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Biological Motion Estimation with Spatiotemporal Integration

J. Eggert, V. Willert and J. Schmüdderich

Abstract— We present a framework and study a model for
biologically inspired motion estimation. It comprises several
“areas” (corresponding roughly to V1-MT) which locally ana-
lyze motion input at different levels of granularity, coupled to
functionally distinct areas which concentrate on the extraction
of more global motion patterns (corresponding e.g. to MST).
The areas are coupled reciprocally with each other, with
“higher” areas providing prior knowledge or constraints th at
bias the processing at lower areas. In addition, within each
area, spatial and temporal integration, mediated by lateral
connections and internal dynamics, is used to resolve the
inherent ambiguity of motion signals and to take advantage
of coherence in naturally occurring stimuli. Our model leads
to results that are quantitatively comparable to state-of-the-
art techniques. We show how several psychophysical as well as
physiological effects observed during motion processing can be
explained by our model. We also show implementation results
of our model in the application contexts of motion segmentation
and egomotion compensation for ASIMO.

I. I NTRODUCTION

Despite many years of progress, motion processing con-
tinues to puzzle the mind of researchers involved in under-
standing vision. Basic aspects such as local motion filtering
have been widely studied (see e.g. [10], [11]). What is most
striking about motion processing is its observed temporal
dynamics. Since we are dealing with motion, this seems like
a trivial statement, but in fact, it is not. What we address here
is the capability of the biological motion extraction system
of primates to accumulate motion information over time to
make sense of an otherwise highly ambiguous input. As an
example, single neurons exhibit responses with a time-course
that could be interpreted as: “Measure motions locally first,
then look if they are consistent and can be combined with
measurements of other neurons”.

The selective integration of motion signals has to occur
by means of reciprocal influences between neurons and
areas. A single neuron receiving sensory feedforward input
is tied up by its aperture problem - i.e., it only sees a very
restricted part of the visual world and therefore is only able
to give rough guesses about occurring motion direction and
speed. Subsequent areas may collect the signals from several
neurons of lower levels and may have less restrictions on the
region of the visual world they analyse. Nevertheless, with
pure feedforward integration they would simplyaverage,
loosing access to subtle details hidden in the ambiguity of
the responses from lower level neurons. One way to alleviate
this problem is to allow reciprocal information transfer in
the sense that lower level neurons are able to interprete their
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measurements in the context of the knowledge of the higher
level neurons. Similarly, in a single area, a neuron is in-
fluenced by the activities of its neighbours. Therefore, lower
and higher areas of motion processing as well as the neurons
within one area have to work in concert to make sense of
a visual scene. In addition, other areas unrelated to motion
processing (e.g., neurons providing information about spatial
structures, borders, and border ownerships) could influence
motion processing by the same means, providing biases that
allow a better interpretation of the motion stimulus. This is
what mid-level motion processingis largely about.

What are necessary ingredients for motion systems with
reciprocal biasing and context integration? First of all, it
would be necessary to represent separately the different
types of information. The biasing (via top-down or lateral
connections) is a sort ofprediction that incorporates the
network context. In addition, we need a separate observation
resp.measurementthat is provided mainly by feedforward
connections, and finally the synthesizingestimation that
improves the mesaurement by taking the prediction into
account. This of course resembles very much the Bayesian
foundations of prior, likelihood and posterior, and indeed,
we will formulate part of the mathematics of our model
using probabilistic arguments. The foundations for parts of
this have been laid out already some years ago by Burgi,
Yuille and Grzywacz [2], but astonishingly did not find entry
into the mainstream models of biologically inspired visual
motion processing1. In this paper, we will show that indeed
we can build a sort of “canonical” model of mid-level visual
motion processing, including interacting low and high level
motion extracting areas as well as areas for the analysis of
large motion patterns, based on a mixture of probabilistic and
connectionist ideas. Nearly all assumptions needed to do this
actually have their origin in the spatiotemporal structureof
the motion inputs caused by the properties of the underlying
physical world, which the brain probably discovered long
ago. We will also show that the performance of such a system
scales up to be used for real scenes and in real applications,
and how our model can be used to explain well-known vision
phenomena related to motion perception.

II. M OTION PROCESSING IN THE BRAIN

Visual motion processing is an important resource of
informations that have a strong impact on behavioral deci-
sions both in humans and monkeys. Similarly, for artificial
systems, motion signals play a prominent role in interpreting
a dynamic visual world. Motion estimations give rise to the

1A reason might be the very probabilistic as well as theoretical focus of
[2].
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Fig. 1. Brain areas and feedforward information trasnferring connectivity
involved in motion processing. Highlighted are 3 stages, which can be
coarsely mapped to the model presented in this paper.

detection and perception of moving objects, as well as to the
perception of self-motion. Motion perception also constitutes
the basis for the control of eye movements, both for smooth
object pursuit as well as for follow-up saccades.

Moving objects can be better segregated from a back-
ground (motion-based pop-out effects) than non-moving
ones. The perception of a 2D shape is enhanced, both at
its borders (kinetic boundaries and boundary continuation)
as well as at its surface (by grouping and filling-in based on
motion coherence effects), making its perception more vivid
than in the stationary case. The 3D perception of shape is also
enhanced by motion signals, and depth-from-motion directly
contributes to estimations about 3D aspects of a scene.

It is commonly agreed that visual areas V1, MT and MST
contribute to human motion processing, establishing a sortof
“motion pathway”. This involves a number of anatomically
interconnected visual areas and their subdivisions along the
dorsal processing streams in the brain [1]. Mainly fed by
neurons of the magnocellular type of the LGN (which exhibit
larger spatial receptive fields, higher temporal resolution
and higher contrast sensitivity than their parvocellular coun-
terparts), motion processing starts in neurons from layers
4 (4cα) and 6 in V1 [4]. This is the earliest stage (if
processing starts at the eyes) that some neurons exhibit a
selectivity both for orientation and direction of a stimulus;
i.e., they have a response characteristic that can be described
by a spatiotemporal receptive field. Motion processing then
continues preferentially in the thick cytochrome oxidase
stripes in V2, and areas V3, MT, MST, and possibly lateral

and ventral intraparietal areas LIP and VIP [4]. From these
areas, motion information then influences distinct portions of
the prefrontal and premotor cortices contributing to higher
cognitive activity and behaviour generation.

Areas V1, V2 and V3 constitute complementary areas
for low-level motion measurement. The neurons are largely
arranged in a retinotopic order, with varying receptive field
sizes and already some degree of featural specialization in
the different areas. Motion-selective neurons from these areas
exhibit sensitivity for motion direction, but little sensitivity
for motion speed [8].

Neurons from MT are also arranged retinotopically and
exhibit direction selectivity. They have receptive field sizes
that are about tenfold those of V1 neurons. In addition,
they are more selective to different motion speeds [7]. What
makes MT neurons special is that they do not only respond
to their locally measurable motion, but take information
of the context into account. So rather than responding to
locally measurable motion, they integrate motion information
from lower areas and MT itself to arrive at a consistent
motion perception. In addition, it is assumed that they also
incorporate information from other (e.g., non-motion related)
pathways and higher processing areas.

Area MT projects onto area MST, which has even larger
receptive fields. Among other things, MST neurons respond
selectively to large-scale motion patterns, like expansion
and rotation, which can cover the entire visual field. If
multiple different local motions are present, the MST neurons
for the different motions respond stronger than their MT
counterparts, with MT exhibiting a more pronounced winner-
takes-all characteristic [9]. Grouping processes seem to play
a more prominent role in MST than in MT, but the details
of the MST functionality are still to be investigated. It is
further assumed that MST plays a role in the control of eye
movements and egomotion-related estimations.

III. A 3- STAGE CANONICAL MOTION PROCESSING MODEL

Inspired from the biological findings, we built a model
for human motion processing that consists of 3 main stages.
In a first stage, local motion measurements are extracted
from the visual signal. In a second stage, the local mo-
tion measurements are combined over time and space to
take context effects into account. Finally, in a third stage,
characteristic motion patterns are analyzed and a labelingof
spatial positions with respect to the motion patterns occurs.
Figure 2 shows the 3 stages of the network together with the
information flow between the stages.

The task of the first stage is the detection of local
changes in the visual scene and a measurement of the
local displacements that may have led to these changes.
Here, a system encounters the full range of ambiguities that
are inherently present during motion estimation, caused by
the aperture problem, physical overlapping, transparencyof
moving plaids and lack of measurable texture. What has to
be solved is the correspondence problem: Which part of the
scene is moving where? Of course it is not possible to solve
this problem without taking into account further information.
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Fig. 2. The 3 stages of the motion estimation framework. In a first stage,
local motion measurements are extracted from the visual signal. In a second
stage, the local motion measurements are integrated over time and space. In
a third stage, spatial positions are labeled (here: labels1, 2, 3) according to
their participation in distinct motion patterns. The notations on the stages
are used in the subsequent explanatory sections IV-A, IV-B and IV-C.

Therefore, in the first stage, we do not intend to solve this
problem but instead represent the results in such a way
that later stages may be able to handle it: We use “motion
probabilities” to explicitly incorporate the ambiguitiesinto
the measurement process.

The first stage would correspond to the motion-sensitive
entry neurons in areas V1, V2 and V3. How exactly the local
measurement process occurs has previously been thoroughly
investigated in model studies of biological experiments, but
this is not considered to be of crucial importance here, as
long as we can start with a “sufficiently good” first motion
measurement. Moreover, it is also of little importance which
signal we take to start with, like e.g. the intensity of the
image, aspects of its color, or visual data preprocessed in
any other way.

Due to the ambiguities, it is difficult to directly estimate
the motion of larger components of the scene, such as
moving objects, from the local motion measurements of
stage 1. Higher level motion estimations therefore have to
rely on grouping the local signals. This occurs in a sort
of “binding” process, by integrating measurements that are
consistent with object motion hypotheses and segregating
them from inconsistent ones. In our model, this occurs by
means of recurrent connectivity and a spatiotemporal integra-
tion of the local measurements in an area that we consider
as functionally homologous to visual processing area MT.
The spatiotemporal integration incorporates prior knowledge
about motion measurement statistics and can be regarded as

an implementation of the Gestalt law of combined common
fate and good continuation (coupling space and time in a
consistent way). Consequences are that dynamic aspects are
introduced, leading to motion estimations that build up and
improve over time.

Finally, in a third stage homologous to MST, we use the
motion estimations from the area MT and analyze different
global motion patterns. This includes the job of sorting
out which motion estimations and which spatial positions
are recruited by any motion pattern, i.e., we are dealing
with a binding process between the motion features and the
motion patterns. Such a binding process is usually divided
conceptually into the processes of segregation (parsing) and
integration (grouping) of the local measurements, with the
aim to arrive at a figure-based scene description where
elementary visual “objects” can be separated from each other.
The integration process can by its own be divided into two
subprocesses, one dealing with (I) propagation of information
between local motion measurements to overcome ambiguities
inherent in the sensory process, and the other one dealing
with (II) the segmentation of regions of movements that are
interpretable as object motions from the rest of the scene.
In our model, the segregation occurs by using a labeling
process, attributing labels to different positions according to
their motion measurements and their consistency with the
motion pattern. Recurrent interactions are very important
here, since they mediate the propagation of information and
the assignment of the labels via competition that constitutes
the basis for the segmentation. Here again, prior knowledgeis
incorporated in terms of Gestalt laws of good continuation,
reflecting that points that are retinotopically close to each
other and have similar labels usually belong to the same
object and move according to a certain motion pattern.

IV. M ODEL DESCRIPTION

A. Local motion estimation

Disregarding the exact biological mechanisms of local
motion estimation, we can assume that at timet, for every
stream of incoming image dataI1, ..., It resp. incoming
image patch of small size around a retinotopic location
x, typically a number of local motion detectors is used
to measure the translational motions for different velocities
and directionsv. This means that for eachx, velocity
measurements are extracted using a local neighbourhood of
x with a predefined aperture size to get estimations

ρ(v,x|I1, ..., It) (1)

for the different velocities, in contrast to models that extract a
single velocity estimate. The advantage of such an approach
is that the system is provided with information about the
uncertainties inherent in the local measurements, such as
occurring in cases of ambiguous and multiple motions.
Subsequent grouping processes can then combine the local
measurements of different positionsx in a way that takes
their uncertainties into account.



If we are working with discrete timesteps and two-frame
estimations, eq. 1 reads as the probability that a velocity
v is locally present around locationx at time t under the
assumption of image dataIt and previous timesteps image
data I

1:t−1, with I
1:t−1 := I

1, ..., It−1 being the set of all
past measurements up to timet − 1.

Eq. 1 constitutes a way ofdistributed, or population coding
of the local motion estimates. This stands in contrast to direct
measurements of velocity and direction of motion like in
gradient optical flow approaches [3], [5]. The whole idea is
to use the full information available in the population codeto
improve subsequent motion estimation processes that rely on
this information. The population code can be seen in analogy
to the sets of motion-selective neurons forming cortical maps
and hypercolumns, with allρ(v|I1:t,x) for fixed x and t
(resp.I1:t) being the output of a hypercolumn of motion-
sensitive neurons looking at a common retinotopic location
x with the same aperture.

In a Bayesian interpretation, the estimationρ(v,x|I1:t) is
gained by combining a likelihood with a prior, in a way that

ρ(v,x|I1:t) ∝ ρ(It|v,x, I1:t−1) ρ(v,x) , (2)

with the corresponding normalization ofρ(v,x|I1:t). The
likelihood constitutes the actual measuring process and indi-
cates how certain/probable a measurement of local image
data I

t is around the retinotopic positionx for a given
assumed physical velocityv. In the biological view of fig. 1,
the likelihood corresponds to the activity of the motion
selective cells from areas V1, V2 and V3. This is combined
with a velocity prior ρ(v,x) (something like a “top-down
expectation” in the neural sense) to get the Bayes’ posterior
in the usual way, expressed in the activity of the cells of area
MT.

In addition, local motion signals are propagated non-
locally within MT from one cell to another to be able to
resolve the ambiguities inherently contained in the mea-
surement process. This propagation sometimes has to occur
over extended retinotopic regions, if there is e.g. a large
object with a rigid-body motion pattern. The propagation can
be seen to occur over space (spatial integration) and time
(temporal prediction), in a way that it builds up iteratively
by spreading from the areas where the motion measurement
is not ambiguous to areas with larger uncertainties, takingas
relay points the already disambiguated regions.

Both spatial integration and temporal prediction influence
the Bayesian posterior calculation by modification of the
prior. This means that instead of 2, we will use

ρ(v,x|I1:t) ∝ ρ(It|v,x, I1:t−1) ρt(v,x, I1:t−1) (3)

with a prior ρt(v,x, I1:t−1) that depends on the inputs
at previous timestepsI1:t−1. The prior is calculated anew
for each timestep depending on the spatial configuration of
the locally measured motions and the temporal coherence
assumptions.

The spatiotemporal integration enhances coherence and
causality as inherent properties of motion-related visual

signals. Spatial coherence is one important cue for the visual
system, which can be seen in analogy to contour integration
processes. In motion estimation, it seems reasonable for the
visual system to assume that sets of local motion detectors
with receptive fields that are close to each other tend to
arrive at similar measurement results, both because their
apertures are overlapping and because the motion itself may
be spatially extended. Temporal prediction is the second
source of information which can be used to refine the
local motion measurements. Ambiguous motion information
can sometimes be resolved by temporal coherence. The
underlying assumption is that motion is usually temporally
continuous, that is, to a first approximation the motion will
continue with the same velocity and direction at the next
timestep. Combining the two ideas of spatial integration and
temporal prediction, we get

ρt(v,x, I1:t−1) :=

∫
x′

W
x

x′ ρ(v,x′ − v∆t|I1:t−1) dx′ (4)

as a spatiotemporally integrating prior to eq. 3. It expresses
that the cells from MT expect velocities that are gained
by selectively averaging (Wx

x′) the results from previous
timesteps that are compatible with the assumption of tem-
poral coherence (x′ − v∆t|I1:t−1).

B. Full derivation of the spatiotemporal integration in MT

The spatiotemporal integration according to eq. 4 isone
(and additionally, the simplest) possible choice of incor-
porating predictions via recurrent connectivity into motion
processing. In this section, we present the full derivationof
how such an integration can be theoretically justified. We
start from an overall state vector

S := {V,X} (5)

that comprises thevector field, i.e., the set of local velocities
V := {vi}i at all spatial locationsX := {xi}i (with the
index i = 1 . . . I running overI “particles” with attached
positions and velocities, like e.g. in a retinotopic map, where
the particlesi represent a number of motion selective cells
with fixed retinotopic receptive field locationsxi).

The problem of probabilistic motion estimation can be
seen as a particular case of the estimation of the state of
a system that changes over time using a series of (noisy)
measurements. The dynamic state estimation can be achieved
by constructing the posterior probability density function of
the state based on all available information. The process
of state estimation usually involves two stages:prediction
and update, and occurs at every timestep when a new
measurement is received.

The predictive prior can then be calculated (for a discrete
state space and timesteps numbered1, . . . , t) according to2

ρt(V,X|I1:t−1) = (6)∫
V′

∫
X′

ρ(V,X|V′,X′) ρ(V′,X′|I1:t−1) dX′dV′

2Usually known as the Chapman-Kolmogorov equation



This equation expresses that the new prediction for the
velocity probability density is given by the last timestep
t − 1 estimate weighted with the transition probability
ρ(V,X|V′,X′) from the last timestep velocityV′ to the
new velocity V for all combinations of positions. The
probabilistic model of the state evolutionρ(V,X|V′,X′)
is assumed to be known and describes the knowledge about
the state transitions from one timestep to the next.

At timestept, a new measurementIt becomes available,
and this can be used to update the state estimation from the
predictive prior by combining it with the velocity likelihood
via Bayes’ rule. We therefore arrive at the update equation
(this is the analogous equation to eq. 3)

ρ(V,X|I1:t) ∝ ρ(It|V,X, I1:t−1) ρt(V,X|I1:t−1) . (7)

This involves the measurement modelρ(It|V,X, I1:t−1)
indicating the likelihood that image dataIt is measured if
local velocitiesV at X and previous timestep measurements
I
1:t−1 are assumed. Spatial correlations between velocities

at positionsx andx
′ are in this case hidden in the state evo-

lution model ρ(V,X|V′,X′) and the measurement model
ρ(It|V,X, I1:t−1).

Although it is beneficial to have the analytical description
of the time course of the full motion model for the entire
vector field with eqs. 6 and 7, it is unfeasible to use this
equation directly to calculate the local velocities. Therefore,
we now care how we can use the full motion model forV,X
to get expressions for the singlevi, xi. For each vector of
the vector field (consisting of velocityvi and positionxi),
marginalizing out (i.e., integrating over) all thevj , xj with
j 6= i we can set up a local predictive prior in analogy to the
spatiotemporally integrating prior from eq. 4

ρt(vi,xi|I
1:t−1) = (8)∫

V′

∫
X′

ρ(vi,xi|V
′,X′) ρ(V′,X′|I1:t−1) dX′dV′ ,

and in analogy to the Bayes estimation eq. 3 we get the
posterior for the local vectors according to

ρ(vi,xi|I
1:t) ∝ ρ(It|vi,xi, I

1:t−1) ρt(vi,xi|I
1:t−1) . (9)

What we see from eq. 8 is that all other past velocity
estimations (i.e., the entire vector field) very annoyingly
influence the local velocity estimation via theV′, X′, making
purely local expressions for the local velocity estimations
impossible. We now make 2 assumptions. First, we assume
that the posterior probabilities of the vectors of the vector
field given the past inputs factorize, implying that they can
be estimated independently from each other,

ρ(V,X|I1:t) (10)

= ρ(v1,x1, . . . ,vI ,xI |I
1:t)

=
∏
j

ρ(vj ,xj |I
1:t) .

This is reasonable if one e.g. thinks of the vectors as being
attached to different spatial positions, so that basicallywe

are saying here that estimations at one position can be made
independently of estimations at another position3.

Second, we start with a particle-to-particle state evolution
(i.e., a description of how the statev′

j , x
′

j of a particlej at
the last timestep influences the statevi, xi of a particlei at
the current timestep)

ρ(vi,xi|v
′

j ,x
′

j) , (11)

gained from marginalizingρ(V,X|V′,X′), and assume that
the state evolution model for a single vectori can be
factorized according to

ρ(vi,xi|v
′

1,x
′

1, . . . ,v
′

I ,x
′

I) (12)

= 1 −
∏
k

[1 − ρ(vi,xi|v
′

k,x′

k)]

which, by multiplying out, can be approximated by

ρ(vi,xi|v
′

1,x
′

1, . . . ,v
′

I ,x
′

I) (13)

≈
∑

k

ρ(vi,xi|v
′

k,x′

k) + termsO(ρ2)

since higher combinations ofρ always include some very
low probabilities between inconsistent pairs of velocities and
positions and can therefore be neglected.

This is reasonable if one thinks that the local statevi, xi

is gained from the previous local statev′

1, x
′

1 or v
′

2, x
′

2 or
... .

Starting now from eq. 8 (predictive prior for a single
velocity vector) we make use of the factorization property
eq. 10 for theρ(V′,X′|I1:t−1) so as to get

ρt(vi,xi|I
1:t−1) = (14)∫

v′

1

∫
x′

1

. . .

∫
v′

I

∫
x′

I

ρ(vi,xi|v
′

1,x
′

1, . . . ,v
′

I ,x
′

I) ×

×
∏
j

ρ(v′

j ,x
′

j |I
1:t−1) dx′

Idv′

I . . . dx′

1dv′

1

In a second step, we use the factorization property eq. 12
resp. its approximation eq. 13 with eq. 14 to arrive at

ρt(vi,xi|I
1:t−1) ∝ (15)∫

v′

1

∫
x′

1

. . .

∫
v′

I

∫
x′

I

∑
k

ρ(vi,xi|v
′

k,x′

k) ×

×
∏
j

ρ(v′

j ,x
′

j |I
1:t−1) dx′

Idv′

I . . . dx′

1dv′

1 .

For a fixedk, v
′

k, x
′

k, and for allv′

j , x
′

j with j 6= k, we
can then move the integral right up to the product sign and
integrate, which leads to factors 1. The result is

ρt(vi,xi|I
1:t−1) ∝ (16)∑

k

∫
v′

k

∫
x′

k

ρ(vi,xi|v
′

k,x′

k)ρ(v′

k,x′

k|I
1:t−1) dx′

kdv′

k .

Using 2 reasonable assumptions eqs. 10 and 12, we have
therefore arrived at a closed form eq. 16 for the local state

3Which is true for most pairs of positions, since only selected other
positions and velocities are able to influence a localvi, xi.



prediction which together with the local update equation 9
can now be used to calculate the local motion estimates
over time using a framework as motivated and introduced
in section IV-A.

One remarks remain to be made at this point. Whereas the
Bayesian update eq. 9 works locally (onlyvi, xi appear), the
predictive prior eq. 16 is not, since nonlocal influences arein-
tegrated using the two-point state evolutionρ(vi,xi|v

′

k,x′

k).
Nevertheless, this state evolution is much easier to handle
than the fullρ(V,X|V′,X′). Indeed, for an implementation
we will reduceρ(vi,xi|v

′

k,x′

k) further, which can in many
cases be done without causing harm to the velocity estima-
tions. On the other hand, eq. 16 should not be simplified to
much, since in the brain it may implicitly contain assump-
tions about the world that cause the velocity sensations, i.e.,
it can be used to comprise knowledge about scene statistics
and spatiotemporal correlations between velocity estimations
at different positions in subsequent timesteps. We will come
back to this issue in the application examples of sections V-B
and V-C.

v

v
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Fig. 3. Time course of the motion selectivity of neurons in MT. The pattern
a) moves to the right, but due to the aperture problem b) the neurons are
only able to see movement orthogonal to the line orientations. c) At first,
the main activity is at neurons with orthogonal motion selectivities, but after
a time period of about 70 ms the activity starts to shift towards neurons that
reflect the “true” object motion, as shown in d).

C. Extraction of motion patterns

The result of the motion measurement and the spa-
tiotemporal integration is the motion estimationρ(vi,xi|I

1:t)
(eq. 9), which we coarsely localize in stage 2 of our motion
processing model, eventually corresponding to area MT.

Sitting on top of this is our stage 3 (corresponding to area
MST), used for motion pattern extraction. Here, the system
builds up a small number of “motion pattern models”Mk

and the target is to estimate thelabeling probability

ρ(lki |ρ(vi,xi|I
1:t), Mk) (17)

that a particlei (corresponding to a location in space with a
velocity vector attached to it) contributes to a motion pattern
k, given the current motion estimation.

The pattern assigment (i.e., the labeling) occurs in 3 steps:
1) Label measurement. Here, the match between the cur-

rent motion estimation and the expected motion pattern
generated fromMk is computed.

2) Spatiotemporal constraints. The labels compete with
each other for a unique assignment to a modelMk,
forcing a winner-take-all behaviour like for MST neu-
rons (see section II). In addition, recurrent interactions
tend to assign similar labels for spatially neighbouring
particles, implementing Gestalt laws for label assign-
ment.

3) Model adaptation and estimation. This occurs by min-
imization of the difference between the motion pattern
generated from theMk ’s and the motion estimations
ρ(vi,xi|I

1:t) evaluated using the pattern assignment
probabilitiesρ(lki |ρ(vi,xi|I

1:t), Mk).
The type of expected motion patterns depends from the

application area. Motion patterns can be very simple, like
e.g. for motion-based object segmentation, where it is as-
sumed that an entire object has the same motion at all its
constituting locations. They can also be more complex, like
e.g. when searching for expanding patterns as are measured
for flow fields during egomotion, or rotating patterns as occur
when we tilt our heads. Furthermore, motion patterns can
be imposed from domains that are unrelated with motion
processing itself, expressing that the system is e.g. expecting
a particular dynamics in its retinal input because the observer
is moving and the system knows about this from other
sources than visual motion estimation.

In sections V-B and V-C, we will show two examples
of motion pattern extraction, one for layer separation and
another one for egomotion compensation, based on the model
presented in the previous sections.

V. RESULTS AND APPLICATIONS

In the following subsections we show how our model can
be used to simulate and explain experimental phenomena
found in physiological and psychophysical measurements.
We have found that a broad range of motion-related phenom-
ena can be at least reproduced with our model, like special
motion illusions. Here we explain 2 selected effects, and
afterwards we present 2 more application oriented extensions
of our motion estimation framework.

A. Psychophysical and experimental data

If a stimulus with oriented edges moves horizontally
as shown in fig. 3 a), local motion detectors with small
receptive fields respond strongest if their selectivity is tuned
to movement orthogonal to the line orientations, since they
are only able to “see” a very limited portion of the stimulus.
Only receptive fields at the edge endpoints (fig. 3 b) can
detect the true direction of motion. Interestingly, after about
70 ms, the neuronal activities in area MT begin to shift from
the orthogonal towards the true direction, as shown in fig. 3 c.
After about 150 ms, only those neurons remain active whose
selectivity is tuned to the true, horizontal motion, regardless
of the orientation of the single edges.
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Fig. 4. Resolution of ambiguous motion signals by spatiotemporal
integration in our model. a) Time course of motion estimations at 4 different
positions of a moving bar stimulus. b) Comparison with an experimentally
measured curve. c) Activity of the velocity hypercolumn forall 4 points. d)
The estimated motion plotted together with the stimulus.

This reflects the fact that a spatiotemporal integration oc-
curred that propagated information from the edge endpoints
towards the inner, more ambiguous parts of the edges.

In fig. 4, we show the results of the neuronal activity from
our model for a bar stimulus moving diagonally to the bottom
right. In a), we show the simulated time course of motion
estimations at 4 different positions of the stimulus. The curve
for 70◦ can be compared with the experimentally measured
curve b) from [6]. Below, in c), we show the activities at
3 selected times of the neuronal population encoding all
velocities at 4 retinal positions, as marked on the bar in d)
(the zero-velocity is at the center of each small diagram,
at the lower right quadrant we find the neurons responsive
for displacements to the lower right, etc.). It can be seen
how the activities refine and shrink with time so that after
30 timesteps they encode the true diagonal velocity of the
stimulus.

A psychophysical effect that can be nicely explained
with our model is the motion-based hysteresis effect. In
this experiment, a display is presented with dots moving
homogeneously to one direction. With increasing time, single
dots are selected and their direction of motion inverted, until
all points move homogenously into the opposite direction
[12]. The setup is shown in the bottom row of fig. 5.

The perception of such a stimulus set exhibits a marked
hysteresis effect. Subjects report a sensated “homogeneous
motion”, meaning a sensated motion ofall points into the
same direction, even if a considerable percentage of points

already moves into an opposite direction. It seems that
outliers are suppressed until a certain threshold is reached.

In figure 5 a) and b), we plotted the perceived vs. the real
proportionvr/rl of points moving homogeneously into one
direction. We definevr/rl =

∑
vright/(

∑
vright+

∑
vleft).

The perceivedvr/rl is gained from our model, by evaluating
the number of motion detectors “voting” for the right or the
left direction. In a), we see the hysteresis effect caused by
the recurrent connectivity and the spatiotemporal integration
in the system. In b), we have switched off the recurrence and
the hysteresis effect vanishes.
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Fig. 5. Simulation of the hysteresis effect for a gradual change of the
global direction of motion by direction inversion of singlepoints.

B. Layering using affine motion patterns

For many application domains, planar continuous motion
patterns suffice. In this example, we restrict to 3 affine motion
patterns and 3 corresponding labels. Fig. 6 shows the time
course of the label assignment and motion pattern estimation
process. The original sequence is shown at the top row, the
lower 3 rows show the label assignment process. At the
beginning (left column), motion patterns are unspecific and
the locations of the input are distributed evenly among the
labels.

As explained in section IV-C, the motion estimation from
section IV-B provides the basis for the label assignment. As
soon as the motion patterns differentiate, the labels startto
compete with each other. Those locations and velocities that
best match with a pattern then drive the label dynamics. It can
be seen that the assignment to the tree occurs quite rapidly
(second row from top), followed by the flower-bed (third
row) and the rest of the background (bottom row)

C. Egomotion compensation

When mobile robots move around in astaticenvironment,
the projection of the environment onto the robot’s cameras
induces an optical flow that is exclusively caused by the
egomotion of the robot. Additional sensing of the body move-
ment via proprioception allows for depth estimation of the
scene because of motion parallax. As a reverse operation to
egomotion-based depth estimation, the expected optical flow
generated by egomotion can be inferred by combining body
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Fig. 6. “MPEG Flowergarden” sequence taken from a moving observer (top row). The different planes of the scene shift horizontally with different speeds
depending on their depth: The tree moves fastest, the flower-bed at intermediate speed and the house and the sky background move very slowly. The system
separates the overall measured motion into 3 layers of affinemotion patterns, clearly segregating the different parts of the scene (bottom 3 rows).

movement and scene depth information using depth cues
like e.g. extracted from binocular disparity. Unfortunately, in
most cases the environment is not static but contains moving
objects. These then induce optical flow components onto the
robot’s cameras which deviates from the optical flow as it
is predicted from egomotion for static scenes. The overall
optical flow is therefore always caused by a combination
of ego- and object motion that cannot be separated without
depth and body movement information.

To tackle the problem of extracting moving objects in a
visual scene despite egomotion of the observer, we set up
a structure as depicted in fig. 7, allowing the system to
compensate for egomotion effects. We estimate the image
flow induced by egomotion assuming a static scene by
utilizing the robot’s kinematics and depth informationd from
stereo vision with input data streams{Ir,1:t, Il,1:t} 4 (see
Egomotion flowin fig. 7). According to this predicted flow
each imageIl,t+1 is warped so that we get an egoflow-
compensated imagêIl,t+1. All motion estimations then oc-
cur on the basis of the compensated image, so that only
the relative optical flow is extracted. With the continuous
image streams{Il,1:t, Îl,1:t+1} as input data to our motion
estimation system we are able to extract, integrate and
predict the optical flow induced by moving objects (separated
from the egoflow) with all the advantages of probabilistic
spatiotemporal filtering mentioned beforehand (seeRelative
object flowin fig. 7 where for comparison we also show the
Overall flowmeasured without egomotion compensation).

Additionally, we take the reliability of the depth and
motion estimates based on the (un)certainty of the probability
density functionsρ(v,x|Il,1:t, Îl,1:t+1) and ρ(d,x|Ir,t, Il,t)

4r/l: right/left image

into account, so that relative object flow vectors that are
based on unreliable depth and motion information are ne-
glected. The result is shown at the rightmost picture of figure
7 (Relative object flow). In this case, the robot (ASIMO)
was moving backwards, resulting in a concentric egomotion-
based optical flow and a rightwards oriented estimated ego-
motion flow at the arm of the person, while the arm itself
also moved rightwards. Therefore, in the overall flow, the
arm movement is hard to distinguish, whereas the egomotion
compensation removes the egomotion and extracts the arm
as the only moving part of an otherwise static scene.

VI. CONCLUSIONS

In this paper, we have presented a framework for motion
estimation based on ideas originated from biological find-
ings and psychophysical experiments, which indicate that
the brain uses a spatiotemporal integration mechanism to
overcome ambiguities inherent in the sensory process. We
have shown how such a model can indeed be used for mo-
tion integration to overcome the limitations imposed by the
aperture problem. We consider the model to be sufficiently
rich to account for a large variety of psychophysical and
physiological findings on motion processing in the brain, yet
sufficiently simple so that it can be implemented efficiently
which makes it applicable to practical applications with real-
world images.
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