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Biological Motion Estimation with Spatiotemporal Integration
J. Eggert, V. Willert and J. Schmidderich

Abstract— We present a framework and study a model for measurements in the context of the knowledge of the higher
biologically inspired motion estimation. It comprises seeral  |evel neurons. Similarly, in a single area, a neuron is in-
areas” (corresponding roughly to V1-MT) which locally ana-  fj,enced by the activities of its neighbours. Therefore dow
lyze motion input at different levels of granularity, coupled to . . .
functionally distinct areas which concentrate on the extration ar.‘d .h'gher areas of motion progessmg as well as the neurons
of more global motion patterns (corresponding e.g. to MST). within one area have to work in concert to make sense of
The areas are coupled reciprocally with each other, with a visual scene. In addition, other areas unrelated to motion
“higher” areas providing prior knowledge or constraints that  processing (e.g., neurons providing information aboutiapa
bias the processing at lower areas. In addition, within each  gy\etyres; borders, and border ownerships) could infeienc
area, spatial and temporal integration, mediated by latera . ' T . .
connections and internal dynamics, is used to resolve the motion proces;mg by thg same means] prov,'d'ng b'asefs Fhat
inherent ambiguity of motion signals and to take advantage allow a better Interpretation of the motion stimulus. Thes i
of coherence in naturally occurring stimuli. Our model leads what mid-level motion processinig largely about.
to results that are quantitatively comparable to state-ofthe- What are necessary ingredients for motion systems with
art techniques. We show how several psychophysical as weba oqinrocal biasing and context integration? First of all, i

physiological effects observed during motion processingan be .
explained by our model. We also show implementation results Would be necessary to represent separately the different

of our model in the application contexts of motion segmentaon  types of information. The biasing (via top-down or lateral
and egomotion compensation for ASIMO. connections) is a sort oprediction that incorporates the

network context. In addition, we need a separate observatio
resp. measurementhat is provided mainly by feedforward
Despite many years of progress, motion processing cooennections, and finally the synthesizirggtimation that
tinues to puzzle the mind of researchers involved in undeimproves the mesaurement by taking the prediction into
standing vision. Basic aspects such as local motion filgerinraccount. This of course resembles very much the Bayesian
have been widely studied (see e.g. [10], [11]). What is mo$bundations of prior, likelihood and posterior, and indeed
striking about motion processing is its observed temporale will formulate part of the mathematics of our model
dynamics. Since we are dealing with motion, this seems likasing probabilistic arguments. The foundations for pafts o
a trivial statement, but in fact, it is not. What we addresehe this have been laid out already some years ago by Burgi,
is the capability of the biological motion extraction syste Yuille and Grzywacz [2], but astonishingly did not find entry
of primates to accumulate motion information over time tanto the mainstream models of biologically inspired visual
make sense of an otherwise highly ambiguous input. As anotion processing. In this paper, we will show that indeed
example, single neurons exhibit responses with a timeseourwe can build a sort of “canonical” model of mid-level visual
that could be interpreted as: “Measure motions locally,firstmotion processing, including interacting low and high leve
then look if they are consistent and can be combined wittmotion extracting areas as well as areas for the analysis of
measurements of other neurons”. large motion patterns, based on a mixture of probabilistit a
The selective integration of motion signals has to occuronnectionist ideas. Nearly all assumptions needed toido th
by means of reciprocal influences between neurons amdtually have their origin in the spatiotemporal structafe
areas. A single neuron receiving sensory feedforward inpthie motion inputs caused by the properties of the underlying
is tied up by its aperture problem - i.e., it only sees a verghysical world, which the brain probably discovered long
restricted part of the visual world and therefore is onlyeablago. We will also show that the performance of such a system
to give rough guesses about occurring motion direction arstales up to be used for real scenes and in real applications,
speed. Subsequent areas may collect the signals from kevexrad how our model can be used to explain well-known vision
neurons of lower levels and may have less restrictions on tisenomena related to motion perception.
region of the visual world they analyse. Nevertheless, with
pure feedforward integration they would simpéverage Il. MOTION PROCESSING IN THE BRAIN

loosing access to subtle details hidden in the ambiguity of \45,al motion processing is an important resource of

the responses from lower level neurons. One way o alleviafigrormations that have a strong impact on behavioral deci-
this problem is to allow reciprocal information transfer ingjong photh in humans and monkeys. Similarly, for artificial
the sense that lower level neurons are able to interpreie th§ystems, motion signals play a prominent role in interpeeti

a dynamic visual world. Motion estimations give rise to the
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J. Eggert and V. Willert are with the Honda Research Ingtitdtirope,
emails: [Julian.Eggert, Volker.Willertj@honda-ri.de

J. Schmiidderich is PhD student at HRI-Europe in cooperatiih the 1A reason might be the very probabilistic as well as theosétiocus of
University of Bielefeld, email: jschmued@techfak.unélefeld.de [2].



and ventral intraparietal areas LIP and VIP [4]. From these
areas, motion information then influences distinct pogioh
the prefrontal and premotor cortices contributing to highe
cognitive activity and behaviour generation.

Areas V1, V2 and V3 constitute complementary areas
for low-level motion measurement. The neurons are largely
arranged in a retinotopic order, with varying receptivedfiel
sizes and already some degree of featural specialization in
the different areas. Motion-selective neurons from thesasa
exhibit sensitivity for motion direction, but little serisity
for motion speed [8].

Neurons from MT are also arranged retinotopically and
exhibit direction selectivity. They have receptive fieldes
that are about tenfold those of V1 neurons. In addition,
they are more selective to different motion speeds [7]. What
makes MT neurons special is that they do not only respond
to their locally measurable motion, but take information
of the context into account. So rather than responding to
locally measurable motion, they integrate motion inforiorat

mm Stage 3: Motion pattern extraction  from lower areas and MT itself to arrive at a consistent
Stage 2: Spatiotemporal integration motion perception. In addition, it is assumed that they also
Stage 1: Local motion measurement incorporate information from other (e.g., non-motion tetf
Fo 1 Brai 4 fecdt din ion 1 ) i pathways and higher processing areas.
P i areas and feedlonuars foraton vasferonnectut) ™ Area T projects onto area MST, which has even larger
coarsely mapped to the model presented in this paper. receptive fields. Among other things, MST neurons respond
selectively to large-scale motion patterns, like expamsio
and rotation, which can cover the entire visual field. If

detection and perception of moving objects, as well as to t u'“ﬁle ((jj}fffferent local motions aredpresent, thehMSThngsro
perception of self-motion. Motion perception also comsés or the different motions respond stronger than their MT

the basis for the control of eye movements, both for smooffPunterparts, with MT exhibiting amore pronounced winner-
object pursuit as well as for follow-up saccades. takes-all characteristic [9]. Grouping processes seenfatp p

Movin . E‘ more prominent role in MST than in MT, but the details
g objects can be better segregated from a bac f the MST functionality are still to be investigated. It is
ground (motion-based pop-out effects) than non-movin% y . g i
ones. The perception of a 2D shape is enhanced, both gher assumed that MS_T plays a roIe_ in the control of eye
) ' ot ; 1, DOt Bhvements and egomotion-related estimations.
its borders (kinetic boundaries and boundary continuation
as well as at its surface (by grouping and filling-in based oHIl. A 3- STAGE CANONICAL MOTION PROCESSING MODEL
motion coherence effects), making its perception moredvivi  |nspired from the biological findings, we built a model
than in the stationary case. The 3D perception of shapeds algyr human motion processing that consists of 3 main stages.
enhanced by motion signals, and depth-from-motion diyectin a first stage, local motion measurements are extracted
contributes to estimations about 3D aspects of a scene. from the visual signal. In a second stage, the local mo-
It is commonly agreed that visual areas V1, MT and MSTion measurements are combined over time and space to
contribute to human motion processing, establishing adfort take context effects into account. Finally, in a third stage
“motion pathway”. This involves a number of anatomicallycharacteristic motion patterns are analyzed and a labefing
interconnected visual areas and their subdivisions albeg tspatial positions with respect to the motion patterns accur
dorsal processing streams in the brain [1]. Mainly fed byigure 2 shows the 3 stages of the network together with the
neurons of the magnocellular type of the LGN (which exhibiinformation flow between the stages.
larger spatial receptive fields, higher temporal resotutio The task of the first stage is the detection of local
and higher contrast sensitivity than their parvocellulaure  changes in the visual scene and a measurement of the
terparts), motion processing starts in neurons from layelscal displacements that may have led to these changes.
4 (4ax) and 6 in V1 [4]. This is the earliest stage (if Here, a system encounters the full range of ambiguities that
processing starts at the eyes) that some neurons exhibitw@ inherently present during motion estimation, caused by
selectivity both for orientation and direction of a stimsilu the aperture problem, physical overlapping, transparericy
i.e., they have a response characteristic that can be Hedcrimoving plaids and lack of measurable texture. What has to
by a spatiotemporal receptive fieldMotion processing then be solved is the correspondence problem: Which part of the
continues preferentially in the thick cytochrome oxidasscene is moving where? Of course it is not possible to solve
stripes in V2, and areas V3, MT, MST, and possibly laterathis problem without taking into account further infornuati
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an implementation of the Gestalt law of combined common
fate and good continuation (coupling space and time in a
consistent way). Consequences are that dynamic aspects are
introduced, leading to motion estimations that build up and
improve over time.

Finally, in a third stage homologous to MST, we use the
motion estimations from the area MT and analyze different
global motion patterns. This includes the job of sorting
out which motion estimations and which spatial positions
are recruited by any motion pattern, i.e., we are dealing
with a binding process between the motion features and the
motion patterns. Such a binding process is usually divided
conceptually into the processes of segregation (parsing) a
integration (grouping) of the local measurements, with the
aim to arrive at a figure-based scene description where
elementary visual “objects” can be separated from each.othe
The integration process can by its own be divided into two
subprocesses, one dealing with (1) propagation of infoionat
between local motion measurements to overcome ambiguities
inherent in the sensory process, and the other one dealing
1Lt with (II) the segmentation of regions of movements that are
interpretable as object motions from the rest of the scene.

Fig. 2. The 3 stages of the motion estimation framework. It fitage, ; ; ;
local motion measurements are extracted from the visuabki¢gn a second In our model, the segregation occurs by using a labe“ng

stage, the local motion measurements are integrated owerand space. In Process, attributing labels to different positions acowgdo
a third stage, spatial positions are labeled (here: labels3) according to  their motion measurements and their consistency with the
their participation in distinct motion patterns. The nimm$ on the stages ; ; ; ;
are used in the subsequent explanatory sections IV-A, I\ 1¥-C. mOtlon. pattern. ReCl.Jrrent mteractlon_s are .Very m_portant
here, since they mediate the propagation of information and
the assignment of the labels via competition that consttut
Therefore, in the first stage, we do not intend to solve thi@e basis fort_he segmentation. Here again, prior kno_wleﬂ_ge
. A incorporated in terms of Gestalt laws of good continuation,
problem but instead represent the results in such a wa . . . .
o « .. reflecting that points that are retinotopically close toteac
that later stages may be able to handle it: We use “motio -
N L L other and have similar labels usually belong to the same
probabilities” to explicitly incorporate the ambiguitiésto . . ! :
object and move according to a certain motion pattern.
the measurement process.

The first stage would correspond to the motion-sensitive
entry neurons in areas V1, V2 and V3. How exactly the local
measurement process occurs has previously been thoroughlyLocal motion estimation
investigated in model studies of biological experimentg, b . . . : .

- . o Disregarding the exact biological mechanisms of local
this is not considered to be of crucial importance here, as _.. G .

. o e g .’ _Totion estimation, we can assume that at timéor every
long as we can start with a “sufficiently good” first motion . S " . .
L 79 _'stream of incoming image dat®,...,I' resp. incoming
measurement. Moreover, it is also of little importance whic: . : . .
. ) . : . image patch of small size around a retinotopic location
signal we take to start with, like e.g. the intensity of the . : .
x, typically a number of local motion detectors is used

image, aspects of its color, or visual data preprocessed t'(r)ﬁ measure the translational motions for different velesit
any other way.

Due to th biguities. it is difficult to directl ’ tand directionsv. This means that for eaclk, velocity
ue 1o the ambiguilies, 1t IS dificult to directly esimale, a5, rements are extracted using a local neighbourhood of

the _motlon_ of larger components o_f the scene, such %Swith a predefined aperture size to get estimations
moving objects, from the local motion measurements o

stage 1. Higher level motion estimations therefore have to p(v,xI', ... T) (1)

rely on grouping the local signals. This occurs in a sort

of “binding” process, by integrating measurements that arfer the different velocities, in contrast to models thatragt a
consistent with object motion hypotheses and segregatismgle velocity estimate. The advantage of such an approach
them from inconsistent ones. In our model, this occurs big that the system is provided with information about the
means of recurrent connectivity and a spatiotemporal iateg uncertainties inherent in the local measurements, such as
tion of the local measurements in an area that we consideccurring in cases of ambiguous and multiple motions.
as functionally homologous to visual processing area MTSubsequent grouping processes can then combine the local
The spatiotemporal integration incorporates prior knolgke measurements of different positiossin a way that takes
about motion measurement statistics and can be regardedtasir uncertainties into account.

IV. M ODEL DESCRIPTION



If we are working with discrete timesteps and two-framesignals. Spatial coherence is one important cue for thealiisu
estimations, eq. 1 reads as the probability that a velocigystem, which can be seen in analogy to contour integration
v is locally present around locatiox at time ¢ under the processes. In motion estimation, it seems reasonable éor th
assumption of image daff and previous timesteps image visual system to assume that sets of local motion detectors
dataI*~1!, with I'*~! .= I' .. I*~! being the set of all with receptive fields that are close to each other tend to
past measurements up to time- 1. arrive at similar measurement results, both because their

Eq. 1 constitutes a way dlistributed or population coding apertures are overlapping and because the motion itself may
of the local motion estimates. This stands in contrast teaflir be spatially extended. Temporal prediction is the second
measurements of velocity and direction of motion like irsource of information which can be used to refine the
gradient optical flow approaches [3], [5]. The whole idea isocal motion measurements. Ambiguous motion information
to use the full information available in the population céde can sometimes be resolved by temporal coherence. The
improve subsequent motion estimation processes that rely onderlying assumption is that motion is usually temporally
this information. The population code can be seen in analogypntinuous, that is, to a first approximation the motion will
to the sets of motion-selective neurons forming corticgbsa continue with the same velocity and direction at the next
and hypercolumns, with alp(v|I! x) for fixed x and¢ timestep. Combining the two ideas of spatial integratiod an
(resp.I'*) being the output of a hypercolumn of motion-temporal prediction, we get
sensitive neurons looking at a common retinotopic location
x with the same aperture. (v, x, TV 1) = / WX, p(v,x' — vAL[IH ) dx' (4)

In a Bayesian interpretation, the estimatiaiv, x|I*?) is x!
gained by combining a likelihood with a prior, in a way thatas a spatiotemporally integrating prior to eq. 3. It expesss

that the cells from MT expect velocities that are gained
p(v, x[T%) oc p(T' v, x, 17 1) p(v, x) | (2) by selectively averagingWz,) the results from previous
timesteps that are compatible with the assumption of tem-

i i izati 1t
with the corresponding normalization pfv, x|I'*). The poral coherencex — vAL[TE-1),

likelihood constitutes the actual measuring process add in
cates how certain/probable a measurement of local image Full derivation of the spatiotemporal integration in MT

dataI' is around the retinotopic positior for a given . . . : .
assumed physical velocity. In the biological view of fig. 1 The spatiotemporal integration according to eq. 4
! . (and additionally, the simplest) possible choice of incor-

the likelihood corresponds to the activity of the motion

selective cells from areas V1, V2 and V3. This is combinegorating. prediCti(.)nS viq recurrent connectivity into_ mi
with a velocity prior p(v,x) (something like a “top-down processing. In this section, we present the full derivatbn

S ) how such an integration can be theoretically justified. We
expectation” in the neural sense) to get the Bayes’ posterig
. . g start from an overall state vector
in the usual way, expressed in the activity of the cells ohare

MT. S :={V,X} )
In addition, local motion signals are propagated non-
locally within MT from one cell to another to be able tothat comprises theector field i.e., the set of local velocities
resolve the ambiguities inherently contained in the mea¥ := {Vvi}: at all spatial locationsX := {x;}; (with the
surement process. This propagation sometimes has to ocifféx i = 1...1 running over/ “particles” with attached
over extended retinotopic regions, if there is e.g. a largeositions and velocities, like e.g. in a retinotopic mapeveh
object with a rigid-body motion pattern. The propagation cath® particles: represent a number of motion selective cells
be seen to occur over space (spatial integration) and tin¥éth fixed retinotopic receptive field locations).
(temporal prediction), in a way that it builds up iteratiyel The problem of probabilistic motion estimation can be
by spreading from the areas where the motion measurem&§€n as a particular case of the estimation of the state of
is not ambiguous to areas with larger uncertainties, taiisg & System that changes over time using a series of (noisy)
relay points the already disambiguated regions. measurements. The dynamic state estimation can be achieved
Both spatial integration and temporal prediction influencBY constructing the posterior probability density funatiof

the Bayesian posterior calculation by modification of théhe state based on all available information. The process
prior. This means that instead of 2, we will use of state estimation usually involves two stagesediction

and update and occurs at every timestep when a new
p(v,x|T"") o p(If|v, x, I 1) pf(v,x,I¥"1)  (3) measurement is received.
The predictive prior can then be calculated (for a discrete

H i t 1:t—1 H
with a prior p'(v,x, ) that depends on the Inputsstate space and timesteps numbekred ., t) according tc?

at previous timestep¥'‘~!. The prior is calculated anew

for each timestep depending on the spatial configuration of  ,f(V, X|T"~1) = (6)
the locally measured motions and the temporal coherence L1
assumptions. /l/,p(V,X|V’,X/) p(V/,X/|I t— )dX’dV’

The spatiotemporal integration enhances coherence and
causality as inherent properties of motion-related visual2Usually known as the Chapman-Kolmogorov equation



This equation expresses that the new prediction for there saying here that estimations at one position can be made
velocity probability density is given by the last timestepindependently of estimations at another position

t — 1 estimate weighted with the transition probability Second, we start with a particle-to-particle state evohuti
p(V,X|V’,X') from the last timestep velocity’ to the (i.e., a description of how the statg, x’; of a particle; at

new velocity V for all combinations of positions. The the last timestep influences the statge x; of a particle: at
probabilistic model of the state evolutignV,X|V’,X’) the current timestep)

is assumed to be known and describes the knowledge about ,

the state transitions from one timestep to the next. p(vi, xi|vj, x5) (11)

At timestept, a new measuremeit becomes available, gained from marginalizing(V, X|V’, X’), and assume that
and this can be used to update the state estimation from it state evolution model for a single vectorcan be
predictive prior by combining it with the velocity likelita@  factorized according to
via Bayes’ rule. We therefore arrive at the update equation . .,

(this is the analogous equation to eq. 3) p(Vi, Xi|Vi, Xy, .., Vi, X]) (12)
/ /

p(V,XIT) o p(I' [V, X, 1) (V. XT)  (7) =1 1[0 - pbvixitvio i)
This involves the measurement mode(l!|V, X, I*¢=1)  which, by multiplying out, can be approximated by
indicating the likelihood that image dal4 is measured if
local velocitiesV at X and previous timestep measurements
I**=1 are assumed. Spatial correlations between velocities A ZP(W,XHVLXZ) +termsO(p?)
at positionsx andx’ are in this case hidden in the state evo- k
lution model p(V,X|V’,X’) and the measurement modelsince higher combinations qf always include some very
p(I|V, X, TH 1), low probabilities between inconsistent pairs of velositand

Although it is beneficial to have the analytical descriptiorpositions and can therefore be neglected.
of the time course of the full motion model for the entire This is reasonable if one thinks that the local statex;
vector field with egs. 6 and 7, it is unfeasible to use thigs gained from the previous local stat¢, x| or v}, x), or
equation directly to calculate the local velocities. Tliere,
we now care how we can use the full motion modelYarX Starting now from eq. 8 (predictive prior for a single
to get expressions for the single, x;. For each vector of velocity vector) we make use of the factorization property
the vector field (consisting of velocity; and positionx;), eq. 10 for thep(V’, X'|T'*~1) so as to get
marginalizing out (i.e., integrating over) all the, x; with ; L1
j # i we can set up a local predictive prior in analogy to the

|
spatiotemporally integrating prior from eq. 4 / / / / p(vi, %[V, XL, VX)) X
pt (Vi, X; Il:tfl) _ (8) Vi Xy Vi vXr

|
/ / p(vi, x|V, X) p(V/, X/ [T 1) dX'd V' |

p(vi,xi|v’1,xll,...,v/1,x}) (13)

X Hp(v}, X [T dxdvy . dxfdv)
J

In a second step, we use the factorization property eq. 12

and n analogy to the Bayes estlma_mon eq. 3 we get tr}%sp. its approximation eq. 13 with eq. 14 to arrive at
posterior for the local vectors according to

t 1:t—1
P(Viaxiul:t) X p(It|Vi7XiaIl:til)pt(viaxiulztil) . (9) p( | ) ( )
. . / / / / Zp(vi,xﬂv;@,x%) X
What we see from eq. 8 is that all other past velocity vl Jx) v JIx)
estimations (i.e., the entire vector field) very annoyingly y HP(V‘;,XHILtil)dX/]dV} L dxdv!

influence the local velocity estimation via th, X', making
purely local expressions for the local velocity estimasion
impossible. We now make 2 assumptions. First, we assumeFor a fixedk, v, x;, and for allv’, x; with j # k, we
that the posterior probabilities of the vectors of the vectocan then move the integral right up to the product sign and
field given the past inputs factorize, implying that they cafntegrate, which leads to factors 1. The result is

be estimated independently from each other, P (v x [T o (16)
1:t
p(V. X[1'") | (10) 3 / / p(vi, X1 Vi, %) (Vo X T v,
:p(Vl,Xl,...,V[,X]“:l't) o Vi X
= Hp(vj,xjul:t) . Using 2 reasonable assumptions egs. 10 and 12, we have
j therefore arrived at a closed form eq. 16 for the local state

This is reasonable if one eg th'_n_ks of the VeCtorS_aS beinGsyyhich is true for most pairs of positions, since only seldctither
attached to different spatial positions, so that basically positions and velocities are able to influence a loeglx;.



prediction which together with the local update equation 9 The pattern assigment (i.e., the labeling) occurs in 3 steps
can now be used to calculate the local motion estimates1) Label measurement. Here, the match between the cur-
over time using a framework as motivated and introduced rent motion estimation and the expected motion pattern

in section IV-A. _ _ . generated from\/* is computed.

One remarks remain to be made at this point. Whereas the2) Spatiotemporal constraints. The labels compete with
Bayesian update eq. 9 works locally (ony, x; appear), the each other for a unique assignment to a mabié,
predictive prior eg. 16 is not, since nonlocal influencesare forcing a winner-take-all behaviour like for MST neu-
tegrated using the two-point state evolutje(v;, x;|v},, x},). rons (see section Il). In addition, recurrent interactions
Nevertheless, this state evolution is much easier to handle tend to assign similar labels for spatially neighbouring
than the fullp(V, X|V’, X’). Indeed, for an implementation particles, implementing Gestalt laws for label assign-
we will reducep(v;, x;|vy, %)) further, which can in many ment.

cases be done without causing harm to the velocity estima-3) Model adaptation and estimation. This occurs by min-
tions. On the other hand, eq. 16 should not be simplified to  imization of the difference between the motion pattern
much, since in the brain it may implicitly contain assump- generated from thé/*’s and the motion estimations
tions about the world that cause the velocity sensatioes, i. p(vi,x;|[T%") evaluated using the pattern assignment
it can be used to comprise knowledge about scene statistics probabilitiesp(1¥ | p(v;, x;[T5Y), M*).
and spatiotemporal correlations between velocity estimat ~ Tpe type of expected motion patterns depends from the
at different positions in subsequent timesteps. We will €0Mypplication area. Motion patterns can be very simple, like
back to this issue in the application examples of sectiofs V'e.g. for motion-based object segmentation, where it is as-
and V-C. sumed that an entire object has the same motion at all its
constituting locations. They can also be more complex, like
b) e.g. when searching for expanding patterns as are measured

a)
v for flow fields during egomotion, or rotating patterns as @ccu
— when we tilt our heads. Furthermore, motion patterns can
be imposed from domains that are unrelated with motion
RE processing itself, expressing that the system is e.g. éxjpec
c)
A

a particular dynamics in its retinal input because the oleser
is moving and the system knows about this from other
sources than visual motion estimation.

d) In sections V-B and V-C, we will show two examples
- _L of motion pattern extraction, one for layer separation and
- another one for egomotion compensation, based on the model
presented in the previous sections.
t

—
V. RESULTS AND APPLICATIONS

In the following subsections we show how our model can

Fig. 3. Time course of the motion selectivity of neurons in.MTe pattern 0€ used to simulate and explain experimental phenomena
a) ImO\tl)elrs to the right, but due rt]O the ?pertﬂrelproblem b) ;:l;wl? are  found in physiological and psychophysical measurements.
only able to see movement orthogonal to the line orientatian At first, PR .
the main activity is at neurons with orthogonal motion silétes, but after We have found that a broad range (_)f motion relate_d phenom
a time period of about 70 ms the activity starts to shift taisaneurons that €na can be at least reproduced with our model, like special
reflect the “true” object motion, as shown in d). motion illusions. Here we explain 2 selected effects, and
afterwards we present 2 more application oriented extessio

of our motion estimation framework.

C. Extraction of motion patterns

The result of the motion measurement and the sp& Psychophysical and experimental data
tiotemporal integration is the motion estimatipfv;, x;|I**) If a stimulus with oriented edges moves horizontally
(eqg. 9), which we coarsely localize in stage 2 of our motiomas shown in fig. 3 a), local motion detectors with small
processing model, eventually corresponding to area MT. receptive fields respond strongest if their selectivityuisetd
Sitting on top of this is our stage 3 (corresponding to are movement orthogonal to the line orientations, since they
MST), used for motion pattern extraction. Here, the systemre only able to “see” a very limited portion of the stimulus.
builds up a small number of “motion pattern model&’*  Only receptive fields at the edge endpoints (fig. 3 b) can
and the target is to estimate thebeling probability detect the true direction of motion. Interestingly, afteoat
& 1t k 70 ms, the neuronal activities in area MT begin to shift from
pUz |p(vi, i 1), MT) (17) the orthogonal towards the true direction, as shown in fig. 3 ¢
that a particle; (corresponding to a location in space with aAfter about 150 ms, only those neurons remain active whose
velocity vector attached to it) contributes to a motion @att selectivity is tuned to the true, horizontal motion, redesd
k, given the current motion estimation. of the orientation of the single edges.



a) Simulation b) Measurement

already moves into an opposite direction. It seems that

.§ 90%pe..s, § 90° outliers are suppressed until a certain threshold is rehche
g . g In figure 5 a) and b), we plotted the perceived vs. the real
S 700 G 7o proportionv,. /,; of points moving homogeneously into one
S S direction. We definev,. /., = >_ viight/ (2 vright+>_ Vieft)-
g g The perceivedr, /,; is gained from our model, by evaluating
5% ~ |IE*T ‘ ‘ the number of motion detectors “voting” for the right or the

' timtlaostepszo % T imer ™ left direction. In a), we see the hysteresis effect caused by

the recurrent connectivity and the spatiotemporal intigma
in the system. In b), we have switched off the recurrence and
the hysteresis effect vanishes.

¢) Population activity

O

» N ™ d) Visual stimulus
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Fig. 4. Resolution of ambiguous motion signals by spatigeral — — -—
50% 25% 0%

integration in our model. a) Time course of motion estimatiat 4 different | V;./; 100% 75%
positions of a moving bar stimulus. b) Comparison with anegixpentally
measured curve. c¢) Activity of the velocity hypercolumn &ir4 points. d)
The estimated motion plotted together with the stimulus.

Fig. 5. Simulation of the hysteresis effect for a gradualngigaof the
global direction of motion by direction inversion of singheints.

This reflects the fact that a spatiotemporal integration o®. Layering using affine motion patterns

curred that propagated information from the edge endpoints g, many application domains, planar continuous motion
towards the inner, more ambiguous parts of the edges.  patterns suffice. In this example, we restrict to 3 affine oroti

In fig. 4, we show the results of the neuronal activity fromyatterns and 3 corresponding labels. Fig. 6 shows the time
our model for a bar stimulus moving diagonally to the bottongorse of the label assignment and motion pattern estimatio
right. In &), we show the simulated time course of motioyocess. The original sequence is shown at the top row, the
estimations at 4 different positions of the stimulus. Thereu |ower 3 rows show the label assignment process. At the
for 70° can be compared with the experimentally measuregeginning (left column), motion patterns are unspecific and
curve b) from [6]. Below, in c), we show the activities atihe |ocations of the input are distributed evenly among the
3 selected times of the neuronal population encoding glipe|s.
velocities at 4 retinal positions, as marked on the bar in d) As explained in section IV-C, the motion estimation from
(the zero-velocity is at the center of each small diagrangection IV-B provides the basis for the label assignment. As
at the lower right quadrant we find the neurons responsivgon as the motion patterns differentiate, the labels ttart
for displacements to the lower right, etc.). It can be seegympete with each other. Those locations and velocitiets tha
how the activities refine and shrink with time so that aftepest match with a pattern then drive the label dynamicsnit ca
30 timesteps they encode the true diagonal velocity of thgs seen that the assignment to the tree occurs quite rapidly
stimulus. ésecond row from top), followed by the flower-bed (third

A psychophysical effect that can be nicely explaine ow) and the rest of the background (bottom row)
with our model is the motion-based hysteresis effect. In

this experiment, a display is presented with dots movinf- Egomotion compensation
homogeneously to one direction. With increasing time,lging When mobile robots move around irstatic environment,
dots are selected and their direction of motion invertedi) unthe projection of the environment onto the robot's cameras
all points move homogenously into the opposite directiomduces an optical flow that is exclusively caused by the
[12]. The setup is shown in the bottom row of fig. 5. egomotion of the robot. Additional sensing of the body move-
The perception of such a stimulus set exhibits a markedent via proprioception allows for depth estimation of the
hysteresis effect. Subjects report a sensated “homogenesuaene because of motion parallax. As a reverse operation to
motion”, meaning a sensated motion af points into the egomotion-based depth estimation, the expected optical flo
same direction, even if a considerable percentage of poirgenerated by egomotion can be inferred by combining body



Original

Fig. 6. “MPEG Flowergarden” sequence taken from a movingnles (top row). The different planes of the scene shiftzwrally with different speeds
depending on their depth: The tree moves fastest, the flbegrat intermediate speed and the house and the sky backgmawe very slowly. The system
separates the overall measured motion into 3 layers of affioton patterns, clearly segregating the different paftthe scene (bottom 3 rows).

movement and scene depth information using depth cuggo account, so that relative object flow vectors that are
like e.g. extracted from binocular disparity. Unforturdgtéen  based on unreliable depth and motion information are ne-
most cases the environment is not static but contains movigdected. The result is shown at the rightmost picture of ggur
objects. These then induce optical flow components onto tie (Relative object floy In this case, the robot (ASIMO)
robot’s cameras which deviates from the optical flow as ivas moving backwards, resulting in a concentric egomotion-
is predicted from egomotion for static scenes. The overdbased optical flow and a rightwards oriented estimated ego-
optical flow is therefore always caused by a combinatiomotion flow at the arm of the person, while the arm itself
of ego- and object motion that cannot be separated withoatso moved rightwards. Therefore, in the overall flow, the
depth and body movement information. arm movement is hard to distinguish, whereas the egomotion
To tackle the problem of extracting moving objects in a&ompensation removes the egomotion and extracts the arm
visual scene despite egomotion of the observer, we set ap the only moving part of an otherwise static scene.
a structure as depicted in fig. 7, allowing the system to

compensate for egomotion effects. We estimate the image VI. CONCLUSIONS
flow induced by egomotion assuming a static scene by . _
utilizing the robot’s kinematics and depth informatiéfrom In this paper, we have presented a framework for motion

stereo vision with input data streandd” ! 111} 4 (see estimation based on ideas originated from biological find-
Egomotion flowin fig. 7). According to this predicted flow iNgs and psychophysical experiments, which indicate that
each imagel'*! is warped so that we get an egoﬂOW_the brain uses a spatiotemporal integration mechanism to
compensated imagié»”l. All motion estimations then oc- overcome ambiguities inherent in the sensory process. We
cur on the basis of the compensated image, so that Omﬁve shown how such a model can indeed be used for mo-
the relative optical flow is extracted. With the continuoustion integration to overcome the limitations imposed by the
image streamg I’ I1:+1} as input data to our motion aperture problem. We consider the model to be sufficiently
estimation system we are able to extract, integrate artgh to account for a large variety of psychophysical and
predict the optical flow induced by moving objects (separatePhysiological findings on motion processing in the brairt, ye
from the egoflow) with all the advantages of probabilisti¢ufficiently simple so that it can be implemented efficiently
spatiotemporal filtering mentioned beforehand (Betative Which makes it applicable to practical applications withlre
object flowin fig. 7 where for comparison we also show thevorld images.
Overall flowmeasured without egomotion compensation).

Additionally, we take the reliability of the depth and ACKNOWLEDGMENTS
motion estimates based on the (un)certainty of the proibabil

density functionsp(v, x|T“1:¢, T14+1) and p(d, x [T, T4t) We would like to thank U. Koerner for support and advice

with figure 1 and researching the biological basis of motion
4r/l: right/left image processing.
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Fig. 7. Egomotion-compensated motion estimation systetesied with ASIMO. We extract depth information from dispaand use this together with
robot’s kinematics to calculate the predicted retinal flaw $tatic scenes. Objects which move in the scene can therttzeted by their deviation from
the predicted flow.
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