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Abstract— A large body of research has investigated the
advantages of combining phenotype adaptation and genotype
adaptation. The hybridization of genetic search and local search
methods, often known as memetic algorithms, and the influence
of learning on evolution, i.e., the Baldwin effect and the Hiding
effect, have been widely studied. However, most work assumes
a stationary environment, and thus overlooks potentially advan-
tages or disadvantages that can arise from phenotype plasticity
only in changing environments. We show that a process with
two levels of adaptation allows the system to operate on two
different levels of diversity at the same time, which can be of
great advantage under certain environmental conditions.

I. INTRODUCTION

In nature, species need to cope with continual environmental
changes. Evolution has found a variety of adaptation mecha-
nisms that seem to be tailored for the particular environmental
challenges, among which the individual-level and population-
level adaptations are two main mechanisms [1]. While in
individual-level adaptation, a single individual directly reacts
to environmental changes, e.g., through phenotype plasticity,
population-level adaptation requires a collective adaptation of
a population usually by means of genotype adaptation, which
is dependent on genotype diversity. For convenience, we will
use genotype adaptation and phenotype plasticity in this paper
to denote the population-level and individual-level adaptations.

The two levels of adaptation may interact with each other
explicitly or implicitly. Two types of interactions, often known
as Baldwinian inheritance and Lamarckian inheritance, have
been discussed in artifical and biological evolutionary systems.
In the Baldwinian inheritance, phenotype changes of a parent
cannot be directly inherited by its offspring, while in Lamar-
ckian inheritance, the changes on the phenotype are directly
encoded back onto the genotype and can be passed on to
offspring. It is widely believed that the Lamarckian inheri-
tance is biologically less plausible, however, the Lamarckian
inheritance can be used in an artificial evolutionary system
if the mapping from the genotype to phenotype is surjective
and invertible. Interestingly, it has been demonstrated within
an artificial evolutionary systems that the Lamarckian inheri-
tance mechanism performs better in stationary environments,
whereas the Baldwinian inheritance mechanism works better
in changing environments [2]. In this paper, we will investigate
the Baldwinian inheritance mechanism, not only because of its

biological plausibility and the findings in [2], but also because
it does not restrict our discussions to evolutionary models in
which the genotype to phenotype mapping is surjective and
invertible.

Given the fact that for almost all species in nature adaptation
takes place on both individual and population levels, one could
ask if this principle is in general inevitable for adaptation to
a changing environment. In the field of evolutionary com-
putation, methods based on genotype-only adaptation have
been used successfully both for solving stationary optimization
problems, and dynamic ones, refer to [3]. Note, however, that
a common feature of the evolutionary algorithms (EAs) for
solving dynamic optimization problems is that an additional
mechanism must be included to maintain a sufficient popula-
tion diversity in order to avoid premature convergence.

In this paper, we revisit the question of what advantages a
combined genotype-phenotype adaptation has compared to a
genotype-only adaptation. In the literature, the following two
aspects concerning the combination of genotype adaptation
and phenotype plasticity have been discussed.

First, a combined genotype-phenotype adaptation allows to
exploit distinct adaptation mechanisms at the genotype and the
phenotype levels. In nature, evolution (gradually and slowly)
changes the structural aspects of an organism while phenotype
plasticity plays the role of fine-tuning the parameters for
a given structure. Similarly in evolutionary optimization, a
global evolutionary search (genotype adaptation) is often com-
bined with a local learning algorithm (phenotype adaptation),
which is usually intended to address the exploration and
exploitation dilemma [4]. Evolutionary algorithms combined
with a local search technique are often known as memetic
algorithms [5].

Second, phenotype adaptation may change the evolutionary
pathways, an effect that has first been formulated by Bald-
win [6] and later termed the Baldwin effect [7]. The first
computer simulation of the Baldwin effect demonstrated that
the Baldwin effect can indeed guide evolution towards a global
fitness optimum [8]. Recently, a mathematical framework,
called the gain function has been developed that allows to
predict whether phenotype plasticity accelerates or decelerates
evolution [9]. The main idea of the gain function approach
is to determine whether phenotype plasticity enlarges fitness



difference between fit and unfit individuals or reduces the
difference. The latter effect has first been mentioned in the
biology literature [10], and was later termed Hiding effect [11].
Actually, the Hiding effect is a special case of the Baldwin ef-
fect, and it cannot be said per se that it decelerates evolution. It
is shown in the analysis in [9] that the hiding effect does slow
down the evolution on a unimodal fitness landscape. Recently,
it has been demonstrated empirically on a bi-modal fitness
landscape [12], and mathematically based on random walk
theory [13] that the Hiding effect may accelerate evolution
on a multi-modal fitness landscape, since phenotype plasticity
tends to smoothen fitness valleys.

The above advantages of the combined genotype-phenotype
adaptation have been observed in models where a stationary
environment is assumed. They hold in principle in dynamic
environments as well. One aspect that is particularly relevant
to changing environments has been demonstrated in [14]. In
that work, the well-known model of Hinton and Nowlan [8] is
extended to dynamic environments and a plasticity cost com-
ponent is also included. Based on simulation and mathematical
results, it is concluded that phenotype plasticity evolves if the
plasticity cost is low.

This paper demonstrates another effect of combining phe-
notype plasticity with genotype adaptation. It is found that
phenotype plasticity enables the evolutionary system to op-
erate with two different levels of diversity simultaneously. In
Section II, we introduce a simulation model that takes the cost
of phenotype plasticity implicitly into account. In particular,
we assume a trade-off between generation turnover, i.e., the
average number of offsprings per time-unit, and an individual’s
lifetime. The model uses similar adaptation mechanisms for
genetic adaptation and phenotype plasticity in order to avoid
a serious bias toward a particular adaptation mechanism.
A detailed analysis on population diversity is presented in
Section III to investigate the influence of phenotype plasticity
on genotype diversity. Based on the insights gained in the
diversity analysis, we study the adaptation behavior of the
genotype-phenotype adaptation and the genotype-only adap-
tation in changing environments in Section IV. Conclusions
are given in Section V.

II. SIMULATION MODEL AND EXAMPLES

Fig. 1. The three main phases of the simulation model.

In Fig.1 one time step (t) of the discrete-time evolution
model used in this work is illustrated. A population Pt

is composed of n individuals, each having the same pre-
specified constant lifetime L, a genotype value x, a (variable)
phenotype value z, and correspondingly an adaptive value a.
The adaptive value is the basis for phenotype and genotype
adaptation defined by a time-dependent environment function
f , i.e. a = f(z, t). In evolutionary computation, this is often
called fitness function. We do not use this term here to avoid
inconsistencies with the biological definition of fitness, where
fitness is considered to be proportional to the number of
offspring, which can thus only be measured posthumously.

In each time-step, the following three phases can be distin-
guished (cf. Fig. 1):

Phase 1 - Replace individuals of an age L

All (m) individuals which have achieved an age of L, i.e.,
the end of their life, are removed from the population. Then m
individuals are picked out as parents (probability proportional
to the current adaptive value) to produce m offsprings, i.e.,
the genotype of the parents are copied to the offsprings. The
genotype of the newly generated offsprings is then mutated by
adding a random number sampled from a normal distribution
with mean µ = 0 and standard deviation σ = σG. The union
of the original population and new offsprings without the
perished individuals forms the new population.

Phase 2 - Phenotype adaptation

New-born individuals develop their phenotype first. This is
done simply by applying the identity function to the genotype
value, i.e., the innate phenotype equals the genotype value
z(x) = x. All other individuals (of an age larger than
or equal to 1) try to increase the adaptive value using a
simple learning algorithm based on a rudimentary lifetime
memory that stores the best phenotype found so far and
the corresponding adaptive value that has been achieved at
the time when the phenotype value was explored. When an
individual randomly explores the environment, its phenotype
is changed by adding a random number sampled from a normal
distribution with mean µ = 0 and standard deviation σ = σP .
If the resulting new phenotype has a higher adaptive value than
the memorized one, the individual adopts the new phenotype.
Otherwise, the current phenotype is kept. The implementation
of this kind of phenotype plasticity can be seen as a (1 + 1)-
EA and is very similar to the genotype adaptation mechanism
since in all simulations we set σG = σP , which avoids a
strong methodological bias towards a particular adaptation
mechanism.

Phase 3 - Adaptive value assignment

Finally, the individuals are assigned an adaptive value which
depends on the environmental dynamics. Note that the adaptive
value an individual has memorized for a certain phenotype
value in Phase 2 may have changed due to environmental
changes. In Phase 1, the selection thereafter is based on the
new adaptive value.



Env.1 Env.2
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Fig. 2. Simulation environments of this paper, defined as the mapping from phenotype value to adaptive value. Env.1 and Env.2 are stationary, Env.3 and
Env.4 are dynamic. There exist 3 states in Env.3, which change according to the pattern state1-state2-state3-state2-state1-. . . and w.r.t. to a changerate. There
exists an infinite number of states in Env.4, where only the first 4 states are shown. The function continues to shift right-wards, with a velocity depending on
the changerate.

Model settings and main effects

This model naturally implements a trade-off between geno-
type and phenotype adaptation efforts. By keeping the overall
adaptation effort constant and adjusting the lifetime L, we
can distribute the adaptation efforts between genotype and
phenotype levels. For example, with a constant population
size 100, a lifetime L = 10 implies the replacement of 10
individuals at each time-step, whereas a lifetime L = 1 implies
the replacement of 100 individuals at each time-step, which is
identical to a conventional generational EA. In all simulations
of this paper the population size is set to 100.

Within the model framework, the effects of including a
phenotype adaptation (at the expense of genotype adaptation)
are investigated by comparing the evolution of a population
with a lifetime L = 1 to another one with L = 20. For the
sake of readability, we simply denote the first case as GO
(genotype-only) and the second as GP (genotype-phenotype)
adaptation.

Changing the lifetime L (switching from GO to GP adap-
tation) has two obvious effects: First, since in the proposed
model the population size is assumed constant, an increase
in the average lifetime reduces the generation turnover rate.
Secondly, a change in the average lifetime influences the

phenotype adaptation, which in turn influences which individ-
uals produce offsprings. In other words, phenotype adaptation
causes a change in the mapping from the genotype to the
adaptive value.

We now take a look at two simple stationary environments
(f does not depend on t ) which we denote as Env.1 and Env.2.

Monotonically Increasing Environment (Env.1)

In Env.1 f is defined as a monotonically increasing linear
function of phenotype z, in particular f(z, t) = z, cf. Fig. 2.
The evolutionary goal is to “climb up” the (infinitely) mono-
tonically increasing function as quickly as possible. Fig. 3
shows how in a typical simulation run, the genotype and
the phenotype distribution change over time in cased of GO
(left column) and GP (center and right column). Initially, the
population is uniformly distributed on [0; 1] and adaptation
parameters are set to σG = σP = 0.005. The population with
GO adaptation performs much better in this task. After 500
time steps, the mean population genotype value is beyond
12 while in case of GP adaptation, this value is below 4.
This is caused by the reduction of generation turnover rate
as described earlier. Clearly, in Env.1 phenotype adaptation is
detrimental.
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Fig. 3. Typical simulation runs for Env.1, Env.2, Env.3 with changerate=50, Env.3 with changerate=100 and Env.3 with changerate=200 (one row of panels
for each setting). The plots show the population distribution over time. All panels in the left column show the population distribution in case of GO (genotype-
only) adaption, genotype equals phenotype in this case. All panels in the middle column show the genotype distribution in case of GP (genotype-phenotype)
adaption and all panels in the right column show the phenotype distribution in case of GP adaption. The gray line marks the optimum (in case of Env.2 and
Env.3).



Stationary Gaussian Environment (Env.2)

In Env.2 fitness landscape f is defined as a Gaussian func-
tion centered at 0. The evolutionary goal is the convergence
to the optimum (0), cf. Fig. 2. Adaptation parameters are set
to σG = σP = 0.005. The population is initially distributed
uniformly on [−3; 3], thus several individuals are located in
the proximity of the optimum already in the first generation.
Fig. 3 shows typical simulation runs for Env.2. In case of GO,
the population converges to a stable state after approximately
7 generations, while this takes much longer in case of GP. In
both cases of GO and GP, full convergence is not achieved,
although the population has reached a stable state. This
phenomenon has been described as quasi-species [15]. This
is the formation of a genotype or phenotype cloud around a
wild type under mutation-selection balance. In this example,
the wild type is x = 0 respectively z = 0.

It seems that the population in GO adaptation has a lower
diversity w.r.t. both genotype and phenotype compared to
GP adaptation case. Since diversity is a major requirement
for adaptation in changing environments, we continue with a
detailed diversity analysis of the simulation data of Env.2.

III. DIVERSITY ANALYSIS

Diversity is commonly defined as the variety and abundance
of organisms at a given place and time [16]. It is accepted
wisdom that a certain level of diversity is a condition for
adaptation to new environmental conditions, however, it is less
clear how to measure it [16], [17].

Measurements

Numerous diversity indices have been suggested in the
biology literature, but it was shown that no single index
is universally superior [18]. In computational intelligence,
diversity has been studied too, mainly in artificial life and
evolutionary computation [19], [20]. Although developed for
different purposes, all diversity indices reflect at least one of
the two aspects, namely, richness and evenness. By richness, it
is meant how many different elements exist in an element set,
e.g., how many species in the ecosystem or how many different
genotypes or phenotypes in a species or a local population.
Evenness refers to the distribution of a given set of elements
w.r.t. certain element properties. A uniform distribution pro-
duces maximum evenness. Some diversity indices focus on
either of the two properties, e.g. the Hurlberts Probability of
Interspecific Encounter [21] quantifies evenness. Most indices
aggregate both aspects, such as the Shannon entropy [22], [23]
and the Simpson’s index [24]. Other indices are developed
in discrete domains and no counterpart in continuous spaces
exists. If a continuous space is involved, as in our model,
these indices can still be used by discretizing the continuous
space. However, the choice of the discretization parameters
can bias the measurement. In order to cope with such biases,
we will adopt two indices in this work. The first index we use
is the well-known Simpson index [24], which is widely used
in biology and has been recommended in [18]. The Simpson
index H1 reflects the probability that two randomly sampled

individuals are not equal (do not belong to the same partition
class) and is defined as

H1 = 1−
m∑

i=1

ni

n
, (1)

where n is the population size, and ni the number of indi-
viduals in partition class i (out of m partition classes). H1

increases with both evenness and richness, which is a desired
property.

The second index (H2) that we adopt here is parameter-free
and is defined directly on a continuous space as follows:

H2 =
1

n(n − 1)

n∑
i=1

n∑
j=1

|xi − xj | , (2)

where xi is the genotype (or phenotype) value of individual
i. H2 measures the average Euclidean distance of individuals
within a population. Using average distance as diversity mea-
sure is also typical in the field of evolutionary computation
with a binary representation, where the average Hamming
distance between the genotypes is often used for measuring
diversity. It should be pointed out that counter examples can
be constructed in which a higher evenness or a higher richness
does not increase the value H2.

Fig. 4 shows diversity measurements (H1 and
H2) over simulation time for Env.2. Note that for
the Simpson index (H1) we have discretized the
genotype and phenotype spaces into partition classes
(−∞;−3], (−3;−2.75], (−2.75, 2.5], . . . , (2.75; 3], (3;+∞).

Convergence process diversity

In Env.2, the genotype diversity decreases more slowly with
GP than with GO. Several factors cause this behavior.

First, the reduced generation turnover of GP (compared
to GO) obviously slows down the diversity decrease. This
can be seen by comparing the slope of the thick grey line
(GO) with the slope of the thin dashed line, which represents
evolution with individuals of a lifetime L = 20, where the
phenotype adaptation during the 20 life time units is disabled,
hence avoiding the Hiding effect. Clearly, the thin dashed line
decreases more slowly.

However, there is a second aspect, which is related to the
selection-reproduction pattern of GP adaptation. In particular,
the algorithm that represents the GO case is known as (conven-
tional) generational EA whereas the algorithm that generated
the thin dashed line (L = 20, no phenotype adaptation) is
known as a steady-state EA (note, however, that the oldest
parents are replaced here). For these two algorithms it has
been shown that the generational EA produces a larger degree
of diversity than the steady state EA even if both EAs use
the same number of fitness evaluations, where entropy has
been used as the diversity measure [25]. Our simulation results
support these findings: In Fig. 4 (bottom-right panel) we plot
every 20 time steps of the dashed line of the top-right panel of
Fig. 4, thus showing the effect of 100 offspring replacements
(for 20 time steps, in each time step the 5 oldest individuals are



Fig. 4. Averaged diversity data of 1000 simulation runs in Env.2. Top-left: H1 diversity, Top-right: H2 diversity, Bottom-left: Mean individual distance to
the optimum (0), Bottom-righ: H2 comparison of generational-EA-like and steady-state-EA-like evolution (see text for details). Graphs refer to the following.
Black thin solid line: Genotype/phenotype in case of GO (genotype-only) adaption evolution i.e. (genotype and phenotype are equal in this case), Black thin
dashed line: Genotype/phenotype of individuals with lifetime L = 20 with disabled phenotype adaption, i.e., phenotype is constant throughout the 20 lifetime
units, Black thick solid line: Genotype in case of GP (genotype-phenotype) adaptation, Gray thick solid line: Phenotype in case of GP (genotype-phenotype)
adaptation.

replaced, 20 · 5 = 100). We compare this with the thin black
curve of top-right panel of Fig. 4 (where one x-axis unit also
shows the effect of 100 replacements). As expected, Fig. 4
(bottom-right panel) shows that the diversity of the steady-
state EA is lower than that of the generational EA before and
after convergence.

The third factor is related to the change in the mapping
from the genotype to the adaptive value introduced by the
phenotype plasticity. This effect can be seen by comparing
the thin dashed line with the thick black line (genotype in
case of GP) in the H1 and H2 graphs (Fig. 4, top-left and top-
right panels). It can clearly be seen that enabling phenotype
adaptation slows down the genotype convergence. This must
be attributed to the Hiding effect that we discussed in Section
I, i.e., a decelerated evolutionary process caused by a reduction
of selection pressure resulting from the phenotype adaptation.
Note that in principle, phenotype adaptation can also increase
selection pressure. We refer to [9] for details, where exact
mathematical conditions for both cases have been derived. In
conclusion, the following observations can be made:

1) Phenotype adaptation slows down the loss of genotype
diversity due to reduced generation turnover rate.

2) Phenotype adaptation slows down the loss of genotype
diversity due to a steady-state-EA-like generation over-
lap.

3) Phenotype adaptation slows down the loss of genotype
diversity in (the likely) case of the Hiding effect.

Post-convergence diversity

By simulation time 300 all curves remain more or less
constant, which allows us to identify the effect of a combined
genotype-phenotype adaptation on the post-convergence quasi-
species diversity.

We can see that the genotype diversity is higher in case of
GP than in case of GO, and at the same time the phenotype
diversity is lower in case of GP. The reduced generation
turnover is no longer an argument for this phenomenon. The
reason for the rather high genotype diversity in case of GP is
given by the occurrence of the Hiding effect. The influence
of the Hiding effect on genotype diversity after convergence
can exactly be seen by comparing the thin dashed line (for
explanation see above) and the thick black line in the H1 and
H2 graphs in Fig. 4. Clearly, the thick line remains at a higher
level after convergence.

However, the phenotype diversity in case of GP is much
lower. The explanation for this is straightforward, since the
phenotype is (naturally) better adapted than the genotype.
Additional evidence for this argument can be seen from the
right-most panel of Fig. 4. In this figure, the mean distance
to the optimum (0) is given, from which one can clearly see
that the phenotype is on average closer to the optimum than
the genotype.

In conclusion, the following observations can be made:

1) Phenotype adaptation increases the (post-convergence)



genotype diversity in (the likely) case of the Hiding
effect.

2) Phenotype adaptation helps the phenotype to settle
closer to the optimum.

However, no definite conclusion can be drawn on whether
the inclusion of phenotype plasticity is positive or negative
to evolution, as we will see in the following section.

IV. CHANGING ENVIRONMENTS

In the preceding section we have shown how phenotype
adaptation influences population diversity. Based on these
results, we now demonstrate under what environmental condi-
tions this influence is likely to have a positive and under what
conditions this is likely to have a negative effect on the overall
adaptation success.

Multi-modal dynamic environment (Env.3)

In Fig. 2 the environment dynamics of our first example of
changing environments (Env.3) is shown. In this environment
there are several local optima and one global optimum, which
changes over time among three locations {−1, 0, 1}. Simula-
tions have been conducted with different parameter settings. It
turned out that (besides the lifetime setting, which is the same
as in previous sections) two parameters, namely changerate
and adaptation stepsize have a strong impact on the overall
adaptation process.

The changerate defines after how many time steps an
environmental change happens. With a very low changerate,
basically no adaptation takes place. In this case, the adaptation
behavior is similar to that in an environment with many
equally high optima. In particular, the population, which is
initially distributed on many local optima, gradually disappears
from the local optima due to genetic drift, and converges
to a single local optimum. A very high changerate causes a
similar behavior to that in a stationary environment, except that
after a (later) environmental change the population distribution
is biased by the previous environmental state. We therefore
present some intermediate settings of the changerate, namely,
50,100,200.

The adaptation step-size includes two parameters actually,
namely the mutation step-size σG and the phenotype adapta-
tion step-size σP . However, as argued earlier, we set σG = σP .
With a very small adaptation step-size, adaptation is only
possible through selection and is strongly dependent on the
initial population distribution. With a very large adaptation
step-size, adaptation is basically characterized by drift. After
evaluating a large parameter set, the setting σG = σP = 0.01
turned out to be an interesting case for further investigation.

Fig. 3 (panels in rows 3,4 and 5) shows typical results for
these settings. For all changerate settings of GO adaptation
(panels in the left column) the population converges to a local
optimum and is able to escape from it in only two situations.
However the population is not able to move towards the
global optimum. In case of a combined genotype-phenotype
adaptation, the population manages to follow the optimum.
In case of a quickly changing environment with changerate

50 (Fig. 3, Env.3, changerate=50), the steady state of the
environment seems to be too short for the population to fully
adapt to the global optimum. In case of changerate 100 (Fig. 3,
Env.3, changerate=100), the steady state seems to be long
enough for the population to adapt to the global optimum
occasionally. Finally, with a slowly changing environment
with changerate 200 (Fig. 3, Env.3, changerate=200), the
population always follows the changing global optimum. Fig. 5
compares the average adaptive value between the GO and
GP evolution for different changerates, which provides further
evidence that in environments like Env.3, the combination of
genotype and phenotype adaptation brings about an advantage.
While in the GO adaptation the population only by chance
matches the global optimum (when it returns), the population
always adapts to a changing optimum in GP evolution.

Environment with monotonic dynamics (Env.4)

In contrast to Env.3, the next example (Env.4) aims to
demonstrate that combining genotype adaptation with pheno-
type adaptation can be detrimental to the overall adaptation
process. The mapping from phenotype to adaptive value of
Env.4 is described by a Gaussian function, which shifts pe-
riodically 0.1 units in positive direction as specified by the
changerate (cf. Fig. 2). Fig. 5 shows the average adaptive value
between GO and GP. In case of a quick environmental change
(changerate 1), both GO and GP fail to follow the optimum.
At the other extreme, where the environmental change is
slow (changerate 50), the population is able to follow the
global optimum in both cases of GO and GP. However, at
an intermediate level (changerate 10), adaptation is successful
in the case of GO but fails in the case of GP. This result
can be attributed to the selection pressure reduction caused
by phenotype adaptation. We conclude that the inclusion
of phenotype adaption is detrimental if the environmental
dynamics are monotonic, thus demonstrating that there exist
environments in which GO adaptation is more appropriate.

V. CONCLUSION

We have shown that including phenotype plasticity in the
evolutionary adaptation process influences the genotype di-
versity under the Baldwinian inheritance regime, when the
overall adaptation “effort” is constant and similar adaptation
mechanisms are used for genotype and phenotype adaptation.
This is caused by the reduction in generation turnover and
the change in the fitness landscape, which also influences
the convergence process and the post-convergence behavior.
We have identified two characteristics of dynamic environ-
ments that favor one or the other (genotype-only or com-
bined genotype-phenotype adaptation). The advantage of the
combined genotype-phenotype adaptation not only lies in its
influence on the genotype diversity that opens an opportunity
for long-term adaptation, but also results in a higher short-term
adaptability, since the phenotype can be well adapted without
a loss of the genotype diversity.

Our results may inspire new ideas in the field of artificial
evolutionary systems where both a high level of diversity and
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Fig. 5. Adaptive value for different change rates in Env.3 and Env.4, averaged over 100 simulation runs.

a strong adaptation ability are important. In addition, we can
also gain some insights into the evolution of biological systems
in that our results shed some light on the question why a large
variety of adaptation mechanisms exists among species.

In the future, we hope to show that the level of phenotype
adaptability, i.e., the lifetime L in our model, can be evolved
in a second-order adaptation process to fit well with a given
dynamic environment.
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