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Abstract

This work presents first simulation results substantiating a previously proposed conceptual model of computation in neocortical

architecture [E. Körner, M.-O. Gewaltig, U. Körner, A. Richter, T. Rodemann, A model of computation in neocortical architecture,

Neural Networks 12 (1999) 989–1005]. This model gives a detailed functional interpretation of the six-layered columnar cortical architecture

and related subcortical structures. It hypothesizes three interacting processing systems at each stage of the cortical hierarchy: The A-system

(middle cortical layers) accomplishes fast bottom-up processing where the first spike wave traveling up the cortical hierarchy can activate a

coarse initial hypothesis at each level. In the B-system (superficial layers) the initial hypothesis is refined by slower iterative processes

involving feedback. Finally, the C-system (deep layers) represents the local hypothesis of a macrocolumn which is fed back to the B-system

of a lower level inducing expectations and predictions for the present and future input signals. These ideas are illustrated by an example

implementation of the microcircuitry in a single cortical macrocolumn based on cell assemblies and associative memories. In a second step

we have integrated our model at the level of V4 into a large scale implementation of the visual system involving several primary and higher

visual cortical areas as well as parts of the hippocampal formation, and subcortical structures involved in generating eye saccades. With this

model we can demonstrate object classification and the learning of new object representations.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding how previously experienced objects and
scenes are recognized and categorized by the brain is still
one of the hardest problems in neuroscience. Because
sensory stimuli regularly include complex and ambiguous
scenes it is necessary to use top-down prediction in order to
reduce the tremendous number of possible interpretations
on each level of representation. Thus, any solution has to
detail (i) how prior knowledge is integrated (top-down)
with the actual (bottom-up) stream of sensory data in a
meaningful way, and (ii) when and how new representa-
tions are created and stably integrated into the previously
learned knowledge hierarchy.

This simulation study substantiates a previously pro-
posed model of computation in neocortical architecture
[16,17] (Fig. 1; see also [10,23,9] for related ideas). This
model gives a detailed functional interpretation of the six-
layered columnar cortical architecture and associated
subcortical (thalamic) structures (cf. [6,4,1]). In particular,
it relates cortical architecture to the integration of (top-
down) prior knowledge with the actual (bottom-up) stream
of sensory data and to processes controlling the learning of
new representations. In short, the model hypothesizes three
different but interacting processing systems at each stage of
the cortical hierarchy: The A-system (cortical layers IV and
lower III) accomplishes fast bottom-up processing where
the first spike wave traveling up the cortical hierarchy can
activate a coarse initial hypothesis about the stimulus at
each level. In the B-system (layers II and upper III) the
initial hypothesis is refined by slower iterative processes
involving horizontal and vertical exchange of information.
Finally, the C-system (layers V/VI) represents the local
hypothesis of a macrocolumn which is fed back to the
B-system of a lower level inducing expectations and
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predictions for the present and future input signals.
Predicted input signals are suppressed at an early cortical
stage, and only differences between predicted and actual
signals can reach the next higher level (cf. [18]). Learning of
new representations is induced if the difference signal is too
large and if the difference signal reaches the highest level of
cortical integration, the hippocampal formation.

In order to substantiate these ideas we have designed and
implemented a model of the cortical microcircuitry based
on cell assemblies and associative memories [22,15,12]. To
provide an adequate functional scenario, the model is
integrated into a large scale implementation of the visual
system including several primary and higher visual cortical
areas as well as parts of the hippocampal formation, and
subcortical structures involved in generating eye saccades.
With this model we can demonstrate object classification
and the learning of new object representations.

2. Model of the cortical microcircuitry

In accordance with ideas developed earlier in [16] (cf.
[10,23,9]), we assume as a working hypothesis that the basic

function of a cortical column is to adequately represent and
predict its sensory inputs. To achieve this in a self-
organizing, autonomous way, it is necessary to have access
to different representational modi (such as reality vs. pre-
diction) presumedly located in different cortical layers.
Thus, a cortical column has to represent external states v

producing the observed input signals s. We found it
reasonable to divide the state variable v ¼ ðw; aÞ into two
rather independent components, one variable w describing
‘‘external’’ entities from the outside world and another
variable a describing a local ‘‘internal actor’’. In addition

to updating a state, the system should also be able to
predict a future state w0 (without accessing sensory input)
and sensory inputs s0,

wðtþ DtÞ ¼ f ðw0ðtÞ; sðtÞÞ, ð1Þ

aðtÞ ¼ f aðwðtÞ; . . .Þ, ð2Þ

w0ðtÞ ¼ gðwðtÞ; aðtÞÞ, ð3Þ

s0ðtÞ ¼ hðw0ðtÞÞ. ð4Þ

Fig. 2 illustrates this functional model and our current
implementation employing simplified spiking associative
networks [22,15,12].
Our model for the cortical microcircuitry consists of six

neuron populations. Input layer A1 receives bottom-up
‘‘forward’’ input from a hierarchically lower area. A1 cells
have feedforward and lateral inhibition with a ‘‘soft’’
winner-takes-all (WTA) characteristics. A1 cells project in
a one-to-one manner to population A2. A2 has the same
size as A1 but is modeled as a simplified spiking associative
memory [15,12] including recurrent excitatory connections
used to store auto-associatively prototypical representa-
tions of the input signals (corresponding to the ‘‘world
states’’ w of the functional model). Similarly, population B
is also modeled as spiking associative memory but the
auto-associatively learned patterns have a more symbolic
character since they are sparser and consist of rather
randomly selected cells. Population B receives hetero-
associative input from A2, where backprojections of B can
inhibit A2 thereby suppressing familiar or expected signals.
The representation of B can bias the selection of
behaviorally relevant representations in population C1
(corresponding to the ‘‘action state’’ a of the functional
model) which is also realized as spiking associative
memory. An additional soft-WTA neuron population CU
is used to represent conjunctions ðw; aÞ of ‘‘world states’’
and ‘‘actions’’. CU receives inputs from B and C1 via
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Fig. 1. Layered model of a cortical column as proposed in [16]. Three

different processing subsystems corresponding to different vertical

locations (i.e., layers) are intertwined within each cortical column. The

A-system (middle layers) accomplishes fast bottom-up processing of

sensory signals, the B-system (superficial layers) represents the input from

the A-system in a refined way by activating more sparse and abstract

representations and by exchanging information with neighboring columns.

The C-system (deep layers) develops representations related to action/

behavior and predictions used for feedback control. See text for more

details. We have implemented parts of this model (see Fig. 2).
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Fig. 2. Left: Basic functional circuit of a cortical column. Right: Current

cell assembly based implementation of the cortical microcircuitry. Each

box corresponds to a neuron population implemented either by a

simplified spiking associative memory [15,12] or by a soft-WTA network.
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random connections which is useful for hetero-associa-
tively linking conjunctions ðw; aÞ to predicted states w0

represented in population C2 which, again, is modeled as
spiking associative memory. Activity in A2 and B is
transmitted forward to hierarchically higher areas, while
predictive activity in C2 is fed back to lower areas and to
the middle layers of the same column to bias relevant and
suppress irrelevant representations.

Learning occurs in three different subsystems of the
cortical columns. First, statistical (PCA-like) learning
within populations A1 and A2 defining basis vectors or
the coordination system of the macrocolumn. Second,
clustering-like learning of prototypes in populations A2
and B. Third, predictive learning on ‘‘symbolic’’ states in
populations B, C1, CU, and C2. Here, the short-cut link of
the external forward input to C2 is used to learn the
prediction ðw; aÞ ! w0 which exploits (e.g., by means of
STDP) the fact that the response of CU to a new forward
input signal has a longer latency than the C2 cells driven by
short-cut inputs. Currently, only the latter two learning
systems are implemented.

3. Integration into a large scale model for saccadic object

recognition

Modeling the behavioral and predictive functionality of
the C system requires an adequate functional scenario. For
this we have designed a model of visual object recognition
involving saccadic eye movements which allows the
incremental refinement of an object hypothesis during a
saccadic sequence. Here the first object view initiates an
object hypothesis by ‘‘first glance’’ recognition which can
be used to make saccades to other object parts and to
predict the corresponding new object views. Then, by
comparing the actual object view with the predicted object
view, the initial hypothesis can be refined.

We have implemented a large-scale model of several
primary (V1, V2) and higher visual cortical areas from the
‘‘what’’ (V4, IT) and ‘‘where’’ path (V6) as well as parts of
the hippocampal formation (EC), and subcortical struc-
tures involved in generating eye saccades and triggering
learning (see Fig. 3). The primary visual areas do standard
preprocessing (orientations, edges), area V6 represents
locations of key features (e.g., edges), whereas the superior
colliculus (SC) integrates V6 input with an attentional bias
from another area (Att/Sac1) to determine saccade targets.
Area V4 represents fixation specific object views, whereas
the central areas (EC,AC,IT) are used to learn modality-
independent object categories (see [14] for more details).

We have modeled area V4 with the detailed columnar
model described before (Fig. 2), while all other areas are
modeled either as simple soft-WTA populations or as
simplified spiking associative memories [15,12]. V4-A1
receives topographically organized inputs from V2 repre-
senting key features (e.g., corners) of simple line drawings
of different classes of buildings (houses, churches, etc.).
During execution of explorative saccades, V4-A2 and V4-B

learn symbolic prototypes of fixation-specific object views.
V4-C1 can bias the direction of saccades, while V4-C2
predicts the outcome of the saccade. Fig. 4 illustrates the
learning of the C2-predictions during exploration of a new
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Fig. 3. Visual model for saccadic object recognition. The model consists

of various visual areas (R,V1,V2,V4,V6,IT), auditory areas (AC),

hippocampal areas (EC), saccade related areas (SC, Sac1-3), and some

auxiliary areas triggering learning and the execution of saccades (LX,

SacX). Currently only visual area V4 implements the full columnar model

as shown in Fig. 2.
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Fig. 4. Simulation results from area V4 (layer C2). The plot shows the

probability of making a correct prediction about a future object view

before executing a saccade. The curves show how the probability increases

with the number of explorative saccades. The four lines correspond to

different parameter sets. Gray: V4-CU consists of 100 neurons with high

(solid) or low translation invariance in V2 (dashed). Black: high

translation invariance, V4-CU consists of 400 (dashed) or 900 (solid)

neurons. Here translation invariance is defined as the degree of

convergence of V2 cells projecting to a V4 cell representing corresponding

features.
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visual stimulus. One crucial parameter was the size of
population V4-CU because this population is required to
represent a large number of conjunctions of object views
(V4-B) and saccade direction related representations (V4-
C1). Another important factor was the degree of transla-
tion invariance of V4 representations (as measured by the
convergence of V2 cells to a corresponding V4-A1 cell).
This is because the precise fixation location can vary
considerably between different saccades to the same key
feature of an object view. More details of the model can be
found in a technical report [14].

In summary, we have proposed a plausible model of the
cortical columnar microcircuitry based on commonly
accepted anatomical and physiological results. We have
demonstrated its functioning by a simplified implementa-
tion integrated within a large scale model of the visual
system.

4. Summary and discussion

In this work we have given a functional interpretation to
the well-known six-layered architecture of the cortex
[16,6,4]. As explained in more detail in Section 2, we
believe that the basic function of a cortical (macro-)column
is to adequately represent and predict its sensory inputs (cf.
[17,10,23,9,18]). This requires an ongoing comparison of
sensory inputs with representations of previously experi-
enced signals, more generally the integration of bottom-up
and top-down processing, and the forming of new
representations in case none of the existing hypothesis
can explain the incoming signals. Specifically, we have
hypothesized three interacting processing systems within
each cortical column (see Fig. 1): the A system for fast
bottom-up processing and the generation of difference
signals (middle cortical layers); the B system for top-down
driven refinement of bottom-up inputs (upper cortical
layers); and the C system for controlling lower cortical
areas as well as behavioral processes (cf. [9]).

Contrary to related models (such as ART networks [5]),
our approach is based on the framework of cell assemblies
and associative networks [11,27,3,21,15,12]. With this we
are able to establish a much closer relation to real cortical
networks, although we currently use only relatively
abstract neuron models (such as soft-WTA populations
or simplified spiking associative memories [15,12]). In
contrast to more abstract cortex models, we explicitly
address questions such as how to ‘‘allocate’’ new repre-
sentational ‘‘nodes’’ (which corresponds in our framework
to the synaptic learning of an additional local cell
assembly), and which intra- and extra-columnar processes
are required to support this (e.g., computing difference
signals in the A system). Many related cell assembly based
models implement only a single cortical layer or even
identify a piece of cortex with only one or two associative
networks (e.g. [3,22,8,2,7]). In contrast, we emphasize a
more detailed layered structure of cortex [6,16] for
segregating different representational modi and different

interareal information streams (see Sections 1 and 2).
Moreover, we address combinatorial issues such as
combining a large set of internal states w with another
possibly large set of actions a (see Fig. 2) making use of
sparsely distributed representations where n neurons can
represent almost n2 different entities [27,21,19,13].
To demonstrate the viability of our ideas we have

implemented and integrated our model of a cortical
macrocolumn with a large scale model of the visual system
(see Section 3). In order to provide an adequate func-
tional scenario such as saccadic object recognition, the
visual model had to comprise several cortical areas of the
ventral (‘‘what’’) and parietal (‘‘where’’) paths as well as
additional structures to control saccades and learning. Our
implementation gives a plausible illustration how a cortical
column can develop representations for its incoming
sensory inputs in order to successfully predict future
sensory states (Fig. 4). Moreover, our model is consistent
with many neuroanatomical and neurophysiological find-
ings (e.g. [6,9,20,18]). However, in this work we have not
attempted to achieve recognition results comparable to
technically optimized artificial neural networks (e.g.
[25,26,24]).
So far we have endowed only some key areas (V4 and

partially IT) with the complete set of properties of our
columnar model while the other areas rather perform
preprocessing of sensory input and control of the saccades
and learning. In future work we will extend our visual
model to include the full set of columnar functionality
across any level of the cortical hierarchy. We believe that
our approach scales well to an integrative implementation
of the visual system and parts of the hippocampus.
Another key challenge will be to translate our results
which are based on the crude dynamics of simplified
neuron population models to more realistic spike based
models of neurons and synaptic plasticity.
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