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Abstract— We describe a system for visual interaction devel-
oped for humanoid robots. It enables the robot to interact with
its environment using a smooth whole body motion control
driven by stabilized visual targets. Targets are defined as
visually extracted “proto-objects” and behavior-relevant object
hypotheses and are stabilized by means of a short-term sensory
memory. Selection mechanisms are used to switch between
behavior alternatives for searching or tracking objects as well
as different whole body motion strategies for reaching. The
decision between different motion strategies like reaching with
right or left hand or with and without walking is made based on
internal predictions that use copies of the whole-body control
algorithm. The results show robust object tracking and a
smooth interaction behavior that includes a large variety of
whole-body postures.

I. INTRODUCTION

Research on humanoid robots is increasingly focusing on
interaction in complex environments, including autonomous
decision making and complex coordinated behavior. Several
interactive robot systems were already introduced. A com-
plete architecture for a small humanoid (Sony QRIO) that
uses a central action selection driven by so called behavior
values provided by the individual behaviors is described
in [1], [2]. This robot is equipped with some perceptual
abilities and realizes impressive abilities including emo-
tional/motivational control and learning as well as humanoid
multi-degree of freedom control.

Kismet [3] also realizes a variety of interaction abilities
and contains both a powerful vision and attention system
and behavior selection. It also integrates low level vision
representations as feature maps and higher level representa-
tions for faces. The main focus of this system is child-like
interaction and developmental learning.

Proto-objects are a concept originating from psychophys-
ical modeling [4], [5], [6]. They can be thought of as
coherent regions or groups of features in the field of view
that are trackable and can be pointed or referred to without
identification. The term proto-objects is however used in
many different ways. They are used to generate saccades,
track multiple visual stimuli simultaneously, or to model
attention, change blindness, or visual scene representation.

Orabona et al. [7], [8] developed a system that uses proto-
objects — in their case colored blobs — to let a robot learn
the notion of an object consisting of possibly multiple proto-
objects using statistical means.

Here, the term proto-objects will be used in a manner
similar to the psychophysical approaches. They refer to
multiple elements in the visual scene that can be tracked
simultaneously independent of belonging to an existing phys-
ical object or not. The representation is however extended
to three dimensions to cope for ego-motion and for large
changes in size due to depth changes. The proto-objects
consist of a time series of sensory measurements (here 3d
blobs) and a method to predict a future sensory measurement.

There exist many systems of tracking visually salient
points or regions on humanoid robots [9], [10]. Here the
stress is not to implement yet another method but to lay
the foundation for a new concept powerful enough to be a
flexible interface to behaviors.

The need for non-monolithic internal representation of the
environment as well as non-monolithic control [11] inspired
the distinction of proto-objects and object hypotheses. Object
hypotheses interpret proto-objects as originating from phys-
ical objects according to some more or less specific models
to allow different behaviors to interact. Some behaviors do
not even need object hypotheses, they can operate only using
proto-objects.

In the field of strategy selection, Wolpert et al. [12]
propose a learning architecture that consists of several inverse
and forward models. According to the prediction error, the
most adequate strategy is selected.

Ude et al. [13] present a system that uses blobs for a visual
interaction with a humanoid robot. Their system however
does not use full 3d information for tracking, has restrictions
on the ellipse radii and is not able to walk.

Regarding the challenge of realizing a fully autonomous
interactive humanoid robot, an intermediate step is presented
in this work: ASIMO is able to interact with the environment
driven by visual perception using simple decision making
and coordinated whole body motion.

Our approach is to build a system that — for now — uses
a relatively simple definition of visual target objects, namely
any elongated colored object. This system implements the
fundamental elements of an architecture that is easily ex-
tendible to cope with more long term targets. Integrating a
more elaborate computer vision system, for instance using
object recognition [14], would be the next step, but in this
paper the focus lies on closing the interaction loop.

Novel in the context of humanoid robots are the following
key points:
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Fig. 1. Overview of the system design.

• The use of proto-objects that can be used both in raw
form for e.g. visual tracking in 3d, or to form stable
object hypotheses as they are needed for reaching and
grasping. These proto-objects consist of relatively low
level perceptual information (here 3d blobs) and are
dynamically stored in a short-term sensory memory.

• Decision mechanisms that evaluate behavioral alterna-
tives based on sensory information and internal predic-
tion.

• A motion control system that is able to be driven by a
wide range of possible target descriptions and that en-
sures smooth well coordinated whole body movements
(using a set of cost functions as null space criteria).

The general design of the system is depicted in Fig. 1.
The perception system uses visual features and stereo based
3d information to detect relevant visual stimuli. It keeps this
information as proto-objects in a short-term sensory memory.
This sensory memory is then used to derive targets for visual
tracking and to form stable object hypotheses from which
movement targets for reaching movements can be derived. A
prediction based decision system selects the best movement
strategy and executes it in real time. The internal prediction
as well as the executed movements use an integrated control
system that uses a flexible target description in task space
in addition to cost-functions in null space to achieve well
coordinated and smooth whole body movements. The system
is implemented using the real time environment RTBOS [15].

II. DESIGN OF THE SYSTEM

In the following, several components of the system are
discussed in detail.

A. Proto-object Candidate Extraction

To be able to generate proto-objects the image processing
has to be able to find entities in the environment that
are dynamically stable in position and extent. Thus the
best candidates are segmentation algorithms such as color
segmentation, texture segmentation, or feature extractors that

find unique salient points. To obtain 3d information stereo
disparity calculations or other stereo algorithms can be used.

The general idea is to extract 3d ellipsoids from the visual
input — here referred to as blobs — that encode the position,
size, and orientation of significant visual stimuli. As a proof
of concept and since the visual preprocessing is not of
significance, the only feature used here is the color similarity
to a given reference color.

Pairs of color images are used, labeled with the time of
acquisition. These images are processed in two parallel paths.
One of them computes the stereo disparities for all pixels
with sufficient texture information. In the other, pixels are
evaluated as to whether they lie in a certain volume in HLS
space. The result is subjected to morphological operations
that eliminate small regions of one class of pixel. The
resulting pixels that lie in the HLS volume are grouped into
regions that are contiguous in the image plane. The largest
resulting groups that exceed a minimum size are selected for
further processing.

For each of these groups, the center of area in the image
plane xp, yp and the median of the stereo disparities d of
all its pixels are computed. Further it is detected whether
the group region touches the image boundaries; in this case
the data is labeled as inaccurate since parts of the real
world object corresponding to the region are probably outside
the field of view. The orientation of the principal axis ωp

and the standard deviations (σp1, σp2) of the pixels in the
image plane are computed for each group using a principal
component analysis of the correlation matrix of the pixel
positions. The extracted ellipse and its axes of a region of
specified color can be seen in Fig. 2. All images and postures
are consistently time labeled at the time of their acquisition.
Care is taken to synchronize these labels to allow the correct
mapping of images to their respective kinematics in order to
cope with ego-motion. Using the camera system geometry
and the robot kinematics, the position (xp, yp, d ), the sizes
(σp1 ,σp2) and the orientation ωp are transformed to their



Fig. 2. Extracting a blob in form of an oriented ellipse.

respective metric world coordinates ~rw, (σw1, σw2) and ~ωw.
We define a blob as a set of data consisting of the time label,
the position ~rw, the orientation ~ωw, the standard deviations
σw1 and σw2, and the label whether the data is accurate or
inaccurate as described above.

B. Proto-Objects in Sensory Memory

To be able to form stable object hypotheses, the sensory
information needs to be buffered and organized consistently.
This is done in form of proto-objects in sensory memory.
Here the incoming blobs are mapped one-to-one to proto-
objects in sensory memory which themselves contain the
most recent blob data.

If the memory is empty, a proto-object is generated from
blob data by simply assigning a unique identifier to the new
proto-object and inserting the incoming blob data into it.

If the sensory memory already contains one or more proto-
objects, a prediction for each proto-object is generated as a
blob data. This predicted blob data is based on all blob data
that is contained in the proto-object and is generated for
the current time. The current implementation assumes noisy
input and slowly moving objects. Therefore the prediction
uses a weighted low-pass filter for the positions, orientations,
and standard deviations (σw1, σw2).

Each incoming blob is either inserted into an existing or
newly generated proto-object. This is based on a minimum
distance between incoming and predicted blob so that unique
identifiers are assigned to all incoming blobs. The metric
for the distance computation is based on both euclidean
distance and rotation angle. The blob orientation description
is ambiguous with respect to 180 degree flips since it is
derived from the principal axis of a 2d distribution. To be
able to track the blob orientation, the orientation of newly
inserted blob data is modified so that the orientation distance
of the new blob is always less than or equal to 90 degrees.

Every time new incoming blob data is generated by the
processing, its time label is compared to the time labels of
the blob data inside all proto-objects and all blob data that
are older than a certain threshold are deleted. In order to
keep the system in a consistent state, this deletion is done
even if the image processing does not find any blobs in the
image pairs. If a proto-object does not contain any blob data
it is also deleted from sensory memory.

C. Evaluation / Selection of Interaction Objects

The interaction system needs to evaluate the proto-objects
in sensory memory using different criteria. These evaluations
are also based on the blob data predictions of all proto-
objects. The label of this prediction is set to ”memorized”
if the latest blob data in the proto-object is older than the
prediction time. Otherwise, it is set to the label of the latest
blob data in the proto-object.

A minimum criterion that is already sufficient for the be-
havior of fixation and tracking is a blob labeled as inaccurate.
If more severe criteria such as stable values σw1 and σw2

and a maximum distance to avoid relying on insufficient
vision data are considered, stable object hypotheses can be
extracted. To implement manipulation behaviors like ”poke
balloon”, additional constraints can be put on the stable
object hypotheses. These could be roughly spherical shape
((σw1−σw2)/σw1 < threshold) and easiest execution of the
behavior (minimum distance to a behavior specific reference
point, e.g. for poking in front of the body). A behavior like
”power grasp object” could require a minimum elongation
for grasp stability ((σw1 − σw2)/σw1 > threshold) and a
suitable diameter (threshold < σw2 < threshold).

The output from the sensory memory is therefore evaluated
with respect to the object criteria (in this case distance, size,
and minimum elongation). The raw output together with the
evaluation is sent to the 3 behaviors (search, track, reach)
in a compact form. Each behavior can then easily extract
the relevant information, since e.g. inaccurate blobs that do
not match the object criteria can be tracked, but only stable
elongated objects will be reached for.

D. Behavior Selection: Tracking and Searching

The output of the sensory memory is used to drive two
different head behaviors: 1) searching for objects and 2)
gazing at or tracking objects or blobs. Separate from these
behaviors is a decision instance or arbiter that decides which
behavior should be active at any time. The decision of the
arbiter is solely based on a scalar value that the behaviors
provide, which we call a fitness value, but which other
authors [1], [2] refer to as behavior value. This fitness value
describes how well a behavior can be executed at any time.
In this concrete case tracking needs at least an inaccurate
blob position to point the gaze direction at, but of course
can also use a full object hypothesis. Thus the tracking
behavior will output a fitness of 1 if any blob or object
is present and a 0 otherwise. The search behavior has no
prerequisites at all and thus its fitness is fixed to 1. For the
case of this very simple behavior setup, the arbitration is of
course trivial. However we implemented it as a competitive
dynamical system similar to the one described in [16] for
extensibility. Thus the arbiter uses the vector of fitness values
from all behaviors, as an input to a competition dynamics
that calculates an activation value for each behavior. The
competition dynamics uses a pre-specified inhibition matrix
that can be used to encode directed inhibition — behavior A
inhibits behavior B but not vice versa — to specify behavior



prioritization and even behavior cycles. In this case tracking
is prioritized to searching by such a directed inhibition.

Our method is comparable to e.g. Nicolescu and Mataric
[17] in that a non-distributed selection mechanism is em-
ployed which avoids limited scalability as e.g. Tani and
Nolfi [18] experienced. We are currently extending the
system to about a dozen different behaviors.

The search behavior is realized by means of a very low
resolution (5 by 7) inhibition of return map with a simple
relaxation dynamics. If the search behavior is active and new
vision data is available it will increase the value of the current
gaze direction in the map and select the lowest value in the
map as the new gaze target. Additionally the whole map is
subject to a relaxation to 0 and a small additive noise. This
generates a visual search pattern with a random sequence
of fixations that takes into account all visual information
immediately and results in an efficient and fast finding of
relevant objects. The size of the inhibition of return map is
derived from the field of view of the cameras relative to the
pan/tilt movement range. Higher resolutions will not change
the searching significantly. The relaxation time constant is set
in the second range so that motion of the robot, which will
effectively invalidate the inhibition map, is not a problem.

The tracking behavior is realized as a multi-tracking of
3-dimensional points. The behavior takes all relevant proto-
objects and object hypotheses into account and calculates the
pan/tilt angles for centering them in the field of view. Then a
cost function with a trapezoidal shape in pan/tilt coordinates
is used to find the pan/tilt angle that will keep the maximum
number of objects in the effective field of view of the cameras
and this is sent as the pan/tilt command. Since the tracking
behavior always uses the stabilized output of the sensory
memory the robot will still look at a certain position even if
a blob disappears for a short time. This significantly improves
the performance of the overall system.

The two visual interaction behaviors together with the
arbiter switching mechanism show very short reaction times
and have proven efficient to quickly find and track objects.

E. Strategy selection: Reaching

Similarly to the search and track behaviors, the reaching
behavior is driven by the sensory memory. As shown in
Fig. 1, the proto-object information is evaluated, and the
position and orientation of the target points is sent to the
reaching behavior. This behavior is composed of a set of
internal predictors and a strategy selection instance. Each
predictor includes a whole body motion controller and a cost
function evaluation.

The underlying whole body control model is depicted
in Fig. 3. The geometry and kinematic topology matches
the humanoid robot ASIMO [19]. The first link corresponds
to the heel coordinate system comprising three degrees of
freedom. Its degrees of freedom are translations in forward
and lateral direction as well as a rotation about the vertical
axis. The consecutive links correspond to the body segments
of the robot. The pelvis is undergoing three translations
and rotations with respect to the heel frame. The head is

Fig. 3. Kinematic model for whole body motion.

connected to the upper body with pan and tilt joints. Further,
the two arms comprise 5 dof each. An additional coordinate
system with some offset to the hand origin defines a hand
reference point. All together, the model comprises 21 dof.

The robot motion is generated with the ”redundancy reso-
lution” framework by Liégeois [20], [21], [22] for redundant
systems. To map the task space trajectories into joint space, a
resolved motion rate control algorithm is employed. It com-
putes joint speeds by using a weighted generalized pseudo-
inverse of the task Jacobian. Redundancies are resolved by
mapping the gradient of an optimization criterion into the
null space of the motion. In this work a joint limit avoidance
criterion is used. Details on the whole body control algorithm
are given in [23], [24].

The control system allows to give commands in a highly
flexible way. For this, a vector l with the number of task
variables is defined. Its elements define if a respective task
variable is active (“1”) or inactive (“0”). In the current
implementation, the task vector is

xtask =
(

xht,l ϕht,l xht,r ϕht,r ϕhead

)T
(1)

where xht denotes the hand tip reference position of the
respective hand and ϕ the orientation of the hands and
the head. Based on vector l, the equation system is set up
according to the following procedure: Starting with the task
element 0, the respective task Jacobian is added to the overall
task Jacobian if the corresponding element of l equals “1”,
otherwise it is skipped. Vector l is updated every sampling
interval through a command interface, so that the task vector
can be changed dynamically at run-time.

The whole body controller is coupled with a walking



Fig. 4. “Floating” heel frame: The stance position of the feet is the result
of the null space motion. It is a local optimum regarding the given task.

and balancing controller, which stabilizes the motion. This
scheme allows to perform even fast dynamic whole body
motions in a stable way.

Internal prediction architecture

In the following, a step from a single whole body con-
troller towards a parallel simulation architecture that consists
of several controllers will be made. The idea is to evaluate
many strategies that solve the task in different ways. In
the remainder, the task of reaching towards an object and
aligning the robot’s palm with the objects longitudinal axis
will be regarded.

In a first step, the visual target is split up into different
motion commands, with which the task can be achieved.
Four commands are chosen: Reaching towards the target with
the left and right hand, both while standing and walking.
In the following, a motion control simulation relating to
one of those commands will be called a “strategy”. Other
interesting sets of commands such as kneeling down or
crawling (see e. g. [25] are not possible due to the robot’s
physical capabilities.

In the strategies that reach from a fixed stance, the
degrees of freedom describing the heel coordinate system
are constrained. For the strategies that involve walking, the
kinematic constraints on the heel degrees of freedom are
released. This leads to a ”floating” heel frame that will
converge to a position and orientation that is a local optimum
with respect to the null space criterion (see Fig. 4). This
leads to a very interesting property of the control scheme:
the control algorithm will automatically compute the optimal
stance position and orientation with respect to a given target.
On the robot, the floating frame is set as the target for a step
pattern generator, which generates appropriate steps to reach
the computed heel position and orientation.

Now each strategy computes the motion and an associated
cost according to its specific command. The cost describes
the suitability of the strategy in the current context. It is
composed of a set of penalties that will be described later.
The costs are evaluated by the strategy selection process,
and the strategy with the lowest cost is identified. The
corresponding command is redirected to the physical robot
(See Fig. 5). The robot is controlled with the identical whole
body motion controller that is employed for the internal
simulations.

Fig. 5. Parallel simulation architecture.

An interesting characteristic of the system is the tem-
poral decoupling of real robot control and simulation. The
strategies are sped up by a factor of 10 with respect to the
real-time control, so that each strategy has converged to the
target while the physical robot still moves. Therefore, the
strategies can be regarded as prediction instances, since they
look some time ahead of the real robot. Nevertheless, the
control algorithms running within the strategies and on the
robot are identical.

From a classical point of view, the predictions could be
seen as alternative results of a planning algorithm. A major
difference is their incremental character. We use a set of
predictors as continuously acting robots that each execute
the task in a different way. The most appropriately acting
virtual robot is mapped to the physical instance.

Selection mechanism

The selection of the most appropriate strategy is based
on the evaluation of a multi-criteria cost function. The cost
function encodes the following heuristics: Standing will be
preferred over walking, walking over doing nothing. For this,
the following criteria are incorporated in the cost function:

Reachability of the target: In the control algorithm,
two state vectors are computed. One regards the system
as “ideal”, ignoring joint limits. The state vector that is
commanded to the physical robot is clipped so that the joint
limits are not violated. In normal operation, both vectors are
identical. If however, one ore more joint limits are violated,
a more or less large error between commanded and actual
task will emerge. This is illustrated in Fig. 6. This error is
used as a measure of reachability.

To prevent the strategy selection mechanism to oscillate
between two adjacent solutions, the target is surrounded by
two interval regions ξ1 and ξ2, where ξ1 < ξ2. Now, the two
following cases are regarded:

1) The hand has not reached the target: The target is
considered as reached, if the effector gets inside ξ1

2) The hand has reached the target: The target is consid-
ered as not reached, if the effector gets outside ξ2

Postural discomfort: The weighted least squares dis-
tance of the joints to their center positions defines a “dis-
comfort” penalty. Whenever the target is moved from the one
side to the other, this penalty will make the system switch
the reaching arm. The hysteresis ensures that there is no



Fig. 6. “Ideal” (wireframe) and “clipped” (solid) state vectors lead to a
task error that is used as a measure of reachability.

oscillation between left and right arm when both penalties
have the same value.

“Laziness”: Both walking strategies receive a constant
penalty, so that standing will be preferred over walking.

Time to target: This penalty is added to the walking
strategies. It is a measure for the estimated “steps to target”.
This penalty makes the robot select the strategy that brings
it towards stance with the minimum number of steps.

If a walking strategy has been selected, the real robot
will start making steps toward the computed heel coordinate
system. In this case, the standing strategies will not be
considered, until the step pattern generator of the real robot
has reached the converged target heel position.

F. Collision Detection

In order to ensure safety of the robot during operation,
a real time collision detection algorithm is used. The col-
lision detection uses an internal hierarchical description of
ASIMO’s body in terms of spheres and sphere-swept lines
that is used together with the kinematic information to
calculate the distances between the segments (limbs and body
parts) of the robot. If any of these distances falls below a
threshold the high-level motion control will be disabled, so
that only the dynamic stabilization of the bipedal walking is
active. The collision detection acts as a last safety measure
and is not triggered during normal operation of the robot.

Additionally a simple collision avoidance limits the posi-
tion of all movement targets so that e.g. wrist target positions
inside or very close to the body are never generated.

III. IMPLEMENTATION

The vision and control processing is divided up into
several smaller modules that interact in a data driven way
in the real time environment RTBOS [15]. This component
based subdivision of processing is similar to that of other

Fig. 7. Snapshot while visually tracking multiple non-ellipsoid objects.

RTBOS based systems, for instance the Brain-like Active
Sensing System BASS described in [14], [26] that combines
active vision with object recognition. Since several compo-
nents are shared between both systems, an additional object
recognition can be easily added to the system described here.

For the implementation the system and work load was dis-
tributed over four different computers interconnected using
fast ethernet connections. Onboard of the robot, the vision
host is used to acquire images (half-frame NTSC) and send
them to the offboard vision PC. The control host receives
whole body motion targets, generates postures taking the
collision detection into account, and sends the current posture
every 5 ms to the offboard control PC.

All vision processing was done on images of 384 by 240
pixels, i.e. a horizontally scaled version of the NTSC images.
This allowed faster stereo calculations for which the Small
Vision System SVS software of SRI was used.

Two offboard PCs were used to split the computationally
expensive vision calculations (from the raw images to the
proto-objects in sensory memory) from the control part
running many parallel components with small cycle times
(processing from the proto-object evaluation to the motion
targets).

IV. RESULTS

The system as described above was tested many times
with different people interacting with ASIMO with a variety
of target objects. The scenario was always to have a human
interaction partner who had an elongated object that was
shown or hidden in various ways to ASIMO.

The system is not restricted to only one object, as can
be seen in Fig. 7. If a number of objects are close to each
other, the system will try to keep all objects in the field of
view. If they are further apart, the objects leaving the field
of view will be neglected after a short while and the system
will track the remaining object(s).

The system shows a very good interaction performance.
Objects are quickly found and reliably tracked even when
moved quickly. The reaching behavior will reach for any
elongated object of appropriate size that is presented within



Fig. 8. Progression of fitness values over time.

a certain distance — from about 20cm to about 3m. ASIMO
will also track the object orientation correctly, e.g. if a
bottle is presented first with the bottleneck up, the robot
will reach with the proper hand orientation following the
object orientation in real time even if the bottle is rotated to
a horizontal or inverted position.

Fig. 8 shows the cost functions of the four moving strate-
gies over time. The cost function with the lowest value is
considered the best. The periods within which the respective
strategy is active, is shown under the time axis. When moving
the object from the left to the right, the robot first (period
1) tries to reach it with the right hand and then dynamically
switches to the left hand. When the object gets out of reach,
it starts walking and follows the object (period 3). In period
4, the robot walks and tries, at the same time, to reach the
object with the right hand. If all costs are above the gray
region, no command is given to the robot.

ASIMO switches between reaching with the right and left
hand according to the relative object position with some
hysteresis. Also walking is used only when necessary and
the robot can be driven to show a large variety of postures
when an object is presented accordingly. Fig. 9 shows a series
of snapshots taken from an experiment. From second 1-7,
ASIMO is reaching for the green bottle with its right hand.
This corresponds to the first phase in Fig. 8. At second 8, the
object gets out of reach of the right hand, and the strategy
selection mechanism selects the left hand reaching strategy,
still while the robot is standing (Second phase in Fig. 8).
At second 12, the object can neither be reached with the
left hand while standing. The strategy selection mechanism
now selects to reach for the object with the left hand while
walking towards it (Third phase in Fig. 8. The whole body
motion control generates smooth motions and is able to
handle even extreme postures which gives a very natural and
human-like impression even to the casual observer.

The visual system is capable of running at 12.5 fps (80
ms loop time), its main limitations are the stereo disparity
calculations (50 ms) and the transmission time of the color
images via the fast ethernet connection (maximum 15 fps).
The data connection between the onboard and offboard con-

trol hosts exchanges postures every 5 ms. The total reaction
is mainly given by three parts: the latency between frame
acquisition and the arrival of data on the offboard vision PC,
the latency between its arrival and the start of the vision loop,
and the computation side of the vision loop. The latency of
the control loop and the sending to the onboard host can
be neglected. The total latency between time of acquisition
and arrival of proto-objects on the offboard control PC was
measured to be between 150 and 210 ms, i.e. roughly 2
frames.

Due to this latency and the fact that the field of view is
not so large, motion speeds of the interaction object have to
be limited, especially in the range where the robot is able
to reach the object. Furthermore, the interaction object is
restricted to have a narrow color distribution and no possible
distractors should be too close and have similar colors.

Some limitations of the current system are that the reach-
ing is done with a vertical offset of about 10 cm to avoid
occlusions of the object by ASIMO’s hand, the limited field
of view of ASIMO’s current cameras, and the limited pan/tilt
range which in this scenario limit the interaction range
especially in vertical direction.

Obviously, since the object segmentation used is based on
color, only certain objects can be used for interaction. Green
objects were used mostly, but also tested with different colors
like yellow and red - adjusting the color segmentation accord-
ingly. These limitations can be reduced when incorporating
a system like BASS.

We had mixed results when using distractingly colored
backgrounds, as most of the time the background was
ignored since it was outside the interaction range, but in some
cases the disparity calculation failed and produced spurious
targets which confused the robot.

Overall we are satisfied with the performance and hope to
build on this system in our future research.

V. OUTLOOK

We plan to extend the collision detection scheme by a
collision avoidance system that will be integrated into the
whole body interaction mechanism.

Vision capabilities will be substantially enhanced and
extended, building on the current concept of proto-objects.
Furthermore we are interested in including a visual detection
mechanism and object hypotheses generation for support
surfaces in order to enrich the interaction possibilities of the
system.

The presented selection mechanism is based on a pre-
defined heuristics. Future work will focus on learning such
selection criteria, and on making a step towards learning
behaviors from demonstration.
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Fig. 9. Snapshot series from an experiment.
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