parts, e.g. plosives. The generalization over these variations is a
main challenge in the recognition task. In order to also assess the performance of
the recognition hierarchy independent of this non-linear scaling, we applied the
Dynamic Time Warping (DTW) method to the spectrograms. For each syllable,
we selected one single repetition as reference template and aligned the other by
DTW.

Afterwards the syllables were again scaled to the same length and downsam-
pled. At the output of the preprocessing stage the spectrograms feeding the
recognition hierarchy have all the size of 128×128, i.e. 128 time frames over 128
frequency channels. Note, however, that the application of DTW requires that
a hypothesis for the syllable is available. Thus, it cannot easily be applied to a
real recognition test.

3 The Recognition Hierarchy

The preprocessed two-dimensional spectrogram is from now on considered to
be an image and feeds into a feedforward architecture initially aimed at visual
object recognition. However, the structure of spectrograms differs from the struc-
ture of images taken from objects and, while keeping the overall layout of the
network described in [8], the receptive fields and the parameters of the neurons
were retrained for the task of syllable recognition. The recognition hierarchy is
illustrated in Fig. 3.

3.1 Feature-Selective Layer

The first feature-matching stage consists of a linear receptive field summation,
a Winner-Take-Most (WTM) and a pooling mechanism. The preprocessed spec-
trogram is first filtered by eight different Gabor-like filters. The purpose of these
filters is to extract local features from the spectrogram. In [8] the receptive
fields were chosen as four first-order even Gabor filters. For syllable recognition,
8 receptive fields were learned using independent component analysis on 3500
randomly selected local patches of preprocessed spectrograms.

The WTM competition mechanism between features at the same position
introduces nonlinearity into the system. The value rl(t, f) of the spectrogram in
the lth neuron of the feature-selective layer after the WTM competition is given
at the position (t, f) by the following equation:

rl(t, f) =

{
0, if ql(t,f)

M(t,f) < γ1 or M(t, f) = 0
ql(t,f)−γ1M(t,f)

1−γ1
, else

(1)

where ql(t, f) is the value of the spectrogram before the WTM competition,
M(t, f) = maxk qk(t, f) the maximal value at position (t, f) over the eight neu-
rons and 0 ≤ γ1 ≤ 1 is a parameter controlling the strength of the competition.
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Fig. 3. The system is based on a feedforward architecture with weight-sharing and a
succession of feature sensitive matching and pooling stages. It comprises three stages
arranged in a processing hierarchy.

A threshold θ1 is applied to the activity rl(t, f). This threshold is common for
all the neurons in the layer. The pooling performs a downsampling of the spec-
trogram by four in both time and frequency direction. It is done by a Gaussian
receptive field with width σ1. The feature-selective layer transforms the 128×128
original spectrogram to eight 32 × 32 spectrogram feature maps.

3.2 Combination Layer

The goal of the combination layer is to detect relevant local feature combinations
in the first layer. Similar to the previous layer it consists of a linear receptive field
summation, a Winner-Take-Most and a pooling mechanism. These combination
cells are learned using the non-negative sparse coding method (NNSC) as in
[8], however no invariance transformations have been implemented at this stage.
Similarly to Non-Negative Matrix Factorization (NMF), the NNSC method de-
composes data vectors Ip into linear combinations (with non-negative weights
sp

i ) of non-negative features wi by minimizing the following cost function:

E =
∑

p

‖Ip −
∑

i

sp
i wi‖2 + β

∑
p

∑
i

|sp
i | .

NNSC differs from NMF by the presence of a sparsity enforcing term in the
cost function, controlled by the parameter β, which aims at limiting the number
of non-zero coefficients required for the reconstruction. Consequently, if a feature
appears often in the data, it will be learned, even if it can be obtained by a
combination of two or more other features. Therefore, the NNSC is expected
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to learn complex and global features appearing in the data. An comprehensive
description of this method can be found in [11].

For the proposed syllable recognition system 50 complex features wi have been
learned from image patches extracted from the output of the feature-selective
layer. At last, a WTM competition (γ2, θ2) and pooling (σ2) are applied to the
50 neurons and their size is reduced to 16 × 16.

3.3 Syllable-Tuned Units

In the last stage of the architecture, linear discriminant classifiers are learned
based on the output of the combination layer. A classical gradient descent is
used for this supervised learning including an early stopping mechanism to avoid
overfitting. The obtained classifiers are called Syllable-Tuned Units (STUs) in
reference to the View-Tuned Units used in [7] and [8].

Due to the high dimensionality (640) and sparseness of the features after the
combination layer learning the STUs is unproblematic.

4 Optimization of the Architecture

The performance of the recognition highly depends on the choice of the non-
linearities present in the hidden layers of the architecture, i.e. the coefficients and
the thresholds of the WTM competitions (Eq. 1) and the width of the poolings.
The six parameters (γ1,2, θ1,2 and σ1,2) have to be tuned simultaneously and the
receptive field of the combination layer as well as the Syllable-Tuned Units have
to be learned at each iteration, similarly to the method used in [12].

Practically, this tuning of the model parameter set has been realized within
an evolutionary optimization aiming at maximizing the recognition performance
in a clean speech scenario. Due to the stochastic components and the use of a
population of solutions evolutionary algorithms need more quality evaluations
than other algorithms, but on the other hand they allow for a global search
and are able to overcome local optima. In the present context, an evolutionary
strategy with global step size adaptation (GSA-ES) has been applied relying on
similar ranges of the object variables. Initially, standard values, see [13,14], have
been used and then tuned in some test experiments to this specific task. Based
on these experiments we have chosen a population size of 32 individuals. Each
generation, the two individuals with the best performance have been chosen as
parents for the next generation. The optimization parameters have been scaled
and the initial global step size was set to 0.003.

Although the evolutionary optimization used a clean scenario for the perfor-
mance evaluation of each individual we will show that the optimized parameters
are robust with respect to noisy signals.

5 Recognition Performance

In order to evaluate the performance of the system, a database was built us-
ing 25 very frequent monosyllabic words extracted from the DARPA Resource
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Fig. 4. Improvement of the recognition performance using an evolutionary algorithm
to tune the parameters, compared to manual tuning one layer after the other. The
spectrograms are scaled using a linear interpolation.

Management (RM) database. Isolated monosyllabic words have been chosen in
lack of a syllable segmented database with sufficient size. The words were seg-
mented using forced-alignment. For each of the monosyllabic words we selected
140 occurrences from 12 different speakers (6 males and 6 females) from the
speaker dependent part of the database. For training 70 repetitions of each word
were used, 20 for the early stopping validation of the Syllable-Tuned Units and
50 for testing.

The performance of our system has been compared to the Sphinx-4 speech
recognition system, an open source speech recognition system that performs
well on the whole RM corpus [15]. MFCC features were used as front-end for the
HMMs. 13 cepstral coefficients plus delta and double delta were computed using
the default parameters of Sphinx. Cepstral Mean Normalization [16] has been
used in order to improve the robustness of the MFCC features. SphinxTrain was
employed to train triphones HMMs. Each model had 3 states without skip over
states and each state used a mixture of 8 Gaussians. The Hidden Markov Models
were trained on the segmented monosyllabic words.

The robustness towards noise has been investigated by adding babble noise,
white noise, and factory noise from the NOISEX database to the test database
at different signal to noise ratios (SNR) while training was still performed on
clean data.

Figure 4 illustrates the gain in performance on babble noise obtained using
the evolutionary algorithm, compared to a manual tuning of the parameters one
layer after the other. Following the notation introduced in [8], the optimal pa-
rameters given by the evolution strategy are γ1 = 0.82, θ1 = 2.66, σ1 = 3.16 for
the first layer and γ2 = 0.84, θ2 = 2.78, σ2 = 1.87 for the second layer, when
linear interpolation is used to scale the signals. Using a DTW, the optimal set
of parameters is γ1 = 0.99, θ1 = 0.32, σ1 = 4 for the first layer and γ2 = 0.89,
θ2 = 0.99, σ2 = 1.93. As can be seen, the performance increased due to the
optimization at all SNR levels. With clean speech we observe an improvement



Word Recognition with a Hierarchical Neural Network 149

0 5 10 15 20 clean
0

20

40

60

80

100

SNR [dB]

W
or

d 
E

rr
or

 R
at

es
 [

%
]

 

 SPHINX
NN Input
Aud. Hierarchy

a. Spectrograms scaled using a linear
interpolation.

0 5 10 15 20 clean
0

20

40

60

80

100

SNR [dB]

W
or

d 
E

rr
or

 R
at

es
 [

%
]

 

 SPHINX
Aud. Hierarchy
Aud. Hier. (DTW)

b. Spectrograms scaled using Dynamic
Time Warping.

Fig. 5. Comparison of the Word Error Rates (WER) between the proposed system and
Sphinx-4 in the presence of babble noise

0 5 10 15 20 clean
0

20

40

60

80

100

SNR [dB]

W
or

d 
E

rr
or

 R
at

es
 [

%
]

 

 SPHINX
Aud. Hierarchy
Aud. Hier. (DTW)

a. White noise.
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b. Factory noise.

Fig. 6. Comparison of the Word Error Rates (WER) between the proposed system and
Sphinx-4 in the presence of white and factory noise

from 6.72% to 5.44% (19% relative). The largest improvement was achieved at
15 dB SNR from 30.72% to 17.04% (44.5% relative).

Figure 5 summarizes the performance of both Sphinx-4 and the proposed
system in presence of a babble noise. To measure the baseline similarities of
the image ensemble, we also give the performance of a nearest neighbor classi-
fier (NN) that matches the test data against all available training ”views”. An
exhaustive storage of examples is, however, not a viable model for auditory clas-
sification. With clean signals, the STUs show better generalization capabilities
and perform better than a nearest neighbor on the input layer (Fig. 5 a.). For
noisy signals, the STUs are slightly worse, however, at a strong reduction of
representational complexity.
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With a simple linear time scaling our system only outperforms Sphinx-4
in noisy conditions but shows inferior performance on clean data. When Dy-
namic Time Warping is used to properly scale the signals, the STUs improve
the already good performance obtained directly after the preprocessing in all
the cases and our system outperforms Sphinx-4 even for clean signals (Fig.
5 b.). With clean data Sphinx obtains a 3.1% Word Error Rate (WER), our
system achieves 0.9% WER with the DTW and 5.4% without the DTW. Fig-
ure 6 shows that the performance is very similar when adding white or factory
noise.

6 Discussion and Summary

In this paper, we presented a novel approach to speech recognition interpreting
spectrograms as images and deploying a hierarchical object recognition system.
To optimize the main free parameters of the system, we used an evolutionary
algorithm which allows us to quickly change the system without the need for
manual parameter tuning.

We could show that our system performs better than a state of the art system
in noisy conditions even when we applied a simplistic linear scaling of the input
for time alignment. When we aligned the current utterance with the DTW to
a known representation in an optimal non-linear way, we obtained better than
state of the art results for all cases tested. However, in its current form the DTW
makes use of information not available in real situations.

From this we conclude that our architecture and the underlying features are
more robust against noise than the commonly used mel frequency cepstral coef-
ficients (MFCCs). This robustness against noise is very important for real world
scenarios which are usually characterized by significant background noise and
variations in the recording conditions. A similar robustness was also observed
for visual recognition in clutter scenes [8].

Our comparison between the linear scaling and the DTW shows that the
performance of the model could be significantly improved by better temporal
alignment. We therefore consider methods for improving this alignment as in-
teresting future research directions.

The complexity of our recognition task is very low. Therefore, it remains an
open question how our system will scale to more complex tasks. We can expect
that our system generalizes well to larger vocabulary. In fact, the high dimen-
sionality and the sparseness of the vector space at the output of the combination
layer should allow to train STUs for a large number of syllables.

In order to process continuous speech, syllable segmentation is required. One
way to obtain this segmentation is to implement a syllable segmentation system
prior to the recognition. This would allow to keep the advantages of the recog-
nition hierarchy: its fast implementation and the capacity to train or update
STUs on the fly. Another possibility is to use the architecture as a front-end for
Hidden Markov Models similarly to [17].
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