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Abstract

At the Honda Research Institute, we aim to understand the operating principles of
the brain. We think that the cortex is composed of elementarybuilding blocks, the
columns, that apply one generic algorithm to varying sensory data. The brain is thus
not a collection of highly specialized neural circuits, providing tailored solutions to
individual problems, but it uses the same set of powerful processing strategies over
and over again.

Based on neurobiological knowledge about the primate cortex we substantiate this
idea in a model of the visual system, on several levels of detail.

At the single neuron level, the visual system can immediately profit from a spike-
latency code to rapidly segment and recognize scenes. A waveof spikes traveling
through a cascade of feature detectors rapidly activates a high-level hypothesis about
stimulus content, so that an appropriate reaction (e.g. escape) is possible.

At the level of neural circuits, we simulate the signal flow incolumns, across the
six cortical layers and between several cortical areas. We show how the columnar
subsystems interact to predict and recognize stimuli in terms of acquired knowledge.
Columnar communication integrates top-down and bottom-upsignals to describe the
stimulus consistently across all cortical areas. It iterates this process to refine the de-
scription, causing oscillations in neural activity. Internal descriptions of entirely new
stimuli can be constructed from old ones, and entrained withthe help of the hippocam-
pal formation.

At the system level, we implement a large-scale model of mainvisual cortical ar-
eas, parts of the hippocampal formation, and sub-cortical structures. Cortical columns
both predict future stimuli and vote for motor actions to confirm them. Here, they con-
trol saccades to learn and recognize objects from a sequenceof partial views, based on
step-by-step prediction and refinement of an object hypothesis in time.

In our models the columns link the neural level to the system level. They help us
to understand how groups of nerve cells ultimately create the macroscopic function of
the brain.
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1 Introduction

Animals at the phylogenetic level of amphibians do not yet have developed a cortex; they
select their responses from a limited repertoire of alternatives, by evaluating a small number
of trigger features in their stimuli. Feed-forward models of visual processing often use the
same strategy, they usea priori information to limit the number of possible alternatives. The
advent of the cortex in phylogenetic development allowed animals an increasingly deeper
analysis of their sensory input. The neocortex has evolved to find structure and regularity
in the barrage of afferent signals and to interpreting the sensory events according to the
animal’s needs.

But the ability of the cortex to interpret sensory information in different ways comes
at a price: Sensory stimuli regularly include complex and ambiguous scenes. For a brain
with cortex, it is more difficult to interpret a sensory inputdue to the combinatorial explo-
sion of possible alternative interpretations, compared tothe simple detection of a few trig-
ger features. The widely accepted assumption is that the cortex uses previously acquired
knowledge that is projected top-down to guide the analysis of the sensory input.

Models of bidirectional neocortical processing focus on the iterative refinement of
recognition, using top-down prediction. A plausible mechanism of how prediction could
speed up the interpretation of a visual scene is the removal of already recognized parts from
the input and to continue with the residual parts. A number ofrecent models follow this
strategy. But even though they can explain some experimentally observed phenomena, they
fail to explain a number of phenomena at the psychophysical and single-neuron levels: First,
there is evidence from a number of studies that already the first wave of spikes that follow
a stimulus evoke a correct and sufficiently detailed initialhypothesis in the inferotemporal
cortex. Second, at least in the ventral visual pathway of primates many neurons respond as
long as the stimulus is present. This would not be the case if the recognized parts had been
removed from the input.

Iterative refinement takes time and should only be necessaryto discriminate similar
stimuli but not to categorize them. Thus, the initial hypothesis must be precise enough to
grasp the gist of a scene and at the same time available fast enough to select the appropriate
response and to initiate refinement. Here we describe our theory [25] of processing in the
cortex. At the system level, it has two main ingredients: a feed-forward system that quickly
categorizes the stimulus, and a slower feed-back controlled refinement system. At the level
of cortex areas, we assume that the specific columnar architecture of the neocortex reflects
this basic computational principle: Each column hosts a fast feed-forward system in the
cortex layer 4 and a refinement system in layers 2/3. At the level of neurons we assume that
spikes play an important role in rapidly coding and transmitting information.
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1.1 Assumptions

1.1.1 Stimulus hypothesis

Experimental evidence suggests that awake animals have an internal representation of the
world that allows them to plan and execute their actions. If the sensory stimulus changes
significantly, the internal representation is modified or replaced by a new one. In the cortex
an internal representation, which we callhypothesis, is generated from the sensory input
and guides all subsequent processing by limiting the ways inwhich the raw input can be
interpreted.

1.1.2 Columnar architecture

Many cortical areas, including the ventral visual pathway of primates [36] have a columnar
architecture. In our model the cortex is described as a homogeneous network of columns
that link the cortical layers into computational units. Thestructure of columns is roughly the
same in all areas, regardless of the information that is processed there. We further assume,
that computation within the cortex can be described in termsof columns and their interac-
tions. While aminicolumnis the smallest functional module of the cortex, ahypercolumn
is the set of all minicolumns that have the same receptive field (for the sensory cortices). In
non-topographic areas, a hypercolumn may comprise all descriptions related to one object.

1.1.3 Spikes and latency code

There is convincing experimental [19, 28, 34] and theoretical [10, 26, 34, 44, 45] evidence
that the spike latency of neurons encodes their stimulationstrength. Experimental evidence
for spike latency coding in the visual system of primates canalready be found in the clas-
sical work of Hubel and Wiesel [18]. Figure 1 shows recordings from orientation-selective
cells in monkey primary visual cortex. It shows spike trainsand mean firing rates for differ-
ent orientations of a bar stimulus. The panel on the right is based on an original figure from
Hubel and Wiesel [18]. The gray bars indicate the latency of the first spike. Obviously, the
spike latency is a good estimate of the firing rate: The latency is large when firing rate is
small, and vice versa. But unlike the firing rate which must beintegrated over longer time
intervals, the spike latency can be assessed from the first spike of a neuron.

1.2 Chapter overview

This chapter describes our progress in substantiating thistheory. In the following section
we demonstrate, how response spike latencies of neurons canquickly generate a stimulus
hypothesis. We start with a model of early visual processingin the cortex that shows how the
response latency of visual cortical neurons can help to detect homogeneous image regions.
With this information the cortex can quickly segment prominent objects in the scene to
contribute to the global hypothesis. We then extend the latency concept to other types of
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Figure 1: Firing rate and response latency of typical primary visual neurons.Left,average
firing rate of a cat V1 neuron plotted as a function of the orientation angle of a light bar stim-
ulus;right, recordings from a neuron in the primary visual cortex of a monkey, diagrams to
the left of each trace show the receptive field as a dashed square and the light source as a
black bar;shaded region,latency of the first spike in response to the bar stimulus. Response
latency and firing rate carry similar information: latency of the first response spike is large
when firing rate is small, and vice versa. [Figure adapted from 8].

feature detectors and show that a latency code can indeed be used in a feed-forward network
of feature detectors.

In section 3 we demonstrate how the cortex uses its six layersto analyze and interpret
sensory signals. The model consists of three simplified cortical areas, each including a
feed-forward system to quickly generate a stimulus hypothesis (A-system) and a feed-back
controlled system (B-system) to refine the hypothesis. In this model we demonstrate how
the two systems (A and B) of our columnar cortex improve the recognition of stimuli by
including previously acquired knowledge into the analysisand interpretation of stimuli.

In section 4 we present a model that includes visual fixationsand saccades and that can
learn new objects and object views. We demonstrate how the cortex learns and predicts
parts of the stimulus and uses this information to guide recognition. Given the partial view
of an object, the model will generate a hypothesis and saccade to a new fixation point to
confirm or modify its hypothesis.

2 From latency code to fast hypothesis generation

In early visual processing, speed matters. If an animal encounters a visual scene, it is im-
portant to quickly arrive at an hypothesis about its main constituents so that an appropriate
reaction (e.g. escape) is possible. Thorpe et al. [38] have shown, that the visual cortex of
human subjects can solve the problem of scene categorization in less than 150 ms. In this
section we describe two models that show how neurons in the brain can quickly interpret
sensory data, by encoding it in their first action potentialsfollowing stimulus onset. These
models operate on the level of single neurons and spikes.
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2.1 Homogeneity detection in the visual system

To interpret the visual input it is important to segment those parts of a scene that potentially
make up relevant objects. But how can the visual system segment relevant regions, when a
hypothesis about objects in the scene is not yet available? We propose that the brain uses
homogeneous regions to label potentially relevant objectsin a scene.

In the following model, neurons act asfeature detectorsin the sense that the better the
stimulus matches their preferred feature, the faster they respond with a spike. Thus, the
time interval between stimulus and response spike, also called latency, encodes how well
the stimulus matched the preferred feature of the neuron. This latency code results from the
biophysical property of neurons.

high variance asynchronous spikes–

low variance synchronous spikes–

Figure 2: The principle of spike-latency based homogeneityprocessing; example from the
visual domain.Left: Edge regions in the stimulus typically have high variance ofluminance,
while surface regions typically have low variance of luminance. Right: A set of visual
neurons respond at latencies depending on the luminance inside their receptive field. The
receiving neuron responds when the incoming action potentials coincide. This makes it
selective for homogeneous luminance inside its receptive field. In the visual domain, this
allows identifying surface regions.

Consider a neuron receiving input from a population of neurons, all responding to the
same feature, but at different retinal positions. Because cortical neurons effectively work as
coincidence detectors [see e.g. 2, 24], the post-synaptic neuron will then respond best, if all
pre-synaptic neurons fire at the same time. For example, if the pre-synaptic neurons encode
the luminance in their receptive field, the post-synaptic neuron will respond best to an ho-
mogeneous illumination of its receptive field, because in this case all luminance detectors
receive the same input luminance. The visual system can use this information on homoge-
neous image regions, to confine edge detection to borders between mid-sized objects. This
principle is illustrated in figure 2. The left panel shows twodifferent patches of an image.
The upper patch shows a pronounced gradient, correspondingto an edge of the elephant’s
ear. The lower patch is very homogeneous, corresponding to the surface of the ear. Suppose
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that each pixel is the receptive field of a neuron that encodesthe luminance in its spike la-
tency and that all luminance detectors in a patch project to acommon target neuron (whose
receptive field is the patch). Thus, a target neuron whose receptive field corresponds to the
upper patch will receive a dispersed set of spikes from its input neurons (fig. 2top right),
while a target neuron, looking at the homogeneous patch willreceive a synchronous volley
of input spikes that will a response of the target neuron (fig.2 bottom right). Note that
the response of the target neuron does not depend on how well the individual luminance
detectors were activated, but rather on that they are all activated in the same way.

2.1.1 Model

To illustrate this principle, consider a100 × 100 sheetNs of latency-coding neurons, each
selective for the luminance in its receptive field. That is, aneuron inNs responds fastest if
the luminance in its receptive field is maximal. The sheetNs is arranged such that it pre-
serves retinotopy (fig. 3). In addition there is a sheetNr of neurons, receiving convergent
input from a local neighborhoodd of neurons inNs. Since the neurons inNr are coin-
cidence detectors, they are selective for homogeneous luminance in their receptive fields
[26].

For the neuron in the sheetsNs andNr we used standard leaky integrate and fire neurons
[27, 40]. The neurons in the sending populationNs received no synaptic input, but were
stimulated by a currentIstim, corresponding to the luminance in the neuron’s receptive field.
The sub-threshold membrane potential of a neuron inNs was, thus, given by

C · dU

dt
= −1

τ
· U + Istim, (1)

whereU is the membrane potential relative to the resting potential.
The neurons in populationNr only received synaptic input from a local neighborhoodd

in Ns with post-synaptic currents modeled asα-functions. Their sub-threshold membrane
potential was, thus, given by

C · dU

dt
= −1

τ
· U +

∑

syn∈d

Isyn(t). (2)

2.1.2 Stimuli

As stimuli we extracted patches of 100×100 pixels from natural gray-scale images (fig. 6,
panelA), corresponding to ten by ten degrees in the visual field. Thepixel luminances of
each stimulus patch were transformed into stimulus currents for the neurons inNs. Since
dark regions will not elicit a neural response, we used two separate input sheets, one re-
sponding to high luminance values (ON) and one responding tolow luminance (OFF). As
a result, the neurons in the sheetsNs-ON andNs-OFF transformed local luminance into
spike latencies.



8 Kupper, Gewaltig, Knoblauch, et al.

t2

d

f f

f

T

N
s

N
r

t1

Figure 3: Detecting homogeneous appearance of a featuref (for example, luminance).
Ns is a sheet of neurons with topologically arranged receptivefields in the input spaceT.
They encode the local strength of featuref in their spike-latency. Neurons in sheetNr

receive action potentials from a local neighborhoodd of neurons inNs. Their sensitivity
for coincident synaptic events makes them selective for homogeneous appearance of feature
f inside their receptive fields.

Given a stimulus currentI that is strong enough to bring the integrate and fire neuron
to threshold, the latency for the first spike is given by [9]:

tcross = −τm ln

(

Rm I + El − Vth

Rm I + El − Vstart

)

, (3)

with τm andRm the membrane time constant and resistance, andEl the leakage poten-
tial. The latencytcross depends on the membrane potentialVstart at which the neuron
starts integrating the stimulus current. This starting state will naturally vary across a neural
population, depending on the individual neurons’ stimulation history. Figure 4 shows the
current/latency relation for different starting valuesVstart. Small variations in the starting
membrane potential cause strong variations in firing latency, especially in the physiologi-
cally relevant excitation regime below 600 pA (corresponding to 100 Hz of tonic firing, i.e.,
a latency of 10 ms, see thick curve). As a consequence, to generate a coherent latency code
across theNs population, the neurons need to be in the same state at stimulus onset. In our
model this corresponds to a reset of all membrane potentialsto the same initial value.
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Figure 4: Current/latency relation for injection of a constant currentI into a leaky integrate-
and-fire model neuron (eq. (3),τm=10 ms,El=-70 mV,Vth=-55 mV,Rm=40 MΩ ). Curves
show relations for different values of the starting membrane potentialVstart. For the thick
curve, the starting potential is equal to the reset potential of the integrate-and-fire neuron.
Latency for this curve corresponds to the spike interval fortonic firing. Thin curves cor-
respond to starting potentials for depolarized states. Grey curves correspond to starting
potentials of neurons hyperpolarized by inhibition.

2.1.3 Neural reset

In previous work, we investigated several neural mechanisms that could reset the membrane
potentials of a population of neurons to consistent values [26]. The most obvious mecha-
nisms rely on the relaxation of the membrane potential to itsresting value, e.g. during the
retinal smear created by the moving eye, or blocking the input to the visual cortex at the
LGN (saccadic suppression). These can only partly succeed,because a typical saccade is
not long enough to allow the membrane potentials to decay sufficiently. Among other con-
ditions, we compared input suppression and common inhibition to an artificial reset of the
membrane potentials.

In this model, we reset membrane potentials of all neurons inlayerNs at t = 100 ms.
We then allow the neurons to fire for 100 ms and record their spike trains. We repeat-
edly re-initiate latency coding by resetting the neurons after each 100 ms of firing, a period
roughly corresponding to a short saccade-interval. Stimulation is constantly applied during
the whole procedure. This procedure makes theNs ON and OFF populations two retino-
topically arranged sets of latency-coding neurons selective for local luminance. TheNs

neurons re-generate the latency-code after each reset (every 100 ms).

2.1.4 Homogeneity-selective cells

Sub-populations of the neurons in the twoNs layers with a diameter ofd = 1.1◦ of vi-
sual angle projected convergently onto two sheets of 100×100 model neurons (Nr, ON and
OFF respectively), while preserving topology. Transmission delays and synaptic weights



10 Kupper, Gewaltig, Knoblauch, et al.

reset by inhibitionG

0 20 40 60 80 100
Time / ms

0

20

40

60

80

100

N
e

u
ro

n
 #

F reset by input suppression

0 20 40 60 80 100
Time / ms

0

20

40

60

80

100

N
e

u
ro

n
 #

0 20 40 60 80
Time / ms

0

20

40

60

80

100

N
e

u
ro

n
 #

E artificial resetartificial resetB

reset by inhibitionD

0 20 40 60 80 100
Time / ms

0

20

40

60

80

100

N
e

u
ro

n
 #

reset by input suppressionC

0

20

40

60

80

100

N
e

u
ro

n
 #

N
s
neurons N

r
neuronsA stimulus patch

0 20 40 60 80 100
Time / ms

100

0

10

20

30

40

50

%
 a

c
ti
v
e

 n
e

u
ro

n
s

0

10

20

30

40

50

%
 a

c
ti
v
e

 n
e

u
ro

n
s

0

10

20

30

40

50

%
 a

c
ti
v
e

 n
e

u
ro

n
s

0

10

20

30

40

50

%
 a

c
ti
v
e

 n
e

u
ro

n
s

0

10

20

30

40

50

%
 a

c
ti
v
e

 n
e

u
ro

n
s

0 20 40 60 80
Time / ms

0

20

40

60

80

100
N

e
u

ro
n

 #

100
0

10

20

30

40

50

%
 a

c
ti
v
e

 n
e

u
ro

n
s

Figure 5: Processing of spatial homogeneity; typical spikeresponses of 100Ns andNr

neurons. A, stimulus patch, topological RF-positions of the 100 selected neurons corre-
spond to the center row of pixels (marked by arrows);B and E,spike responses ofNs and
Nr neurons, whenNs neurons were prepared for latency coding using artificial reset;C and
F, using input suppression;D and G,using inhibition;grey curves,spike time histograms
of all 100 000 model neurons inNs or Nr.

were identical for all connections. This made theNr ON and OFF populations two retino-
topically arranged sets of neurons selective forspatially homogeneousluminance across
distances ofd = 1.1◦ of angle in the visual field.

2.1.5 Results

We recorded spike responses of all neurons over the completetime-course of simulation.
From this data, we retrieved topological latency maps ofNs andNr neurons. A single
simulation run covered multiple resets of the membrane potentials, so that latency codes for
the applied stimulus were repeatedly generated. After eachreset, the response latency of a
neuron is defined as the time span between the reset and the neuron’s first spike thereafter.

Figure 5 shows typical spike-trains recorded fromNs and Nr neurons. Ns neurons
were excited according to the visual stimulus shown in panelA. At t = 0, latency cod-
ing was initiated by resetting all neurons to consistent membrane potentials by either input
suppression, common inhibition, or artificial reset of model neurons. The first two are neu-
rophysiologically plausible methods, while the latter is aprocess that we use for evaluation,
but which is not likely to occur in the real brain [26]. Regions of homogeneous luminance
in the stimulus patch cause groups of neighboringNs neurons to respond with similar la-
tencies. Their action potentials show up as “spike-fronts”in the plots. These coincident
spikes, in turn, cause spike responses in theNr neurons in corresponding locations.
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Note to the editor: this figure is available in alternative versions, colored and gray. The
colored version is easier to understand.
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Figure 6: Detecting homogeneity of luminance: results fromnetwork simulation.A, stim-
ulus patches;B–D, typical response latencies in the neural populationNr (white: no action
potential was produced).B, Nr latencies obtained when the sending neural population
Ns was optimally prepared for latency coding by an artificial reset; C and D,by neuro-
physiologically plausible reset mechanisms [input suppression and inhibition, 26]. PanelE
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trast. The plots show ON- and OFF-responses (bright as well as dark homogeneous regions
were processed).
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Figure 6 shows typical response latencies ofNr neurons on a gray-level scale. (White
color indicates that the respective neuron did not produce an action potential.) PanelA
shows three different stimulus patches. PanelB depicts response latencies obtained when
theNs neurons were prepared for latency coding by artificial resetof the model neurons’
membrane potentials. Artificial reset produced the most reliable latency code, but is not
biologically plausible. PanelsC and D depict response latencies obtained when theNs

neurons were reset by the two biologically plausible mechanisms, input suppression and
inhibition. They produced a less reliable latency code, since they can achieve only a partial
reset of the neurons’ membrane potentials. Consequently, the response latencies scatter
more. Still, the locations of activeNr neurons correspond to regions of homogeneous
luminance in the stimulus patch — theNr neurons act ashomogeneity-selective neurons.
Note that by relying on only the first action potentials of latency-coding neurons, spike-
latency based homogeneity processing is very fast, with first components signaled already
after 5–20 ms.

2.1.6 Discussion

In the initial phase of visual scene interpretation, information provided by surface-selective
neurons can help generate a good starting hypothesis on scene contents “at a first glance”.
Since edges and surfaces of physical objects exclude each other, the output of surface-
selective neurons (potentially located in the konio-cellular pathway of the visual system)
can be used to suppress responses in orientation-selectivecells in regions that are unlikely
to be relevant for the rapid, initial understanding of the scene [14].

After a first hypothesis about the content of the visual scenehas been established at
higher processing levels, a top-down signal can then enablea refined analysis of object
detail [see 25, 41]. This would simply involve inhibiting surface-selective neurons of
the konio-cellular pathway, thereby dis-inhibiting the previously suppressed orientation-
selective neurons in V1. Information on oriented contrast at fine detail will then be chan-
neled into an already pre-adjusted system. This process seems to define a natural time-
course of processing from coarse to fine, without unconditionally blurring the stimulus by
low-pass-filtering in the way conventional models of resolution pyramids do. By contrast,
orientation responses for presumed object boundaries are relayed in full fidelity from the
start, and can take part in the formation of a reliable hypothesis.

2.2 Feature extraction from a single spike wave

Homogeneity detection of luminance and other features may indeed be an important step
in processing of all sensory cortices. However, it is unlikely that the scene categorization
performed by the subjects of Thorpe et al. [38] can be based onthe coarse segmentation of
image regions this process provides. Categorization of e.g. an animal in a complex scene
requires the extraction of highly specific identifying features, possibly including their cor-
rect spatial relations. Given that the visual signal needs to traverse something like fourteen
or more synapses from the retina to the highest brain areas [13], Thorpe’s categorization



From neurons to cortex: a multi-level approach to understanding the brain 13

task is achieved with a processing time of as few as 10 ms per neural stage. This restricts
processing to one spike per neuron, and suggests a processing mode that must indeed be
similar to the coincidence detection we applied in our modelof homogeneity detection.

Thorpe et al. [39] suggest that visual stimuli are categorized by a hierarchy of feature
detectors in a feed-forward network, where each feature-selective cell evaluatesthe order
of spikesin a single incoming spike-wave. They successfully demonstrated that this coding
scheme (rank coding) can be used for fast and reliable feature detection [43]. However,
to evaluate a rank code, every feature-selective neuron needs a local readout circuit (fig. 7,
left). This is both biologically implausible and expensive to implement.

S > Q ?
1

0

1

1

0

1/0

Figure 7: Rank coding versus spike counting.Left, neural circuit for evaluating a rank
code, as proposed by Thorpe et al. [figure taken from 43]. Eachreadout neuron requires
a dedicated inhibitory pool that increases its firing rate with every incoming spike.Right,
proposed scheme for spike-counting that can be performed bya single neuron. It is valid
when spike intervals are below the synaptic integration time.

We propose an alternative scheme of rapid feature extraction. Post-synaptic neurons
could simply count thenumberof incoming spikes in the wave, and fire if the number
of incoming spikes exceeds a threshold (fig. 7,right). This simple scheme is a valid ap-
proximation of neural integration, when spike intervals are below the synaptic integration
time (synaptic potentials superimpose constructively). It uses spike-times only implicitly
and does not require additional circuitry. We interpret neuronal spikes as a labeled line
code, where a spiking neuron indicates the simple presence of a feature. Post-synaptic neu-
rons integrate incoming spikes in an unweighted, “spike-counting” fashion, and fire a spike
themselves, when the number of integrated spikes passes a threshold – that is, if enough
partial features of “their” compound feature are present. This is an extremely simple neural
coding scheme, but biologically easy to implement, cheap, and very fast.

We conducted a simulation study to show if this coding schemeyields neural responses
which can serve as the basis for rapid scene or object classification. Besides fulfilling the
temporal constraints, two conditions must be met if the individual shall base a behavioral
decision on the neural response: The neural response must bespecific to a certain stimulus,
so that a stimulus can be differentiated from others, and it must be produced reliably when
the respective stimulus appears, so that it is not missed.
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2.2.1 Model

L=3
N=3

N=2

N=1

Number of receptors: L
N

x1 x LNx2 x3 x4

Stimulus vector [0,1]xÎ
LN

Figure 8: A cascade of spike-counting neurons, withN steps andL incoming lines per
neuron.

We evaluate the responses of a cascade of spike-counting feature detectors (fig. 8),
with respect to two measures that describespecificityandreliability of the neural response.
The cascade consists of a set of primary receptors (squaresin fig. 8), and several levels
of feature detectors (circles). We assume that each of the primary receptors is tuned to
some arbitrary stimulus feature and that the tuning curve issmooth and has a peak around
a single preferred feature value with a given tuning width. Furthermore, we assume that
all neurons are probabilistic with a response probabilityp. For the primary receptors, the
response probability is defined by their tuning curves. For all other detectors,p depends on
the number of spikes the detector receives from its input neurons.
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Figure 9: Tuning curves of the primary receptors, and the feature detectors. Neurons pro-
duce an output spike according to the shown probability functions. Left, primary receptors
transform an analog stimulus value into a binary output state (0 or 1).Right, feature detec-
tors signal their binary output state according to the sum ofincoming spikes.

The primary receptors transform an analog stimulus vector into a vector of spike values.
They signal an output spike with a probability that is given by a Gaussian tuning function
(fig. 9, left). Spikes generated by the primary receptors converge on a set of feature detec-
tors in the next level of the cascade. The feature detectors count spikes and respond with
probabilityp1, if the number of input spikes exceeds a thresholdΘ, and with probabilityp0
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otherwise (fig. 9,right). The spikes converge on the next level of feature detectors, which
apply the same scheme, and so on, resulting in a spike wave traveling through the cascade
from the receptors to the single top detector. For differentsets of stimuli and receptor tun-
ings, we evaluate the firing probability of the top detector in cascades withN steps andL
incoming lines per neuron.

In a detector cascade withN steps andL incoming lines per neuron, the number of
primary receptors isLN . We assume that theLN primary receptors code forLN arbitrary
features of the input, where each feature takes a value in a normalized range of[0, 1]. (Think
of it as local luminance, edge orientation in the range[0◦, 360◦], local frequency content,
etc.) We choose a set of receptor-preferences

P = {xpref,i}, xpref,i ∈ [0, 1]L
N

, (4)

where each vectorxpref,i specifies the preferred feature values for all of theLN primary
receptors, defining the stimulus that maximally excites thedetector cascade. We can look
uponP as defining a set of physically different neural cascades in the sensory cortex, each
starting from a specifically tuned set of primary receptors and ending in a singlegrand-
mother cellat the top, whose response indicates the presence of the respective compound
feature. We choose a set of test-stimuli

S = {xi}, xi ∈ [0, 1]L
N

, (5)

which we apply as inputs to the primary receptors. For all stimuli x ∈ S and all cascades
xpref ∈ P , we experimentally determine the firing probabilityptop of the top detector, by
repeatedly simulating single-spike waves traveling upwards through the cascade.

2.2.2 Results

Figure 10 shows typical firing probabilities of the top detector in cascades with N=2 levels
and L=9 incoming lines per neuron. The three panels show simulation runs for three dif-
ferent settings of the firing thresholdΘ=4,5,6. Stimuli along thex-axis have been sorted
by the response they elicit, with the least effective stimulus on the left, and most effective
stimulus on the right. Depending on the value of the firing thresholdΘ of the feature detec-
tors in the cascade, the top detector can fire with a high probability for most of the stimuli
(left), for some of the stimuli (middle), or its response probability may be low for all stimuli
(right). Very little variation can be seen for the different cascades along they-axis, so re-
sponse probabilities are characteristic for the coding process and largely independent from
the stimulus preferences.

In the following we determine the parameter ranges that yield top detectors that have
both a high firing probability and at the same time only a smallnumber of stimuli they re-
spond to (that is, they showreliableandspecificresponses). For a fixed cascadexpref ∈ P ,
we characterize the response of the top detector to the complete test-setS by two measures,
reliability andspecificity.
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Figure 10: Firing probablilty of the top detectors for all combinations of stimuli and recep-
tor preferences, in cascades with N=2 levels and L=9 incoming lines per neuron. Detector
response probabilities (p0,p1)=(0.1,0.9). Panels show firing probability for three different
settings of the firing thresholdΘ=4,5,6. Stimuli sorted by the response they elicit.

Reliability We define response reliability as the peak response probability of the top de-
tector to all test-stimulix ∈ S:

rel(xpref) := max
x∈S

{ptop(x)}. (6)

Specificity We define response specificity as the number of stimulix ∈ S the top detector
significantly responds to (90% of peak probability, red arrow in fig. 10, left):

spec(xpref ) := |{x ∈ S | ptop(x) > 0.9 · rel(xpref )}|. (7)

Figure 11 shows the average reliability and specificity for the cascades inP . Values
are shown as a function of the thresholdΘ, for different heights of the detector cascade
N=1,2,3 and a number of L=9 incoming lines per neuron. Plots from left to right show
results for increasing noise in the spike generation process in the single detector neurons
(p0,p1)=(0,1), (0.1,0.9), (0.2,0.8), (0.3,0.7). The results show that responses arereliable
for Θ < L

2 . They arespecificto a small number of stimuli only forΘ ≈ L
2 , and specific

responses vanish rapidly with increasing noise (panels from left to right,p0 ↑, p1 ↓).

2.2.3 Discussion

Our study shows that stimulus-specific responses can be gained from a single spike wave
traversing a cascade of spike-counting feature detectors.However, in this simplified setup of
uniform cascades withN steps andL incoming lines per neuron that we investigated here,
stimulus responses that are specific to a small number of stimuli are limited to the parameter
regime where the threshold for the spike count is half the number of input synapses (Θ ≈
L
2 ). In this regime, response probability is reduced. We can conclude that the visual system
can use this coding scheme for rapid feature detection when responses need not be 100%
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Figure 11: Reliability and specificity of the top detector responses as a function of the
thresholdΘ, in cascades with N=1,2,3 levels and L=9 incoming lines per neuron. Plots
from left to right: Increasing noise in spike generation (p0,p1)=(0,1), (0.1,0.9), (0.2,0.8),
(0.3,0.7). Top-rows, reliability; middle rows,specificity (90% and 50% peak response
width); bottom rows,reliability/specificity.
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reliable, for example when they can be repeatedly generated, or when the same feature is
extracted by several cascades in parallel. It is well conceivable that several spike waves
travel the cascade in close succession, so that several samples of the top response can be
taken in a short time.

The narrow range of usable thresholds suggests homeostaticprocesses that keep the
neurons near the working point. In addition, the rapid decayof response specificity with
increasing noise suggests coding strategies that counteract the influence of noise. Both are
not present in the simple setup we used here. However, we haveshown that specific and
reliable responses for arbitrary features can be gained using an extremely fast and simple
coding scheme, which does not require an additional inhibitory pool of neurons for each
detector as does the rank coding scheme proposed by Thorpe and colleagues. Moreover,
feature detection by simple spike-counting does not dependon the exact spike latencies, as
long as the synaptic potentials caused in the receiving neurons overlap sufficiently to add
up to a supra-threshold potential. This leaves the “latencychannel” as a separate coding
channel that is multiplexed with the pure detection of a feature. It is straightforward that
a very strong feature present in the stimulus will cause faster responses in the primary
receptors, meaning that also the top detector of the respective cascade will respond more
early than the one for another feature that is present, too, but weaker. This creates a sort of
endogenous attentionto the strongest stimulus components, because rapid decisions of the
individual will be based on the first responses available.

This is an ideal condition for generating a rapid hypothesison the stimulus content that
can be used to perform scene categorization tasks like shownin Thorpe et al. [38], which are
the basis for behavioral decisions like for example, fleeing. In addition, a rapid hypothesis
can be used to improve and guide further cognitive processing, when the individual has the
time. Spike-counting can be reasonably correct to base rapid actions on it and serve as a
hypothesis. For exact and detailed object recognition withlow error rates it is certainly not
sufficient. Here, slower mechanisms must be at work, that integrate evidence over time,
leading to increasingly complex hypotheses, expectationsand knowledge. Modeling this
process of dynamic scene interpretation is a second field of study at the Honda Research
Institute.

3 From the hypothesis to predictive stimulus recognition

Recognizing and categorizing previously experienced objects and scenes as well as learn-
ing new representations is still one of the hardest problemsin artificial intelligence and
subdisciplines such as computer vision or robotics. Because sensory stimuli regularly in-
clude complex and ambiguous scenes, it is necessary to use top-down prediction in order
to reduce the tremendous number of possible interpretations at each level of representation.
Thus, any solution has to detail (i) how prior knowledge is tobe integrated (top-down)
with the actual (bottom-up) stream of sensory data in a meaningful way, and (ii) when and
how new representations are to be created and stably integrated into the previously learned
knowledge hierarchy. Because biological organisms are currently the only systems capa-
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ble of solving these tasks to a satisfactory degree, we want to use the growing knowledge
about the anatomy and physiology of the brain to incorporatethis knowledge in biologically
inspired models.
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Figure 12: Cortical processes must be able to distinguish between different representational
modi. E.g., representational states may refer to present, future, reality, wish, signal, or
symbol. We have the idea that, at least for higher mammals, a single cortical column can
represent several modi at the same time, and that different modi relate to different cortical
layers.

3.1 Stimulus representations in the six layers of cortical columns

Although it is well known for a long time that neocortical anatomy exhibits a 6-layered
structure, modelers have often neglected this fact when modeling a cortical patch by a
single “monolithical” neuron population (e.g., [22, 32, 35]). This may be attributable to the
wish to focus on a single layer or the lack of adequate computational resources to simulate
more detailed models, but also to doubting or underestimating the functional significance
of discrete within- or between-layer synaptic connectionswhich appear to have a rather
“fuzzy” character [1, 5].

In accordance with ideas developed earlier in Körner et al.[25] [cf. 15, 33], we assume
that thebasic function of a cortical columnis to adequately represent and predict (or gener-
ate) its sensory inputs. To achieve this in a self-organizing, autonomous way it is necessary
to have access to different representational modi such as actual vs. predicted sensory input,
where we believe that different representational modi of the same entity (e.g., orientation
at a particular position in the visual field) are located in different layers within the same
column rather than monolithically in different columns or areas (see fig. 12).

How can such agenerative modellook like? We can assume that the model represents
external states that produce the observed sensory inputs. Thus at each time the model must
represent a statev from the state spaceV (or more generally, a probability distribution on
the state space describing in which state the columnar system “believes” to be in). Then the
system should be able to use sensory inputs to update the statev according to a functionf ,

v(t + ∆t) = f(v(t), s(t)) (8)

It makes sense to divide the state variablev = (w, a) into two rather independent entities,
one variablew describing “external” entities from the outside world, andanother variable
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Figure 13:Left: Basic functional circuit of a cortical column. Sensory input s is used to
update the current world statew. This is used to choose an appropriate actiona. World
state and action can be used to predict the next world statew′ and next sensory inputs′.
Right: A simple histogram representation of the conditional probability densityg(w, a) on
(discrete) states and actions: The example shows the density of the predicted “world” states
w′ when being in statew2 and performing actiona4. Learning is accomplished by simply
incrementing bink of the histogram in rowi, columnj whenever evidence(wi, aj) → wk

is experienced. Our model essentially implements such a histogram representation where
the states or state combinations(wi, aj) are “coded” with distributed cell assemblies in
order to relieve combinatorial problems and reduce the number of required neuronal units
[4, 16, 22, 31, 46].
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a describing a local “internal actor”. In addition to updating a state, the system should also
be able to predict a future statew′ and expected sensory inputss′, so that (see fig. 13,left
for the functional circuit):

w(t + ∆t) = f(w′(t), s(t)) (9)

a(t) = fa(w(t), . . .) (10)

w′(t) = g(w(t), a(t)) (11)

s′(t) = h(w′(t)) (12)

We will refer tof as the “forward recognition function”, tog as the “predictive function”,
andh as the “backward function”.

How can the recognition, prediction, and backward functions be learned? In general,
updating the model will involve two phases: (i) finding the most probablew, (ii) given
that the world and actor states(w, a) are fixed, the functions can simply be learned by
counting up experienced evidence. For example, the prediction function g is essentially
a conditional probability (“the probability to get to statew′ given statew and actiona”)
which, for discrete states and actions, can be represented by evidence histograms for each
combination(w, a) (fig. 13,right).

By comparison with known anatomical facts we can match our functional model
(fig. 13) with the layered organization of neocortex [5, 11, 25]. We believe that the for-
ward recognition functionf is located in the middle and upper layers, while the remaining
functionality related to behavior and predictions is located in the lower layers. Further-
more, we believe thatf is split up into two subsystems, one for fast bottom-up recognition
in the way we have modeled in section 2.2, and another for refined recognition employing
feedback.

In the following we present simulation results substantiating a previously proposed
model of computation in neocortical architecture [25]. This model gives a detailed func-
tional interpretation of the well-known six-layered columnar cortical architecture and re-
lated sub-cortical (thalamic) structures. It hypothesizes three different but interfering pro-
cessing systems at each stage of the cortical hierarchy (fig.14): TheA-system(comprising
the middle cortical layers 4 and lower 3) accomplishes fast bottom-up processing where the
first spike wave traveling up the cortical hierarchy can activate a coarse initial hypothesis
at each level. We have modeled this process on the single-neuron level in section 2.2; here,
we link it to an explicit neural resource, the layers 4 and lower 3 of the cortex. In theB-
system(superficial layers 2 and upper 3) the initial hypothesis is refined by slower iterative
processes involving horizontal and vertical exchange of information. Finally, theC-system
(deep layers 5 and 6) represents the local hypothesis of a hypercolumn which is used for
inducing expectations and predictions for the present and future input signals, and also for
inducing the behavior that can confirm these expectations. Recognized or predicted input
signals are suppressed at an early cortical stage, and only differences between predicted and
actual signals can reach the next higher level. Learning of new representations is induced
if the difference signal is too large and if the difference signal reaches the highest level of
cortical integration, the hippocampus.
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Figure 14: Layered model of a cortical column as proposed previously in [25]. Three dif-
ferent processing subsystems corresponding to different vertical locations in the cortical
tissue interact within each cortical column. The A-system (middle layers) accomplishes
fast bottom-up processing of sensory signals as shown in sec. 2.2, the B-system (superficial
layers) refines the input from the A-system by exchanging information with neighboring
columns and activating more sparse and abstract representations. The C-system (deep lay-
ers) develops representations related to behavior that arethen used to confirm predictions
in an action/perception cycle.

In this section, we present a simple (but instructive) simulation of stimulus recognition
consisting of three cortical levels representing letters,syllables, and words. Focusing on
the information flow between columns and areas, we show how the different processing
systems interact in order to quench out expected signals andaccomplish symbolic recog-
nition of words, and how representations for new words can beconstructed based on old
representations. This simulation operates on the level of neural circuits, the main modeling
units are the layers of a cortical area. The implementation applies a rate-code, although the
processes in the A-system build upon the rapid spike-based hypothesis generation we have
described before. The stimuli processed by the model are static, although their interpreta-
tion is dynamic.

3.2 Object recognition by bidirectional signal flow betweencortical columns

Here we describe the COREtext model, a layered cortical model that demonstrates the for-
mation of a fast initial stimulus hypothesis in the columns,and its subsequent refinement
by inter-columnar communication. We simulate the signal flow in the A- and B-systems of
our cortical model across three hierarchical cortical areas.
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3.2.1 Model

The COREtext model consists of three areas, “IT”, “V2”, and “V1”. Each area is com-
posed of three layers, which are linear arrays ofh neural subsystems (fig. 15). A neuronal
subsystem is an aggregation ofm neurons. The numberm is referred to asthe number of
minicolumnsin the area. The numberh is referred to asthe number of hypercolumnsin
the area. The COREtext model uses a graded-response neuron model. In each timestep, a
neuron accumulates its stimulations and its modulationm. The resulting activationa is
given bya = Θ(s · (1 + m)). Here,Θ is a piecewise linear sigmoidal transfer function.Θ
is zero below a firing threshold of0.3, and rises linearly up to a maximal activation value
of a = 3, at which it saturates.Θ(1) = 1. The neurons in each subsystem participate in a
“winners-take-all” competition, and all but the maximal activations in a subsystem are set
to zero.

Synaptic connections between the neurons in the COREtext model are specified sep-
arately between pairs of layers. Weights between the neurons of given source and target
layers take binary values, multiplied by a constant factorw: (wijkl) = w · (bijkl), bijkl ∈
{0, 1}, with i: source subsystem,j: source neuron in subsystem,k: target subsystem, andl:
target neuron in subsystem. When subsystem and neuron indexes are not of explicit interest,
we can shorten this notation to(wij) = w · (bij). A set of synaptic connections can either
be driving or modulating. Inhibitory connections are realized by negative driving weights.

The COREtext model uses a synchronous update of neuronal states. In each simulation
time-step, the activity of all neurons is propagated to the postsynaptic neurons, according
to the connection matrix. From the resulting activation values, the “winners-take-all” com-
petition is computed in the neural subsystems. The result isstored as the new activation of
the neurons. This update cycle repeats in every simulation time-step.

For conceptual simplicity, we chose an abstracted stimulusenvironment that shows
a clear hierarchical structure of how complex objects are composed from smaller parts.
We implement word recognition from a string of characters. Stimuli have the form of
strings of lower-case characters, arranged on a one-dimensional grid. In our setup of the
COREtext model, all layers have the same numberh of subsystems (hypercolumns), and
are aligned with the input array (fig. 15). We choose a number of three COREtext areas
that form a hierarchy, similar to sensory processing pathways in the neocortex. The areas
are labeled “V1”,”V2” and “IT” for convenience, where theselabels are metaphors taken
from the domain of visual processing. Figure 16 (top left) relates features processed in
the visual domain to the features processed in the COREtext model. We derived the set of
features represented in the three areas from the analysis ofthree pages of classical German
literature [17]. We decomposed the text into syllables according to usual German spelling
rules. After removal of duplicates the text analysis yielded a set of 386 different words,
a set of 418 syllables, and a set of 30 characters. We call these sets of features thelocal
alphabetsLIT , LV2, andLV1. The sizes of the local alphabets determine the numberm of
minicolumns in the three areas. Each hypercolumn in “IT”, ”V2”, and “V1” represents the
full local alphabet. I.e., each subsystem in “V2” is an aggregation ofmV2 = 418 neurons,
with each neuronnl,s,i representing theith element ofLV2.
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Figure 15: Hierarchy of areas, layers and subsystems. The subsystems are ”retinotopically”
aligned with the stimulus array.

Knowledge about the composition of cognitive objects (words) is generated from Ger-
man spelling rules. From the local alphabets we derive two binary knowledge matrices,B1

andB2. We initialize the knowledge matrices in a process that imitates supervised one-
shot-learning. It is similar to training all words inLIT by presenting them at position0 in
the input array, while giving their correct decompositionsinto syllables and characters. For
each word inLIT we derive its constituting syllables and characters, as well as their starting
position in the word. We store these decompositions in the binary knowledge matricesB1

andB2. For example, the word “mutter” decomposes in the way shown in fig. 16 (right).
We designed the connectivity scheme between the nine COREtext layers to reflect the

main functional projections that are known to exist betweenthe layers of cortical areas [3, 6,
11, 37]. We aimed to create a reduced model of the functional connectivity that is at the core
of the cortical columnar processing. The connectivity scheme is shown in fig. 16, left panel.
Layers of the same COREtext area are linked by 1:1-connections (single arrows). These are
connections between neurons in the same minicolumn. (E.g.,a neuron representing the
syllable “mut” in V2-A1 projects to the neuron representingthe samesyllable and at the
sameposition in V2-A2.) Stimulation enters the system at layer V1-A1. This layer is linked
to the input array (fig. 15) by 1:1 connections.

Layers of different COREtext areas are linked by connectionmatrices proportional to
the two knowledge matricesB1 andB2 (double arrows). These are connections that span
mini- and hypercolumns, and that implement the knowledge about the hierarchical com-
position of cognitive objects (words) in the network. Backward arrows ending in circles
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Figure 16: Left: Connectivity scheme between the COREtext layers. Bottom right: Ex-
ample for the construction of a cognitive object (word) fromits constituents (syllables and
letters) in the local alphabets.

indicate modulatory connections. The modulatory backwardconnections between the B-
systems are reverse to the forward connections. I.e., a neuron in IT-B projects back to
exactly the same neurons in V2-B that it receives from. The matricesB̃1 andB̃2 denote
these reverse connections. The exact connection values including scaling factors are shown
beside the arrows in fig. 16.

The connection scheme can be categorized into several pathways. The strong
A1→A2⇒A1 forward pathway reflects the strong driving synapses thatare found between
layers 4 and 3 of cortical areas. The weaker A1→B⇒B pathway and the top-down modula-
tory B⊸B pathway reflect the reciprocal connections between the neurons in upper layers
2 and 3 of cortical areas. The inhibitory B⊣A2 pathway reflects local inhibition via inter-
neurons in upper and middle layers of a column.

3.2.2 Results

Response modes Simulation runs consisted of a constant stimulation by a string of low-
ercase characters in the input array, and subsequent iteration of the update cycle. The signal
flow in the COREtext system, based on the distinct connectivity and the knowledge im-
printed in the synaptic connections, takes different response modes.

Figure 17 shows a stimulation example using a string of characters that is identical to
a known word. The word “mutter” was part of the analyzed text,and knowledge about
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its decomposition into syllables (mut, ter) and characters is imprinted into the connections
between the COREtext areas. The stimulus activates the corresponding single-character-

t=10

-----

IT-A1:  0:                      IT-A2:  0:                      IT-B :  0: mut-ter( 1.3) göt-t

IT-A1:  1:                      IT-A2:  1:                      IT-B :  1:

IT-A1:  2:                      IT-A2:  2:                      IT-B :  2:

IT-A1:  3:                      IT-A2:  3:                      IT-B :  3:

IT-A1:  4:                      IT-A2:  4:                      IT-B :  4:

IT-A1:  5:                      IT-A2:  5:                      IT-B :  5:

V2-A1:  0:                      V2-A2:  0:                      V2-B :  0: mut( 3.0) göt( 2.2)

V2-A1:  1:                      V2-A2:  1:                      V2-B :  1:

V2-A1:  2:                      V2-A2:  2:                      V2-B :  2: cher( 0.4) sten( 0.

V2-A1:  3:                      V2-A2:  3:                      V2-B :  3: te( 3.0) tern( 3.0)

V2-A1:  4:                      V2-A2:  4:                      V2-B :  4: er( 0.4)

V2-A1:  5:                      V2-A2:  5:                      V2-B :  5:

V1-A1:  0: m( 1.0)              V1-A2:  0:                      V1-B :  0: m( 3.0)

V1-A1:  1: u( 1.0)              V1-A2:  1:                      V1-B :  1: u( 3.0)

V1-A1:  2: t( 1.0)              V1-A2:  2:                      V1-B :  2: t( 3.0)

V1-A1:  3: t( 1.0)              V1-A2:  3:                      V1-B :  3: t( 3.0)

V1-A1:  4: e( 1.0)              V1-A2:  4:                      V1-B :  4: e( 3.0)

V1-A1:  5: r( 1.0)              V1-A2:  5:                      V1-B :  5: r( 3.0)

Figure 17: Stimulation example using a known word “mutter”.Each area consists of 6
hypercolumns (0–5). Labels left to the colon indicate area,layer, and hypercolumn. After
the colon, active symbols in the respective subsystem are listed. Neural activations are given
in parentheses behind the corresponding character, syllable or word from the local alphabet.
Activations of0 are not shown.

detectors at each hypercolumn in “V1”. Form here, a fast waveof activation spreads via the
A1→A2⇒A1 path and the A1→B⇒B path (cf. fig. 16). Syllable-detectors in “V2” and
word-detectors in “IT” get active according to the forward connections matrices. Starting
from these first activations in the B-systems, activity propagates backwards via two path-
ways. Along the modulatory top-down B⊸B pathway, an active word detector in “IT”
supports activations in all detectors in “V2” that are compatible with the word’s decom-
position into syllables. Similarly, each active syllable detector supports activations in all
compatible detectors in “V1”. At the same time, active neurons in the B-systems inhibit
neurons in the A2-systems in the same minicolumn of the same area. (E.g., an active detec-
tor for syllablemut in V2-B inhibits the detector for the same syllablemutand at the same
position in V2-A2.)

The state shown in fig. 17 is the static pattern of activationsin response to the stim-
ulus “mutter”, that is reached after 10 update cycles. In IT-B, the correct symbolmutter
is active. In V2-B and V1-B compatible constituting syllables and characters are active.
The activations in the B-systems support each other via the forward B⇒B and backward
B⊸B pathways. At the same time, via the inhibitory B⊣A2 pathway, they “switch off”
the according signals in the A2-systems of the same minicolumn. After 10 update cycles,
activations in the A2-systems have completely vanished, and activations in the B-systems
are mutually supportive.

Figure 18 shows a stimulation example using a string of characters that is similar, but
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not identical to a known word. The stimulus “vatxrx” is a distorted version of the words
“vater” and “vaters” that were part of the analyzed text. Thestate shown in fig. 18 is
the static pattern of activations reached after 8 update cycles. The bottom-up/top-down
dynamics activates the symbolsvaterandvatersin IT-B, showing that the system was able
to compensate for the distortions. In V2-B and V1-B compatible constituting syllables and
characters are active. The activations in the B-systems support each other via the forward
B⇒B and backward B⊸B pathways. Note that the two distorted charactersx in V1-B
are only weakly active, since theydo notreceive modulatory support from any syllable in
V2-B. This means, they can exert only weak inhibition on their V1-A2 counterparts via the
inhibitory B⊣A2 pathway. After 8 update cycles, all activations in the A2-systems have
vanished, except for the two distorted characters in V1-A2.

t=8

-----

IT-A1:  0:                      IT-A2:  0:                      IT-B :  0: va-ter(1.5) va-ters

IT-A1:  1:                      IT-A2:  1:                      IT-B :  1:

IT-A1:  2:                      IT-A2:  2:                      IT-B :  2:

IT-A1:  3:                      IT-A2:  3:                      IT-B :  3:

IT-A1:  4:                      IT-A2:  4:                      IT-B :  4:

IT-A1:  5:                      IT-A2:  5:                      IT-B :  5:

V2-A1:  0:                      V2-A2:  0:                      V2-B :  0: va(3.0) hat(3.0) ta

V2-A1:  1:                      V2-A2:  1:                      V2-B :  1:

V2-A1:  2:                      V2-A2:  2:                      V2-B :  2: ter(3.0) ters(3.0)

V2-A1:  3:                      V2-A2:  3:                      V2-B :  3:

V2-A1:  4:                      V2-A2:  4:                      V2-B :  4:

V2-A1:  5:                      V2-A2:  5:                      V2-B :  5:

V1-A1:  0: v(1.0)               V1-A2:  0:                      V1-B :  0: v(3.0)

V1-A1:  1: a(1.0)               V1-A2:  1:                      V1-B :  1: a(3.0)

V1-A1:  2: t(1.0)               V1-A2:  2:                      V1-B :  2: t(3.0)

V1-A1:  3: x(1.0)               V1-A2:  3: x(0.9)               V1-B :  3: x(0.3)

V1-A1:  4: r(1.0)               V1-A2:  4:                      V1-B :  4: r(3.0)

V1-A1:  5: x(1.0)               V1-A2:  5: x(0.9)               V1-B :  5: x(0.3)

Figure 18: Stimulation example using a distorted word “vatxrx”. The best matching sym-
bols have been found in IT-B, and the two distorted characters remain active in V1-A2,
indicating parts of the stimulus that could not be explainedfrom knowledge.

Figure 19 shows a stimulation example using the stimulus “r¨udiger” that is largely dis-
similar to all words that were part of the analyzed text. A variety of symbols in “IT”
and “V2” get weakly active, and via the top-down modulatory B⊸B pathway support all
compatible syllables and characters in V2-B and V1-B. At thesame time, they inhibit the
according signals in the A2-systems of the same minicolumn.This changed distribution of
activations in the A2 and B systems changes the activations in the B-systems via the for-
ward pathways. The mutual dependence of the two systems leads to a constantly changing
pattern of weak activations. The state shown in fig. 19 is the pattern of activations reached
after 15 update cycles. This state is not stable, but activations in the A- and B-systems of
all areas keep changing between reappearing patterns. As a consequence, the response to
the unknown stimulus “rüdiger” is not a stable active symbol in “IT”, but a whole set of
alternating symbols.



28 Kupper, Gewaltig, Knoblauch, et al.

t=15

-----

IT-A1:  0: red-ner(0.5) rühr-t  IT-A2:  0: red-ner(0.4) rühr-t  IT-B :  0: red-ner(0.1) rühr-t

IT-A1:  1:                      IT-A2:  1:                      IT-B :  1:

IT-A1:  2:                      IT-A2:  2:                      IT-B :  2:

IT-A1:  3:                      IT-A2:  3:                      IT-B :  3:

IT-A1:  4:                      IT-A2:  4:                      IT-B :  4:

IT-A1:  5:                      IT-A2:  5:                      IT-B :  5:

IT-A1:  6:                      IT-A2:  6:                      IT-B :  6:

V2-A1:  0: red(0.8) rühr(0.8)   V2-A2:  0: red(0.5) rühr(0.5)   V2-B :  0: red(0.4) rühr(0.4)

V2-A1:  1:                      V2-A2:  1:                      V2-B :  1:

V2-A1:  2: hig(0.4) nigs(0.4)   V2-A2:  2: hig(0.8) nigs(0.8)   V2-B :  2: hig(0.3) nigs(0.3)

V2-A1:  3: cher(0.6)            V2-A2:  3: cher(0.8)            V2-B :  3: cher(0.4)

V2-A1:  4: der(0.6) ler(0.6)    V2-A2:  4: der(0.8) ler(0.8) g  V2-B :  4: der(0.4) ler(0.4)

V2-A1:  5: brin(0.2) trä(0.2)   V2-A2:  5:                      V2-B :  5:

V2-A1:  6: ri(0.2)              V2-A2:  6:                      V2-B :  6:

V1-A1:  0: r(1.0)               V1-A2:  0: r(0.5)               V1-B :  0: r(1.1)

V1-A1:  1: ü(1.0)               V1-A2:  1: ü(0.7)               V1-B :  1: ü(0.7)

V1-A1:  2: d(1.0)               V1-A2:  2: d(0.7)               V1-B :  2: d(0.7)

V1-A1:  3: i(1.0)               V1-A2:  3: i(0.8)               V1-B :  3: i(0.3)

V1-A1:  4: g(1.0)               V1-A2:  4: g(0.8)               V1-B :  4: g(0.3)

V1-A1:  5: e(1.0)               V1-A2:  5: e(0.7)               V1-B :  5: e(0.3)

V1-A1:  6: r(1.0)               V1-A2:  6: r(0.7)               V1-B :  6: r(0.3)

Figure 19: Stimulation example using an unknown word “rüdiger”. Activations in the A-
and B-systems of all areas keep oscillating through a set of alternatives.

Randomized update In order to rule out that the third response mode (iteration of a set
of symbols) is an epiphenomenon caused by the synchronous update of all model neurons,
we implemented a randomized update scheme. In this scheme, only a fixed fraction of
randomly chosen neurons is updated in a time step, while all other neurons keep their acti-
vations. We could confirm, that the phenomenon reproduces independently of the fraction
of updated neurons. Area “IT” iterates the same set of symbols in all cases. Typical set
sizes are 2–10, depending on the input string. The size of theiterated set, and thus the fre-
quency of occurrence of the individual symbols, depends on the number of known symbols
that overlap with the input string. (For example, the iterated words tend to start with the
same letter as the input string, making the iterated sets larger for frequent German starting
letters.)

The large invariance with respect to the fraction of updatedneurons shows that sym-
bol iteration in response to unknown stimuli is a robust propagation phenomenon in our
network. It is rooted in the mutual dependence of feed-forward excitation and inhibitory
feedback, which cannot be congruent for an unknown stimulus: The winning symbols in
the B-systems support the inhibition of their constitutingparts via the top-down B⊸B⊣A2
pathway (fig. 16). However, an unknown stimulus activates a set of parts that is different
from the constituting parts of any one known symbol at the next hierarchic level (otherwise,
it would be known). The remaining, non-inhibited parts willconsequently cause another
symbol to win the competition at the next hierarchic level, causing an iteration of symbols
that overlap with the stimulus.
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3.2.3 Discussion

After a stimulus is applied, a fast wave of bottom-up activation spreads via the forward
pathways. Symbols in the upper cortical areas get active after only a few monosynaptic
propagations of activity. In this part of the activity spread, the whole system acts as a mul-
tilayered perceptron. This fast forward activation of a first hypothesis about the stimulus
content is compatible with findings on the speed of processing of categoric information in
the human visual system [38]. After the formation of a fast initial hypothesis, it is consol-
idated with the evident stimulation via the inter-areal top-down modulatory pathway. All
stimulus parts that could be confirmed get “switched-off” inthe A2 systems (middle corti-
cal layers), indicating that the active symbols in upper cortical areas correctly predict these
parts of the stimulus [33]. Finally, the B-systems maintaina self-consistent explanation of
the stimulus from “pure knowledge”.

In the case of a stimulus with variations or distortions (second example), a self-
consistent explanation can also be established. The “switching-off” of activity in the A2-
systems must, however, leave residuals, since parts of the stimulus establish a bottom-up
evidence that cannot be confirmed by top-down consolidation. The B-systems represent an
abstracted or corrected version of the stimulus, as would beexpected from “pure knowl-
edge”. Still, information on the unexpected details is not lost: Residuals in the A2-system
clearly identify the parts of the stimulus that cannot be explained from knowledge. This
residual activity in the A2-system can be used in several ways. First of all, its pure exis-
tence is an indication, that the recognized symbols do not entirely represent the stimulus.
Second, the residual activity is specific in the position (the hypercolumn) it appears in. It
indicates the exact position of the unexplained parts in thestimulus, and can thus guide a
motor action, e.g., a saccade, to gather additional information on the yet unexplained parts.
We show simulations of this function in section 4. Third, theresidual activity is specific in
the exact symbol from the local alphabet (the minicolumn) itappears in. The residual activ-
ity in the A2-system thus fulfills the necessary prerequisites to enable incremental learning
in the cortical hierarchy: It indicateswhento learn,what to learn, and alsowhereto learn
it.

Our third example showed that an “unknown” stimulus cannot be represented across
the hierarchy of areas in a self-consistent way. Instead, atall hierarchical levels, the system
keeps “associating” possible symbols that are locally compatible both with the momentary
bottom-up-stream of signals, and the momentary top-down-stream of hypothesized sym-
bols. This state of activation is clearly different from thecase of stable activation with
residuals. It indicates that the knowledgedoes not sufficeto explain the stimulus. It is im-
portant that the neural system has a means to indicate this conflict, instead of converging
into some stable, but necessarily inappropriate state of activation that would ultimately de-
ceive the individual into taking wrong actions and drawing wrong conclusions. Still, this
type of activation is more than a pure “error-state”: Activations tend to converge towards
sets of repeating symbols. The exact sets of alternating symbols are determined by the in-
teraction between the evident signal, and the system’s knowledge imprinted in the synapses.
Thus, they are specific to the stimulus: The system starts to paraphrase the stimulus in its
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own terms. — The human drive to make sense from everything could actually be rooted in
the core circuitry of our brains. It is also an ideal basis forthe formation of new stimulus
concepts. The repeating set of cognitive symbols itself canbe learned as a description of
the new stimulus. We think, that the hippocampus is the instance on top of the cortical
hierarchy that performs this transformation [25].

3.3 Stimulus recollection from a top-down “idea”

Different cortical areas specialize on processing of different stimulus aspects (like move-
ment, color, simple shape, object identity, location, for the visual modality). A stimulus
that is coherent on the retina and sensors of other modalities casts more or less indepen-
dent “shadows” across the cortex: The interplay of corticalareas decomposes it according
to its respective aspects, which are then represented in thevarious specialized areas. This
decomposition poses a problem, when a stimulus shall be recalled, be it to support the pro-
cessing of a physically existing stimulus that is hard to recognize, or be it to create a mental
image of a non-existing stimulus. We believe that during recollection, the cortex recon-
structs the same activity patterns as when analyzing the corresponding physical stimulus.
Pre-activations in highly specialized areas are then the starting points for creating a consis-
tent activation on all levels of the cortex and thus the percept of the stimulus. In the process
of recollection, high brain areas such as the prefrontal cortex or the hippocampus activate
coarse descriptions of independent stimulus aspects in thevarious specialized areas, which
are usually invariant with respect to each other (like position and shape). To create consis-
tent neural activity across all cortical areas, the independent top-down activations need to
be integrated with each other, and with the physical stimulus.

The COREtext model of the last section demonstrated how the cortex can use a rapidly
formed hypothesis for guiding the detailed stimulus recognition process. We showed how
the columnar subsystems interact to predict and recognize stimuli in terms of locally stored
knowledge. In this model, columnar communication integrated bottom-up signals with in-
ternally generated top-down signals to describe the stimulus consistently across all cortical
areas. This leads to the question what happens, if a hypothesis is not generated bottom-up
through a fast recognition process, but given as a top-down signal, which is not necessar-
ily coherent with the bottom-up stimulus. Will it guide processing of a stimulus towards
the expectation? Here we extend our previous model to demonstrate that the same setup
of intercommunicating columns can use the stored knowledgeto integrate a pre-activation
on the highest level with the bottom-up recognition process. Given only coarse or invari-
ant top-down activation, the model can (i) guide and supportthe recognition of noisy or
ambiguous stimuli, and (ii) recall known objects, at the highest level of detail, by creating
specific neural activations across all cortical areas. The second process corresponds to rec-
ollection or mental imagery, the process in which the brain internally creates a percept from
an “idea”, without a physical stimulus.
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Figure 20: Recognition and recall in the COREtext model.(a), bottom-up mode (recogni-
tion); (b), top-down mode (recall).

3.3.1 Model

The COREtext model is based on the cortical columns as the fundamental building block
of the cortex. Their reappearing architecture of neural subsystems and signal flow between
them forms the basis for the associative capabilities of thecortex. The different processing
subsystems interact to switch off expected signals and accomplish symbolic recognition of
words. In this process, the model integrates bottom-up signals with internally generated
top-down predictions at all levels of processing. In this purely bottom-up-driven mode of
the COREtext model (fig. 20(b)), a retinal stimulus rapidly activates internal hypotheses
about the stimulus in all areas, via the A1→A2→A1 forward path. At the same time,
these hypotheses are routed backwards via the modulatory B→B path, and integrated with
the bottom-up stream by switching off the stimulus parts that meet the hypothesis (yellow
circles in fig. 20). By iterating this process, the system establishes a consistent description
of the stimulus across all cortical areas.

Here, we extend this model by replicating the previously location-specific connectiv-
ity at all retinal locations, making recognition of words invariant to their retinal location.
Furthermore, we introduce the possibility to stimulate notonly the A1-system of “V1”, but
also the B-system of “IT”. In this top-down mode (fig. 20(c)), the bottom-up stimulus can
be unspecific or noisy, but is complemented by an already existing top-down pre-activation.
The model then integrates the bottom-up and top-down signals to find a state of activation
that is consistent with both at all cortical levels.

The top-down activation supports recognition of a stimulusin several ways. (i) If the
stimulus is noisy and could not be recognized in the pure bottom-up-driven mode, the pre-
activation of the highest area supports weak bottom-up activations that are consistent with
the top-down signal. It stabilizes recognition of the stimulus in the B-systems while incon-
sistent parts or noise leave residual activity in the A2-systems indicating where the stimulus
did not meet the expectation. (ii) If the stimulus is ambiguous and did not lead to a sta-
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ble pattern of activity, because no consistent descriptionacross all levels could be found,
pre-activation of one of the alternative objects (words) inthe highest area stabilizes the
recognition of this object, and marks the other parts of the stimulus as errors, which leave
residual activation in the A2-systems. In both cases, the dynamics of the interacting neural
subsystems promotes the top-down influence across all modelareas. (iii) If the physical
stimulus is unspecific or missing, the top-down activation shapes the diffuse bottom-up
activation towards recognition of the respective object. Because the dynamics of the inter-
acting neural subsystems strives towards consistent neural activity on all cortical levels, it
(re-)creates a detailed and specific mental image of the recalled object.

3.3.2 Results

Here, we show results of (iii) and describe how the COREtext model reconstructs a spatially
detailed representation of characters, syllables and words, given only coarse location- and
feature-invariant top-down input. We started from the following setup:

1. IT-B receives pre-activation of the word “ach” indicating that it shall recall this word,
but no information, where on the retina the word would be located. I.e., “IT” is com-
pletely certain about the feature (word), but completely uncertain about the location.

2. V1-A1 receives pre-activation of a certain location, indicating that it shall recall
somethinglocated there, but no information on what it would be. I.e., “V1” is com-
pletely certain about the location, but completely uncertain about the features (let-
ters).

3. No stimulation is applied in the intermediate area “V2”.

The initial distribution is shown in figure 21. Note that the activation in V1-A1 is com-
pletely unspecific with respect to the feature (all possiblecharacters were activated, not all
of them visible in the figure), while activation in IT-B is completely unspecific with respect
to the location. We then allowed activity to iterate according to the synaptic connectivity,
in the same way it does when the COREtext model performs recognition of a real word
stimulus. Given that the diffuse activation in “V1” supplies the system with enough energy,
activity spreads from “V1” to “V2”, where it meets with the modulatory top-down input
from “IT”. After four iterations, activity is distributed as shown in figure 22. Note that (re-
)constructions of the stimulus at the highest possible fidelity have appeared in the B-systems
of “V1” and “V2”: “V2” has constructed the syllable ”ach” at the correct position (4), and
“V1” has constructed the letters ”a”, ”c”, ”h” at the correctpositions (4, 5, 6). In the fol-
lowing, the system associates previously learned knowledge to the recalled stimulus, in the
same way it does for real stimuli (like the words “betrachtung” and “nacht”), see figure 23.
Note also, that the specific activity is self-stabilizing. After turning off the top-down input
to “IT”, consistent activation of ”ach” at position 4 remained across all areas.
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t= 0 ................................................ ................................
----- ˆ---------
IT-A1: 0: IT-A2: 0: IT-B : 0: ach(1.0)
IT-A1: 1: IT-A2: 1: IT-B : 1: ach(1.0)
IT-A1: 2: IT-A2: 2: IT-B : 2: ach(1.0)
IT-A1: 3: IT-A2: 3: IT-B : 3: ach(1.0)
IT-A1: 4: IT-A2: 4: IT-B : 4: ach(1.0)
IT-A1: 5: IT-A2: 5: IT-B : 5: ach(1.0)
IT-A1: 6: IT-A2: 6: IT-B : 6: ach(1.0)
IT-A1: 7: IT-A2: 7: IT-B : 7: ach(1.0)
IT-A1: 8: IT-A2: 8: IT-B : 8: ach(1.0)
IT-A1: 9: IT-A2: 9: IT-B : 9: ach(1.0)

V2-A1: 0: V2-A2: 0: V2-B : 0:
V2-A1: 1: V2-A2: 1: V2-B : 1:
V2-A1: 2: V2-A2: 2: V2-B : 2:
V2-A1: 3: V2-A2: 3: V2-B : 3:
V2-A1: 4: V2-A2: 4: V2-B : 4:
V2-A1: 5: V2-A2: 5: V2-B : 5:
V2-A1: 6: V2-A2: 6: V2-B : 6:
V2-A1: 7: V2-A2: 7: V2-B : 7:
V2-A1: 8: V2-A2: 8: V2-B : 8:
V2-A1: 9: V2-A2: 9: V2-B : 9:

V1-A1: 0: V1-A2: 0: V1-B : 0:
V1-A1: 1: V1-A2: 1: V1-B : 1:
V1-A1: 2: V1-A2: 2: V1-B : 2:
V1-A1: 3: V1-A2: 3: V1-B : 3:
V1-A1: 4: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 4: V1-B : 4:
V1-A1: 5: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 5: V1-B : 5:
V1-A1: 6: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 6: V1-B : 6:
V1-A1: 7: V1-A2: 7: V1-B : 7:
V1-A1: 8: V1-A2: 8: V1-B : 8:
V1-A1: 9: V1-A2: 9: V1-B : 9:

Figure 21: Example of stimulus recollection, phase 1. “V1” receives spatially localized but
unspecific pre-activation. “IT” receives space-invariantbut specific pre-activation of the
word “ach”.
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t= 4 ................................................ ................................
----- ˆ---------
IT-A1: 0: IT-A2: 0: IT-B : 0: ach(1.0)
IT-A1: 1: IT-A2: 1: IT-B : 1: ach(1.0)
IT-A1: 2: IT-A2: 2: IT-B : 2: ach(1.0)
IT-A1: 3: IT-A2: 3: IT-B : 3: ach(1.0)
IT-A1: 4: IT-A2: 4: IT-B : 4: ach(1.1)
IT-A1: 5: IT-A2: 5: IT-B : 5: ach(1.0)
IT-A1: 6: IT-A2: 6: IT-B : 6: ach(1.0)
IT-A1: 7: IT-A2: 7: IT-B : 7: ach(1.0)
IT-A1: 8: IT-A2: 8: IT-B : 8: ach(1.0)
IT-A1: 9: IT-A2: 9: IT-B : 9: ach(1.0)

V2-A1: 0: fleisch(0.4) V2-A2: 0: fleisch(0.1) V2-B : 0:
V2-A1: 1: stillt(0.4) spräch(0.4) spran V2-A2: 1: stillt( 0.1) spräch(0.1) spran V2-B : 1:
V2-A1: 2: wuchs(0.4) wasch(0.4) ufers(0 V2-A2: 2: wuchs(0. 1) wasch(0.1) ufers(0 V2-B : 2:
V2-A1: 3: über(0.4) zens(0.4) zend(0.4) V2-A2: 3: über(0 .1) zens(0.1) zend(0.1) V2-B : 3:
V2-A1: 4: über(0.4) ßen(0.4) zur(0.4) z V2-A2: 4: über(0. 1) ßen(0.1) zur(0.1) z V2-B : 4: ach(0.4)
V2-A1: 5: über(0.1) üb(0.1) ßen(0.1) zu V2-A2: 5: V2-B : 5:
V2-A1: 6: V2-A2: 6: V2-B : 6:
V2-A1: 7: V2-A2: 7: V2-B : 7:
V2-A1: 8: V2-A2: 8: V2-B : 8:
V2-A1: 9: V2-A2: 9: V2-B : 9:

V1-A1: 0: V1-A2: 0: V1-B : 0:
V1-A1: 1: V1-A2: 1: V1-B : 1:
V1-A1: 2: V1-A2: 2: V1-B : 2:
V1-A1: 3: V1-A2: 3: V1-B : 3:
V1-A1: 4: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 4: ß(0.4) ¨ u(0.4) ö(0.4) ä(0.4) z V1-B : 4: a(0.3)
V1-A1: 5: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 5: ß(0.4) ¨ u(0.4) ö(0.4) ä(0.4) z V1-B : 5: c(0.3)
V1-A1: 6: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 6: ß(0.4) ¨ u(0.4) ö(0.4) ä(0.4) z V1-B : 6: h(0.3)
V1-A1: 7: V1-A2: 7: V1-B : 7:
V1-A1: 8: V1-A2: 8: V1-B : 8:
V1-A1: 9: V1-A2: 9: V1-B : 9:

Figure 22: Example of stimulus recollection, phase 2. The model integrates the top-down
and bottom-up activations. Although both pre-activationswere partially invariant, the inte-
gration result in V1-B and V2-B is specific both in features and their locations.
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t=23 ............................................... .................................
----- ˆ---------
IT-A1: 0: be-trach-tung(0.4) IT-A2: 0: be-trach-tung(0.2 ) IT-B : 0: be-trach-tung(0.7)
IT-A1: 1: spre-chen(0.1) IT-A2: 1: IT-B : 1:
IT-A1: 2: wu-schen(0.2) wasch-un-gen(0. IT-A2: 2: IT-B : 2:
IT-A1: 3: nacht(0.4) IT-A2: 3: nacht(0.2) IT-B : 3: nacht(0. 7)
IT-A1: 4: ach(0.4) IT-A2: 4: ach(0.2) IT-B : 4: ach(0.7)
IT-A1: 5: IT-A2: 5: IT-B : 5:
IT-A1: 6: IT-A2: 6: IT-B : 6:
IT-A1: 7: IT-A2: 7: IT-B : 7:
IT-A1: 8: IT-A2: 8: IT-B : 8:
IT-A1: 9: IT-A2: 9: IT-B : 9:

V2-A1: 0: fleisch(0.7) V2-A2: 0: fleisch(0.4) V2-B : 0: flei sch(0.9)
V2-A1: 1: spräch(0.7) V2-A2: 1: spräch(0.4) V2-B : 1: spr¨ ach(0.9)
V2-A1: 2: trach(0.9) V2-A2: 2: wasch(0.4) raucht(0.4) leuc h( V2-B : 2: trach(3.0)
V2-A1: 3: wach(0.9) nacht(0.9) V2-A2: 3: wach(2.1) V2-B : 3: nacht(3.0)
V2-A1: 4: ach(0.9) V2-A2: 4: schö(0.4) schwar(0.4) schul( 0 V2-B : 4: ach(3.0)
V2-A1: 5: cher(0.4) chen(0.4) V2-A2: 5: cher(0.2) chen(0.2 ) V2-B : 5: cher(0.7) chen(0.7)
V2-A1: 6: V2-A2: 6: V2-B : 6:
V2-A1: 7: V2-A2: 7: V2-B : 7:
V2-A1: 8: V2-A2: 8: V2-B : 8:
V2-A1: 9: V2-A2: 9: V2-B : 9:

V1-A1: 0: V1-A2: 0: V1-B : 0:
V1-A1: 1: V1-A2: 1: V1-B : 1:
V1-A1: 2: V1-A2: 2: V1-B : 2:
V1-A1: 3: V1-A2: 3: V1-B : 3:
V1-A1: 4: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 4: ß(0.4) ¨ u(0.4) ö(0.4) ä(0.4) z V1-B : 4: a(3.0)
V1-A1: 5: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 5: ß(0.4) ¨ u(0.4) ö(0.4) ä(0.4) z V1-B : 5: c(3.0)
V1-A1: 6: ß(0.6) ü(0.6) ö(0.6) ä(0.6) z V1-A2: 6: ß(0.4) ¨ u(0.4) ö(0.4) ä(0.4) z V1-B : 6: h(3.0)
V1-A1: 7: V1-A2: 7: V1-B : 7:
V1-A1: 8: V1-A2: 8: V1-B : 8:
V1-A1: 9: V1-A2: 9: V1-B : 9:

Figure 23: Example of stimulus recollection, phase 3. The system associates previously
learned knowledge to the recalled stimulus, in the same way it does for real stimuli.

3.3.3 Discussion

We have shown that in the COREtext model, a top-down pre-activation of an object (word)
description promotes recognition of a noisy or unspecific stimulus. The dynamics of the
interacting neural subsystems promotes the top-down influence across all model areas and
creates detailed and specific activity at all cortical levels. The modified COREtext model
uses shift-invariant synaptic connectivity. This allows for rich combinatorics of the partic-
ipating features, as every feature can be recognized at all possible retinal locations. At the
same time it introduces van der Malsburg’s classicalsuperposition problem[42, often re-
ferred to as the “binding problem”]: A top-down pre-activation of a word without a specific
location pre-activates all its constructive syllables andcharacters at all possible locations.
This leads to a cloud of pre-activated characters lacking any information on their spatial
relations.

The simulation shows that the bidirectional signal flow in our model is able to resolve
the spatial ambiguities and produce a high-fidelity stimulus reconstruction that is detailed
and specific regarding features, their locations and their spatial relations. In particular we
have demonstrated that it is sufficient to give (1) a completely location-invariant top-down
input to “IT”, and (2) a completely feature-invariant bottom-up input to “V1”, in order to dy-
namically reconstruct a full-detail mental image across all areas. The process can be seen as
a model for the way in which the cortex recalls a full-detailed, feature- and location-specific
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description of an object. Although the pre-activation can be invariant to certain stimulus as-
pects, very specific recollections can nevertheless be created. Top-down activation needs
to be given to the specialized areas representing specific stimulus aspects. After this boot-
strapping, the associative capabilities of the cortex, implemented in the distinct functional
circuitry of the cortical columns, reconstruct a detailed recollection or mental image of the
stimulus.

We have seen how the sensory cortex can rapidly classify a newly encountered stimu-
lus, and how it can use this first information to guide a detailed recognition or recollection,
in which it incorporates all of its knowledge about stimuli and their composition. Conse-
quently it is interesting to know, how the brain acquires newknowledge by learning from
its environment, and how it permanently stores it in a way that the recognition process can
use it.

4 From static knowledge to life-long learning

In both examples we have seen in the last section – the purely stimulus-driven bottom-up
mode of the COREtext model, and the top-down mode integrating a more or less unre-
lated idea of a stimulus into the recognition process – the sensory cortex analyzed a static
stimulus pattern applying a highly dynamic recognition process. Activity across all cortical
subsystems and across all sensory areas iterates to find a description of the stimulus that
is consistent with the knowledge stored in the synaptic connectivity of the sensory cortex.
Both the stimulus as well as the knowledge applied to recognize it were however assumed
to be static in these examples. Neither did the sensory stimulus change during the process
of recognition, nor did our model cortex learn anything new about the stimuli it encoun-
tered. Moreover, the simulation comprised only the A- and the B-system of our layered
cortex model, not the C-system in the lower layers of the sensory cortex, which we link to
behavior control and the prediction of a changing stimulus over time (figs. 13 and 14).

4.1 The brain acquires knowledge by actions

For an individual acting in a natural environment (at least for higher species like mammals),
it is obvious that the stimuli it encounters areneverstatic. This is not only because the
environment may change, but mainly because the individual itself is constantly changing
the relation of its own body to the outer world by all sorts of behaviors. It will change its
place by locomotion and manipulate objects with its limbs. It will scan its surroundings
through its senses, moving the ears and the eyes, and concentrate on different aspects in its
environment.

Recognition alone is worthless, because its ultimate use isto derive actions that allow
the individual to survive. Be it by fleeing from a predator, finding shelter, or by spotting
and collecting food.

In the following, we embed our concept of the six-layered cortical column (sec. 3.1)
into a model of the whole visual system. Here, we move on from dynamic recognition
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of static stimuli, to stimulus prediction and learning as a process over time. We discuss a
large-scale implementation of the visual system involvingseveral primary and higher vi-
sual cortical areas as well as parts of the hippocampal formation and further sub-cortical
structures involved in generating eye saccades. With this model we can demonstrate ob-
ject classification and the learning of new object representations based on the incremental
refinement of an object hypothesis. The first view initiates an object hypothesis. The incre-
mental refinement happens by deriving behavioral output from the lower layers 5 and 6 of
the sensory cortex (the C-system in our conceptual model), which is used to generate eye
saccades. With every saccade, the sensory cortex decides what part of its environment to
see next in order to integrate evidence over seconds and minutes and learn the composition
of stimuli. It predicts the corresponding new object views and, by comparing the actual
object view with the predicted object view, strengthens or weakens the initial hypothesis.

4.1.1 Model

We model several primary (V1, V2) and higher visual corticalareas from the “what” (V4,
IT) and “where” path (V6) as well as parts of the hippocampal formation (EC) and fur-
ther sub-cortical structures involved in generating eye saccades and triggering learning (see
fig. 25,right panel). At this point we use a reduced setup sufficient to simulate and explore
the basic neuronal dynamics and columnar functions withouttoo much computational ex-
penses. Most neuron populations are modeled either as a simple k-WTA population (i.e.,
at each simulation step, thek most excited neurons are activated), or as simplified spiking
associative memories ([20–22]; cf. [12]).

Figure 24: Top: We used simple line drawings for stimulating the visual model, e.g., a
house or a church. Preprocessing in areas R, V1, V2, V6 essentially extracts key features
(such as corners) as the basis for saccade generation and object view recognition in the
higher areas.Bottom: V6 representations of the key features corresponding to thehouse
and church stimuli.

In retinal area R we represent binary images (size81 × 81) of simple line drawings
of buildings (see fig. 24). The cells in primary visual area V1receive input via oriented
Gabor-like filter kernels (at each spatial location 8 different orientations). Area V2 repre-
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sents additionally corner parts (i.e., conjunctions of twolocal orientations at appropriate
spatial positions, 120 per location). Area V6 averages overall the corners at each spatial
location thereby representing the positions of “key features” in a visual scene (see fig. 24).
Area V4 represents invariant visual object views at a lower spatial resolution. Area IT (“in-
ferior temporal”) represents visual objects. For learningnew objects we activate a static
representation in an “auditory” area AC in order to simulatethe representation of a spoken
word labeling the new object. Converging multimodal (visual, auditory) input to a further
area EC (entorhinal cortex) of the hippocampal complex allows the binding of different ob-
ject views to a single object representation. Furthermore there are a number of presumably
sub-cortical auxiliary areas involved in generating saccades and triggering learning (areas
Sac1, Sac2, Sac3, SacX, LX). Most importantly we have implemented a simple model of
the superior colliculus (SC/Sac2) representing target locations of saccades determined by
the location ofkey features(input from V6) and an spatial attentional window (region of
interest represented in area Sac1 and biased by V4).
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Figure 25:Left: Columnar model as implemented for our current simulations.Boxes cor-
respond to cell populations (corresponding to particular cortical layers, cf. fig. 14), arrows
to synaptic connections between the cell populations/layers. Populations with recurrent
connections (A2, B, C1, C2) are implemented as simplified spiking associative memories
[20–22]. The additional population CU is used to combine representations of B and C1
(cf. fig. 13). Right: Layout of our visual model of saccadic object recognition. The model
consists of various visual areas (R, V1, V2, V4, V6, IT), auditory areas (AC), hippocampal
areas (EC), saccade related areas (SC, S1, S3), and some auxiliary areas triggering learn-
ing and the execution of saccades (LX, SX). Currently only area V4 implements the full
columnar model.

Each area consists of one or several neuron populations in order to implement our con-
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cept of the layered architecture of cortical columns (sec.3.1). Figure 25 (left) shows the
architecture of our columnar model as implemented for area V4. The other areas imple-
ment only parts of our columnar model, mostly the fast forward processing A-system. In
the following we give a detailed description of our columnarmodel as implemented in area
V4. Currently, the columnar model consists of six neuron populations. Population A1 is
the input layer corresponding to layer 4 cells. It consists of 120 × 9 cells corresponding
to the 120 V2 features and nine spatial fields (central, plus eight peripheral), pooling over
the corresponding (much larger set of) V2 cells. Our A1 cellshave no local recurrent ex-
citatory connections but feed-forward and lateral inhibition with a “soft” winner-takes-all
is emulated by activating only thek = 13 most excited cells (k-WTA). A1 cells project in
a one-to-one manner to population A2 corresponding to lowerlayer 3. A2 has the same
size as A1 but is modeled as a spiking associative memory [20–22]. Thus A2 has recurrent
excitatory connections which are used to store auto-associatively feature vector prototypes
learned during saccadic object recognition. Similarly, population B (size 100) is also mod-
eled as spiking associative memory but the auto-associatively learned patterns consist of
randomly selected cells (k = 5) and therefore have rather symbolic character. Population
B receives hetero-associative input from A2, where backprojections of B can inhibit A2
thereby emulating the ideas of quenching off expected signals (as described in the CORE-
text model in sec. 3.2). The representation of B can be used tobias the selection of behavior
relevant symbols in population C1 (corresponding to cortical layer 5) which is also realized
as spiking associative memory of 100 cells representing currently nine possible target direc-
tions of saccadic eye movements (central plus eight equispaced directions). During learning
of new objects this population receives random inputs and thereby biases the production of
random saccades to explore new visual scenes or objects. An additional neuron population
CU (“combinatorial units”) is used to represent conjunctions (w, a) of “world states” and
“actions” (see fig. 13). The most simple way to do this is to model CU as a k-WTA pop-
ulation (where we used population size 100 or 2500 andk = 13) receiving inputs from B
and C1 via random connections. This will lead to nearly “uncorrelated” activity in CU for
any combination ofw anda, which useful to hetero-associatively link conjunctions(w, a)
to predicted statesw′ represented in population C2. C2 is modeled again as spikingasso-
ciative memory of size 100 (and assembly sizek = 5). The short-cut link of the external
sensory input (from V2) to C2 is used to learn the prediction(w, a) → w′ (see below for
more details). The prediction represented in population C2can be used to bias expections
in other (lower) areas of the cortical hierarchy and/or to narrowing the search space within
the same cortical column (e.g., via a modulating input from C2 to A1, A2, or B).

Figure 26 illustrates the time course of activation in the different parts of the cortical
column. Note that different states of the external stimulusand its internal interpretations
are present in different subsystems at the same time.

Learning may occur in three different subsystems of the cortical columns.

1. (PCA-like) basis-vector learning system for populations A1 and A2.

2. Clustering-like learning algorithm in populations A2 and B.
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Figure 26: Time course of activation in the different populations or layers in a cortical
column within an action/perception cycle. An action (for example a saccade) causes new
sensory input which reaches first A1 and via the input shortcut C2. Then the main stream
proceeds by activating A1, B, C1, CU, and C2. The shortcut is used to learn the predictive
hetero-associationCU (i−1) → C2(i). Assuming the cell populations being located as illus-
trated in fig. 14 this is consistent with neurobiological results [e.g. 11]. Indices(i) refer to
thei-th object view.

3. Predictive learning on symbolic states in populations B,C1, CU, and C2.

The first learning system is concerned with generating appropriate basis vectors for ad-
equately describing the sensory inputs. So far this learning system has not been imple-
mented in our model, i.e., all sensory inputs to layer A1 are hard-wired. Instead, we have
conducted some isolated simulation experiments (unpublished results) which suggest that a
simple standard statistical learning procedures (such as essentially additive Hebbian learn-
ing plus an adequate synaptic normalization procedure) will do the job similar to PCA or
maximation of reconstruction quality and sparseness whichcan generate plausible receptive
field properties [29, 30].

The second learning system involving populations A2 and B performs a kind of cluster-
ing on the space spanned by the basis vectors of A1/A2, quite similar to ART networks [7]
but relying on cell assemblies instead of simple nodes. Essentially, our current implemen-
tation performs the following operation,

IF (|A2 − H · B| > Θ) THEN NEW SYMBOL

where A2 and B denote the activity vectors of the corresponding neuron populations, H is
the matrix of hetero-associative inhibitory connections from B to A2, and| . . . | essentially
sums over the residual activity after subtracting B from A2.This learning process involves
the following steps. Input from A1 initiates a retrieval in the spiking associative memory
A2, i.e., A1 will activate a prototype (or a mixture of several prototypes) in A2 that is
most similar to A1. Then A2 will activate a corresponding cell assembly in the spiking
associative memory B. This activation pattern is fed back via inhibitory hetero-associative
connections to A2. Ideally, the two representations in A2 and B match each other and B will
quench the activity in A2. However, if the activity vector inA2 is too far from a previously
learned protoype then there will be considerable residual activity. This then initiates the
learning of new “symbols”. For that, the original activity of A1 and A2 is stored auto-
associatively in A2 and a new “symbolic” cell assembly (generated by noise) is stored in B
and bidirectionally and hetero-associatively linked withthe new A2 assembly. Additionally,
a new cell assembly (of the same quality as A2) is stored in C2.



From neurons to cortex: a multi-level approach to understanding the brain 41

The third learning system essentially learns to make predictions on the symbolic states
learned by the second learning system. Functionally, it implements the learning of the
conditional probability density histogramsp(w′|w, a) illustrated in fig. 13. This involves
the following steps. First a new unquenched sensory signals enters the column. On the
main path it will travel via A1, A2, B, C1 finally to C2. However, on the shortcut to cortical
layer 6 it will directly enter C2 and transiently activate, by hetero-association, a symbol
corresponding to the new sensory input. Since at that time the old state symbols are still
active in B, C1, and CU, a simple asymmetric STDP-like Hebbian learning rule will hetero-
associatively link the old CU-representation to the new C2 symbol. We acknowledge that
it may be challenging to create a more detailed neurodynamicmodel which implements the
algorithmic learning procedures in our model using realistic spiking neuron and plasticity
models.

4.1.2 Results

In order to test our model we have conducted simulations applying simple line stimuli as
shown in fig. 24. In each simulation run we presented one new stimulus or several new
stimuli in a sequence. During the presentation of a stimulusthe system will saccade on the
key features (i.e., corners) of the stimulus. “Eye movements” are controlled by the saccade
control system (areas S1, S2, S3, SX, LX) as follows: In the first phase the system executes
a saccade defined by the visual target map in area SC/S2 (superior colliculus). After the
saccade it follows up to three correction saccades in order to center the fixation on the
location of the most salient feature. After that learning isenabled for ten simulation steps
by modulating input from area LX (which could correspond to hippocampal and/or sub-
cortical areas) to several areas: (i) within the A/B system of area V4 in order to learn a new
object view in case the current object view differs too much from the views experienced
previously; (ii) within the C system of area V4 in order to learn to predict the outcome of
the saccade; (iii) between area IT and EC in order to associate the particular object view
representation in V4 and IT with a static auditory representation in the auditory area AC via
entorhinal area EC. At the same time, population C1 of area V4preselects a future saccade
direction out of nine possible directions (2π i

8 for i = 0, 1, . . . , 7 or “center”). Via area
S1 this biases a particular region of the visual field in area SC. Since SC receives also the
locations of the key features from area V6, the most active cells in the target map of SC can
again select the location of the following saccade.

Figure 27 shows simulation results when stimulating with the house stimulus illustrated
in fig. 24. Data are taken from area V4 where the full columnar model has been imple-
mented (fig. 25). The plot shows the probability of making a correct prediction about a
future object view before executing a saccade as a function of the number of saccades when
learning a new object (here the house of fig. 24). The different lines correspond to different
model parameters. Best results (blue line 3) with rapid convergence occur if population CU
is large and the corresponding representations are uncorrelated, i.e., have random character,
in order to minimize crosstalk. Then the predictive representation generated in the column
is essentially equivalent to the prediction histogram illustrated in fig. 13. The results show
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Figure 27: Simulation results from area V4 during learning of a new object (house of
fig. 24). Probability of making a correct prediction about a future object view before execut-
ing a saccade, as a function of the number of saccades.Red line 1,nCU = 100, low position
invariance;green line 2,nCU = 100, high position invariance;blue line 3,nCU = 2500,
high position invariance.

that our model is able to rapidly learn new object views and tolearn to predict the outcome
of saccades under a certain object hypothesis.

4.1.3 Discussion

We have proposed that the basic function of the cortical microcircuitry is to learn to repre-
sent, actively predict, and confirm the columnar inputs [23]. One important feature is that
several representations of the external stimulus co-existin different parts of the column at a
time. Another important feature is the close linkage of cortical representations to the gen-
eration of actions via the layer 5 pyramids. We demonstratedour ideas by a cell-assembly
based implementation of a hypercolumn integrated with a large-scale model of the visual
system for saccadic object recognition.

The model learns to associate retinal stimuli with the saccades that “cause” them (by
relocating the gaze). In contrast to the COREtext model, which used predictive coding on
a static stimulus, it learns to successfully predict the next retinal stimulusover time. Essen-
tially, in order to learn the prediction the system has to learn something like the prediction
histogram of figure 13. Combining a large number of world states with a large number
of possible behaviors/actions, the complete histogram will be quite large. Here, we have
compressed the representations by using cell assemblies where a state or state combina-
tion is not represented by a single cell or a conjunctive unit, but instead by distributed cell
groups [4, 16, 32]. Theoretically, this could reduce the number of required neural units from
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M = #states × #actions (if we use one conjunctive unit for each combination of world
states and actions) to approximately

√
M for large networks of distributed cell assemblies

[21, 31].

5 Conclusion

In this chapter, we have collected a number of simulations that were designed to substantiate
our concept of the cortex. While animals without a cortex have a very limited repertoire
of reacting to a certain stimulus, we believe that the cortexof higher animals enables the
individual to flexibly interpret a stimulus depending on theanimal’s needs. For this, the
cortex needs to represent different interpretations of thesensory input at the same time,
such as detailed and abstract descriptions of what is present, what is desired, what was
expected from the context, and what is to be expected after the individual decides on a
certain action. In our conceptual model, this multi-representation of sensory inputs and
internal states of the individual is established in the different layers of the cortical tissue.
Our main assumption is that the local neural circuitry of thecortical tissue is roughly the
same in all areas, regardless of the information they process. In this local circuit (a column)
that vertically links the six cortical layers, the cortex represents different interpretations of
the sensory stimulus in the different layers. We follow a multi-level approach in simulating
this cortical model. For the fast forward pathway of the columnar circuit (A-system), we
believe that spike-based processing is essential to accommodate the temporal needs of the
individual. In simulations on a single-neuron level we haveshown that this pathway can
rapidly extract key features of the stimulus using a spike-latency code (sec. 2). At the level
of coupled neural circuits, we have simulated the bidirectional signal flow in a hierarchy
of columns (A- and B-systems). We have shown how dynamic integration of bottom-up
and top-down signals with locally stored knowledge guides recognition, and enables the
cortex to interpret a sensory stimulus differently depending on its internal state, e.g. an
expectation of the individual (sec. 3). Finally, we have embedded an implementation of the
full columnar circuit on the level of spiking associative memories into a large-scale model
of the visual system. We have demonstrated how the columnarC-systeminteracts with the
A- and B-systems to derive motor actions that allow the cortex to actively confirm an object
hypothesis. The model acquires support for an object hypothesis by saccading to expected
key features, and learns to associate new object views with each other (sec. 4).

By instantiating overlapping aspects of our cortical modelat different levels of abstrac-
tion, we can validate our concept both on the system level as well as on the level of detailed
circuitry. We will follow this strategy to maintain and improve a model that enables us to
understand, how macroscopic cortical function comes alongfrom the underlying neurobio-
logical structure based on the processes this structure implements.
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