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Abstract 
Semantic systems for the representation of declara-
tive knowledge are usually unconnected to neuro-
biological mechanisms in the brain. In this paper 
we report on efforts to bridge this gap by proposing 
a neural-symbolic network based on processing 
principles of the cortical column. We show how a 
locally controlled activation spread on conceptual 
nodes leads to bottom-up and top-down processing 
streams which allow for feature inheritance, con-
text effects and the generation of predictions. 

1 Introduction 
We aim at building a biological motivated relational repre-
sentation for objects and events, which can be used for basic 
perceptual tasks like categorization or generation of        
hypotheses and expectations. For that purpose we developed 
a graphical network structure which may be classified as a 
unified system according to the taxonomy introduced by 
Lallement et al. [1995]. Concepts are represented using 
network nodes in a distributed manner with their constitut-
ing parts and properties represented at different nodes. 
These nodes are uniform units meaning that the same type 
of unit is used throughout the network irrespective of the 
represented content. They have simple activation functions 
which lead to a spread of energy across the network. We 
allow for several basic link types which represent different 
semantic relations like “has property” or “is composed of”. 
The network examples shown in Figures 1 and 2 cover all 
semantic relations used so far and serve as examples 
throughout the text. Each node can be seen as organized in a 
columnar way, with each of the standard semantic network 
links being related to a distinct columnar subsystem located 
in different cortical layers. Another key feature targeted here 
is the interplay between bottom-up and top-down process-
ing, see e.g. [Ahissar and Hochstein, 2002]. It is well 
known, that most everyday activities heavily rely on the 
interaction of data driven bottom-up processing and cate-
gory driven top-down information flow. This is especially 
true for perceptual tasks, for which high-level effects like 
current context, emotional state or generated expectations 
have been reported. With our network structure we aim at a 
joint representation for perception, cognition and action as it 

has been proposed e.g. by Barsalou [1999]. As a conse-
quence, perceptual states in the brain are assumed not to be 
transduced into arbitrary amodal symbols, but instead a sub-
set of them is extracted and stored in memory to function as 
symbols, and association areas then partially reactivate sen-
sory or motor areas in a top-down manner. Consequently, 
our relational network avoids any strict separation between 
perceptual, motor and cognitive representations. 

Figure 1: Small network showing all basic facets of knowledge the 
current system is dealing with including non-trivial dependencies 
between column-like nodes. All links can be understood as being 
reciprocal, but for clarity only one direction is shown (in the    
legend of the arrows the semantic relations corresponding to the 
opposite direction is indicated). 

2 The Cortical Column as Neural-Symbolic 
Integrator 

The cortical column is well known as the basic computa-
tional unit in the brain and has been addressed by several 
researchers with multicellular models to unravel the func-
tional role of the six-layered cortical architecture [Raizada 
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and Grossberg, 2003; Lücke and von der Malsburg, 2004; 
Kupper et al., 2006]. The system described here does not 
target at a biologically detailed modeling of the single corti-
cal column. Instead we concentrate on a network build out 
of columnar-like nodes. These cortical columns are typically 
sectioned into subsystems which comprise different hori-
zontal layers and thereby provide different links for forward, 
backward and lateral processing. Here we refer to a schema 
described in [Körner et al., 1997] which assumes six distinct 
systems: Subsystem A1 receives input from lower areas, 
subsystems A2 and B2 project to higher areas, thus estab-
lishing together a bottom-up processing stream (for the dif-
ference between A2 and B2 see below), whereas C2 projects 
to lower areas, which is received in cortical layer I. (since 
there are no neurons in this layer it is not called a subsys-
tem). The two remaining systems are for lateral processing 
(B1), which comprises many different cell types and may be 
subdivided further, and a system for sequential information 
(C1), which is not used in the work reported here (see also 
4.2). One important aspect of cortical columns is that they 
allow for a smooth transition between signal-type (variant 
signal) and symbol-type (invariant signal) representations 
by providing a mechanism to split the ascending signal ar-
riving in A1 into (at least) two components (A2 and B2) 
which project to different columns on the next hierarchical 
level. This is illustrated in Figure 2, where variant represen-
tations (e.g. certain instances of lips and teeth or even larger 
combinations of such parts) are passed upwards the hierar-
chy by each node. If an invariant representation is available 
(which only makes sense if there are at least two signal rep-
resentations for the concept in question), this can be used 
instead. Nodes which consist of symbolically represented 
parts form super-classes of nodes which contain correspond-
ing parts in a signal representation.  

 
Figure 2: A partonomic hierarchy with five nodes (left) is extended 
by splitting three nodes (“mouth”, “face”, “head”) into multiple 
representations (right). Thin arrows are of type “is signal compo-
nent of”, thick ones read “is symbol component of” (see text). 

3 Two Interweaved Bodies of Knowledge 
Unlike typical semantic networks which allow for a variety 
of links, we must get along with very few basic links which 
fit to the constraints posed by the cortical column. The basic 
dimensions used here are associated with two bodies of 
knowledge which are of outstanding interest for most cogni-
tive tasks: knowledge about hierarchical relationships and 
ontological knowledge about properties and subclass rela-
tions. Hierarchies are used all over the neocortex as core 
organization principle to deal with the nested structure of 
the surrounding world. For example, the visual area TE is 
assumed to code for object features, which are then com-
bined in perirhinal cortex to form feature-conjunctions 
[Buckley and Gaffan, 2006]. Along this dimension of 
knowledge chunks the notions of bottom-up and top-down 
processing apply. Expressed is knowledge about hierarchi-
cal relationships usually in meronymies and holonymies (“is 
part of”), but also in relations like “is located in” or in the 
temporal domain (“happens during” etc). Ontological 
knowledge is expressed in hyponyms and hypernyms (“has 
superclass”, “is instance of” etc.) and is especially useful for 
feature inheritance. Unlike projects like WordNet or Cyc we 
put an emphasis on behaviorally relevant concepts rather 
than on detailed linguistic word meanings. This knowledge 
is used here on every level of the chunking hierarchy when 
it is useful in terms of coding efficiency. Interestingly,   
signal-type representations can be interpreted as subclasses 
of corresponding symbolic representations. 
Other attempts of finding basic dimensions which could 
span semantic networks come to partially overlapping    
results, e.g. [Sagerer and Niemann, 1997] propose a three-
dimensional hierarchy for scene understanding with the   
semantic relations “part”, “specialization” and “concretiza-
tion”. While information about holonyms and hyponyms are 
doubtless essential (and are also covered here), the third 
proposed dimension (concretization) is quite weakly defined 
as a connection between different levels of abstraction, e.g. 
between both “locomotion” and “object” and between    
“object” and “3D-body”. 

4 Network Constituents 

4.1 Nodes 
The domain knowledge is represented in a graph structure 
with nodes representing concepts on various levels and links 
representing a selected set of relations, which hold between 
them (see Figure 1). There is only one type of node in the 
network, which is the representational entity of all concepts 
of the domain. These concepts are usually associated with 
different representational levels and consequently a node in 
our network can be the representation of a sensory meas-
urement, the representation of an instance of a concept or 
the representation of a category. Since the corresponding 
biological entity is assumed to be the cortical column, the 
complexity of the nodes proposed here is beyond those of 
neural networks and graphical representations like Petri nets 
or state machines, but clearly below the capabilities of e.g. 
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multi-agent systems. In this paper, “node” and “column” are 
used interchangeably. The advantage of focusing on col-
umns instead of neurons here is that we have both, one sin-
gle unit which is the same for the representation of sensory, 
cognitive and motor concepts, and the possibility to use 
various “labeled lines” to deal with semantic relations. Our 
goal is to get new nodes learned by the system, but so far all 
nodes and also all relations are manually build or drawn 
from public domain knowledge bases (see 5.3) 

4.2 Links 
There are seven different (directed and labeled) types of 
links in the system reported here. They connect two differ-
ent nodes with one another modeling inter-columnar con-
nections. Three link types are used to build the chunking 
hierarchy: 

• has component – link  
• is signal component of – link  
• is symbol component of – link 

The “has component” link originates in system C2 and pro-
jects to layer I of nodes on a lower level and is thus used for 
top-down processing. The two “is component of” links stem 
from different cortical layers (A2 for the signal and B2 for 
the symbol representation) but terminate both in input layer 
A1. Together they serve for bottom-up information flow, 
and just differ in the granularity of transmitted information. 
For the ontological knowledge four link types are used: 

• has property – link  
• is property of – link  
• has subclass – link  
• is subclass of – link  

They all form connections within the B1 subsystem (num-
bered a,b,c,d). Links denoting subclass relationships are      
assumed to connect columns within one level (e.g. within 
one cortical area), whereas property links are rather inter-
area connections, since they connect conceptual representa-
tions with more perceptually based ones. A node with its 
columnar organization and with all links used is depicted in 
Figure 3.  

 
Figure 3: Set of link types available for connecting two nodes. 
 
The links span three basic dimensions (property, subclass 
and component) with reciprocal links resulting in six possi-
ble inputs. Note, that there is one additional output due to 

the partitioning into signal / symbol-type representation. All 
network links proposed here differ in two important respects 
to common semantic network links: First, we only use a 
very restricted set of basic link types, which are somehow 
biologically justified, i.e. they can be associated with a spe-
cific cell type or a neuronal population within a columnar 
layer. Second, these links do not vary from node to node, 
but are common to all nodes. Not all links, of cause, are 
used by every node, but the point here is that there are no 
links which are available only for certain nodes. The moti-
vation for this homogenous layout is that the basic structure 
of the biological column is independent of the cortical site. 

4.3 Activation Spread 
The activation spread, i.e. all activity that originates from a 
fixed node results from intra-columnar connectivity pat-
terns. Internally each node has an activity vector with one 
entry for each subsystem. The production rules for the ac-
tivities asubsystem(j) of a node j are defined in the following 
with the abbreviations B1a (has property), B1b (is property 
of), B1c (has subclass), B1d (is subclass of). Activation 
from higher cortical areas is passed mainly via subsystem 
C2 to lower areas, supported by parts of B1. To start with 
rather simple rules, the activation of the correspondingly 
connected nodes i is summed, without weighting and 
thresholds: 

The same activation is propagated to the involved subsys-
tems yielding aB1a(j) and aB1d(j). To model the bottom-up 
stream, activation has to be propagated via the A2 and B2 
systems, depending on the activity of the top-down stream:  

If there is already activation aC2 from top-down at this node, 
the activation is passed to aB2 and not to aA2. The activation 
again is supported by parts of B1 and also passed to them, 
whereas the subsystems are complementary to those in-
volved above for aC2 (here B1b and B1c are used). Note, 
that in all cases the activity vector remains unchanged, 
unless the incoming activity changes (there is no automatic 
fading away). 

5 Results 
To illustrate the system behavior, first we apply the pro-
posed mechanisms to the example networks introduced in 
Figures 1 and 2 and then extend to large common sense  
databases which were fed into the system. 

5.1 Hierarchical Processing 
Input to the system can be provided by setting the input  
activity vector of one or several nodes to values larger than 
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zero. One typical situation in a bottom-up scenario is that 
some perceptual information is available (e.g. about the size 
of an object) and the systems’ task is to suggest possible 
objects, which could have given rise to the perceived infor-
mation. To demonstrate this within the small network, we 
set the variable aA1(mid size) to some arbitrary value and 
observe how the activation spreads (Table 1, first row). 
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Table 1: Activation spread originating from different bottom-up or 
top-down inputs. Nodes which get additionally activated after each 
time step are shown in the corresponding columns. 
 
After two time steps (i.e. two node transitions) all objects in 
the knowledgebase which have the property “mid size” are 
reached: Obviously “chair”, which has a direct connection, 
but also “armchair” gets activated due to the fact that the 
latter is a subclass of the former. This is interesting insofar 
as it can be interpreted as inheritance mechanism: “arm-
chair” has also the property of being mid size and gets the 
same activation as if “mid size” was directly connected to 
the node. Additionally, concepts get activated which some-
how contain the selected objects, here certain rooms 
(kitchen, living room) and these may provide important con-
textual information (see Table 2). If in the same way 
aA1(comfortable) is used as input (Table 1, second row), 
only “armchair” and “living room” get activated. This is 
also a desired behavior, since “comfortable” is specific to 
“armchair” and should not be inherited to “chair”. 
Next we try how the system operates on top-down input, 
which could have arisen from some preceding experience 
(e.g. “I’m in the living room”). The list of activated nodes 
which results from input on alayerI(living room) and         
alayerI(kitchen) are shown in the lower part of Table 1. Two 
interesting behaviors can be seen from there. First, inheri-
tance now works in the opposite direction: An activation of 
a specific room activates objects and properties which are 
specific for that room (armchair, comfortable for “living 
room”, but “place for cooking” for kitchen) and also those 
that are common to all rooms like “place to live in” and 
“ceiling”. Note, we could also set e.g. aA1(kitchen) to some 
value in order to trigger a bottom-up flow starting from 
there, but due to the small size of the network this would not 
lead to any further activations. Finally a combination of 
forward and backward activation should be considered for 
three different inputs (rows in Table 2). To ease a compari-

son all nodes now are grouped according to their source of 
activation (bottom-up, top-down or both) as a result of the 
two inputs (first column), which can be interpreted as   
measurement (BU input) and current hypothesis (TD input).  
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Table 2: Interaction of bottom-up (BU) and top-down (TD)     
processing. Final list of activated nodes after three time steps is 
shown, input nodes are only listed in the left column. 
 
Nodes which receive both inputs (last column) represent 
concepts where measurement and hypothesis fit together 
and lay on a path between the two inputs. On the other hand, 
nodes with bottom-up activation only represent alternative 
hypotheses (e.g. kitchen vs. living room) or pieces of evi-
dence which cannot be explained by the current hypothesis. 
These nodes (“residuals”) will play an important role when 
it comes to learning new representations autonomously. The 
remaining group of nodes which got only top-down activa-
tion also offers an interesting interpretation: They point to 
objects which can be expected in the scene (e.g. the ceiling 
in all three cases) or to properties which are probable to be 
measured (e.g. something of mid size in the first example). 
These nodes can thus be used for prediction and may be 
suited for guiding attentional mechanisms. 

5.2 Representational Switch 
Closely related to the predictive behavior within the hierar-
chical processing is the switch from signal-type to symbol-
type representations. In the results, no distinction was drawn 
so far between these two. Here we consider the example of 
Figure 2 and have a closer look on how the activation 
changes over time (Figure 4): Node A passes the signal rep-
resentation to C only when no feedback signal is available 
(as in the beginning of the sequence). As soon as the feed-
back signal has moved top-down and reached A, the symbol 
representation is passed instead. Since the only information 
that is propagated through the network are activation values, 
the node A has to project to a different node than C to ex-
press a different kind of information. Here D takes this role 
in that it contains a symbolic representation of A. Other 
nodes which generate this symbolic representation are not 
depicted here. No symbolic representation is generated in 



node B (there is no “symbol component of”-relation target-
ing at any node), so the signal representation is always 
passed to the next higher level (in the example nodes C, D). 
 

 
Figure 4: Network configuration with signal- and symbol-type 
information linked with partonomic relations. Upward links read 
either “is signal component of” or “is symbol component of” 
(bold), downward links are of type “has component” (see Figure 
2). The activity plots attached to each node show the time course 
of both the bottom-up spread (black) and feedback signal (grey). 

5.3 Experiences with Large Knowledge Bases 
As a database for relational knowledge we made use of the 
corpus collected in the Open Mind Common Sense project 
(OMCS, http://commonsense.media.mit.edu). The OMCS 
database seems to be the largest freely-available database of 
commonsense knowledge and comprises about 1.6 million 
assertions. So far we only use a fraction of these: First, since 
OMCS is a World Wide Web based collaborative project 
with many contributors, for quality reasons we only selected 
a subset of about 200.000 assertions. 
Out of these all assertions were selected which could be 
matched to one of the basic links described above. For ex-
ample to insert the assertion “LocationOf – steering wheel – 
car” from OMCS the nodes “steering wheel” and “car” were 
generated (if not already existing) and connected via “is 
symbol component of” and “has component” links. This led 
to a knowledge base of about 8.400 assertions (see Table 3). 
As a next step we compared our system with ConceptNet 
[Liu and Singh, 2004] which makes use of the same data-
base and also claims to make context-oriented inferences. 
Therefore we selected the same concepts for the ConceptNet 
and our system as input nodes and compared the resulting 
activation. While ConceptNet addresses several additional 
tasks that go beyond our system, it is clearly outperformed 
by ours on the basis of the set of nodes which got activated 
for categorization. To illustrate the differences let us assume 

concepts red and edible are activated. In ConceptNet this 
leads via the “Guess Concept” function to a ranked list of 
nodes which comprise all concepts that are linked to these 
properties. Most activation is denoted to the concepts     
tomato and apple, since they fulfill both properties. Unfor-
tunately, this works only for properties directly connected 
with the concepts and not for those connected to some    
superclass. Tomato and apple for example share the super-
class “fruit” which has the property of being nutritious, but 
an activation of nutritious leads only to an activation of fruit 
(and “milk”). So there is no feature inheritance in Concept-
Net, at least in the concept guessing task. In the OMCS  
database tomato and apple are also related to various other 
concepts, but ConceptNet does not use these relations here, 
so there is no possibility to trigger concepts through the  
activation of parts or by assuming a certain location. 
In order to check how the proposed network scales up    
further and since we also encountered some problems with 
the OMCS database (still partially inconsistent entries, un-
mapped synonyms etc.), we connected the system with other 
databases like MILO (http://www.ontologyportal.org), 
Learner (http://learner.isi.edu), SUMO (http://suo.ieee.org). 
SUMO is proposed as standard upper ontology by IEEE 
P1600.1 and comprises about 1100 concepts. It is written in 
a simplified version of the knowledge interchange format 
KIF and from this we extracted all assertions designating 
instance of and subclass of relations, which amounts to 
about 1500 relations. Since the concepts of an upper ontol-
ogy are high-level abstractions, a mid-level ontology is 
needed to bridge the gap to detailed domain ontologies. 
Therefore we have chosen MILO, because it shares concepts 
already defined in SUMO and consequently can easily be 
interfaced with the upper ontology. MILO is written in the 
same first order logic language as SUMO, so the same pro-
cedure for knowledge extraction was applied. This resulted 
in nearly 1900 concepts and over 1800 assertions about  
instance of and subclass of relationships. Learner finally 
provides a collection about the everyday world over objects 
with special emphasis on partonomic relations (overview in 
Table 3). 
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Table 3: Number of links used for testing and comparisons in our 
large-scale network. An assertion always includes two nodes and 
the appropriate relation. Shown are the numbers of extracted asser-
tions for the different databases. 
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As result, the proposed schema scales up nicely also with 
quite large knowledge bases. The inheritance mechanisms 
observed in the toy example also worked with longer      
cascades of subclass relationships and chains of property-
links. The reason for this is that the activation is passed 
through within each of the B1 subsystems (indicated by the 
four straight arrows in Figure 4). We did not observe prob-
lems due to cycles or multiple paths (as already contained in 
Figure 1), except for cases with inconsistent data. Some-
times it was desirable to constrain the top-down spread   
further in a way that it stopped, if no bottom-up activation is 
available. This was done easily by modifying the intra-
columnar connection rules and there seems also to be 
neurobiological evidence for a gating role of subsystem A1 
on subsystem C2. 

6 Related Work and Outlook 
In this report we demonstrated the current status of our   
neural-symbolic network which combines ideas from classi-
cal semantic networks with recent findings of the neocorti-
cal wiring. By using uniform columnar-like nodes as repre-
sentational entities we obtained interesting results including 
feature inheritance, context influence and prediction with a 
small set of basic semantic relations applied to large com-
mon sense databases. Related ideas on how hierarchical 
representations are used especially for the prediction of  
sequences have been put forward by Hawkins in [Hawkins 
and Blakeslee, 2004]. The six-layered cortical organization 
there plays a central role and is assumed to be also the key 
for cognition, but so far no modeling results seem to be pub-
lished. In contrast, van der Velde and Kamps [2006]       
propose a concrete architecture for dealing with the nested 
nature of linguistic structures. They stress the role of bot-
tom-up and top-down streams for feature binding, but only 
provide vague reference to the cortical column. In a multi-
agent scenario Bach [2006] proposes “quads” as representa-
tional building blocks with links for both chunking and se-
quence information, which we already associated with    
corresponding columnar subsystems. Contrary to our locally 
controlled gating mechanism, they propose “activator neu-
rons” to make the activation spread selective for certain 
semantic relations. Biologically this seems quite unrealistic, 
because these nodes need to be connected with every con-
cept node in the network. 
Current work concentrates on the inclusion of sequential 
information and a refinement of the activation schema with 
weighted links towards a Bayesian framework. In order to 
increase the expressiveness without losing the generality of 
the proposed nodes, further semantic relations will be in-
cluded by representing them as nodes, connected with the 
basic links described herein. 
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