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abstract: Phenotypic plasticity and related processes (learning, de-
velopmental noise) have been proposed to both accelerate and slow
down genetically based evolutionary change. While both views have
been supported by various mathematical models and simulations,
no general predictions have been offered as to when these alternative
outcomes should occur. Here we propose a general framework to
study the effects of plasticity on the rate of evolution under direc-
tional selection. It is formulated in terms of the fitness gain gradient,
which measures the effect of a marginal change in the degree of
plasticity on the slope of the relationship between the genotypic value
of the focal trait and log fitness. If the gain gradient has the same
sign as the direction of selection, an increase in plasticity will magnify
the response to selection; if the two signs are opposite, greater plas-
ticity will lead to slower response. We use this general result to derive
conditions for the acceleration/deceleration under several simple
forms of plasticity, including developmental noise. We also show that
our approach explains the results of several specific models from the
literature and thus provides a unifying framework.

Keywords: Baldwin effect, genetic assimilation, learning, plasticity,
developmental noise, fitness landscape.

The relationship between the genotype and the phenotype
is molded by broadly defined phenotypic plasticity. This
includes phenomena such as random events during de-
velopment (developmental noise) and direct effects of the
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environment (such as poor nutrition resulting in small
size). It also includes fortuitous interference of environ-
mental factors, with development resulting in qualitatively
new phenotypes (e.g., morphological phenocopies pro-
duced by heat shock in the classic experiments of Wad-
dington [1952]). Another category consists of adaptive
responses that evolved to maximize fitness in a hetero-
geneous environment, for example, induced defenses
against predators or parasites. Finally, phenomena such as
learning, intelligence, or the “memory” of vertebrate adap-
tive immune systems allow an individual to develop,
within its lifetime, an adaptive response to a novel chal-
lenge, even one never encountered in the evolutionary past
of the species. Much theoretical and empirical research in
the past two decades has focused on the evolution of those
various mechanisms of plasticity.

Less attention has been paid to the consequences of
those plastic processes for evolution. As plasticity changes
the genotype-phenotype map, it will also usually change
the relationship between genotype and fitness and thus
affect the response to natural or artificial selection. In par-
ticular, adaptive plasticity or learning may allow genetically
unfit individuals to compensate for the inadequacies of
their genotypes and still attain high fitness. As a conse-
quence, the genetic variation for fitness may become re-
duced and the response to selection may be slowed down
(e.g., Johnston 1982; Gordon 1992; Papaj 1994; Mayley
1997). However, in some situations plasticity might change
the genotype-phenotype relationship in a way that mag-
nifies the genetic effects on fitness and thus may accelerate
evolutionary change. This was first proposed in this jour-
nal more than 100 years ago by Baldwin (1896; see also
Osborn 1896), who argued that learning may “guide” evo-
lution. If an environmental change favors a new behavior,
Baldwin argued, individuals capable of learning may de-
velop this behavior within their lifetimes. Natural selection
will subsequently favor genetic variants with a greater pre-
disposition toward the optimal behavior (i.e., those that
need less learning to develop it), so that eventually the
new behavior will evolve to be a genetically determined
“instinct.” Baldwin (1896) proposed that this process
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would lead to the evolution of a novel behavior more
readily than natural selection acting directly on genetic
variation of a given behavior in the absence of behavioral
plasticity. Half a century later, Waddington (1952) exper-
imentally demonstrated an analogous process for mor-
phological traits by selecting for variants initially induced
by environmental stress (e.g., heat shock or ether poison-
ing), which evolved to be constitutively expressed. He
termed this effect genetic assimilation; however, the anal-
ogous process driven by learning is usually referred to as
the Baldwin effect (Simpson 1953; Waddington 1953; Rob-
inson and Dukas 1999; Hall 2001; Pigliucci and Murren
2003; Mery and Kawecki 2004). For an extensive discus-
sion of similarities and differences between the genetic
assimilation of morphological traits and the Baldwin effect,
see Robinson and Dukas (1999). In a direct test of the
Baldwin effect, Mery and Kawecki (2004) studied the in-
fluence of learning on the rate of experimental evolution.
They subjected fruit flies (Drosophila melanogaster) to se-
lection on oviposition substrate preference, either with or
without giving them an opportunity to rely on learning
when making their oviposition choices. They observed
both acceleration and slowing of evolution by learning,
depending on the identity of the medium that the flies
were selected to prefer (Mery and Kawecki 2004).

A number of mathematical and simulation models have
been developed to study the effect of plasticity and learning
on the response to directional selection. Using a multilocus
simulation model, Hinton and Nowlan (1987; see also
Maynard Smith 1987) were the first to show that plasticity
may accelerate evolutionary change. The analytical treat-
ment by Fontanari and Meir (1990) provided additional
support for the simulation results. However, subsequent
models indicated that plasticity may also slow evolution
(Anderson 1995; Ancel 2000) or that intermediate levels
of plasticity may be most conductive to fast evolution
(Keesing and Stork 1991; French and Messinger 1994;
Mayley 1997). A recent article concluded that plasticity
always slows the response to directional selection (Bor-
enstein et al. 2006). (Several other models [e.g., Kirkpatrick
1982; Whitlock 1997; Price et al. 2003; Borenstein et al.
2006] predicted that plasticity helps the population to cross
“adaptive valleys” on multipeaked adaptive landscapes. Be-
cause this article focuses on directional selection, we do
not discuss them further.) Thus, model-based predictions
concerning the effect of plasticity on the rate of evolution
have often seemed contradictory. Those models rely on
various approaches and make rather specific assumptions
about the form of plasticity and the shape of the rela-
tionship between the phenotype and fitness (fitness func-
tion). To our knowledge, no general framework has been
put forth to identify under what conditions plasticity
speeds or slows the response to directional selection.

In this article, we propose such a framework. We derive
general sufficient conditions for an increase in plasticity
to accelerate or slow evolution under directional selection.
We then apply these conditions to several specific forms
of plasticity and show that they explain the results of sev-
eral previous models. Thus, although our results follow
from a simple mathematical model, they allow some gen-
eral conclusions.

The Model

We consider a large population with discrete generations
under directional selection on a continuous phenotypic
trait z. In the absence of plasticity, the expected phenotype
(the innate or default phenotype) is given by the genotypic
value x. Both z and x are expressed as real one-dimensional
numbers. Plasticity and similar processes (such as devel-
opmental noise or learning) may change the phenotype.
Those plasticity processes are assumed to be characterized
by a vector of parameters a, so the phenotype can be
written as ; elements of a are assumed to bez p f(x, a)
real. We refer to f as the reaction norm and note that it
may be a random function (e.g., reflecting developmental
noise). The plasticity parameters a may reflect both the
environment and the properties of the organism, such as
developmental stability or learning ability. The model is
thus formally similar to that of Rice (1998), but we treat
parameters a as given and concentrate on the evolution
of x. The question we ask is, how different models of
plasticity, that is, different forms of , affect the evo-f(x, a)
lutionary change in the mean genotypic value of the pop-
ulation .x̄

Biological interpretation of this model is thus most
straightforward for types of plasticity in which an innate
phenotype can be objectively defined, particularly where
the plasticity is at least in part based on mechanisms not
involved in expression of the innate phenotype. One ex-
ample is learning, whereby an innate behavioral phenotype
shown by naive individuals can be modified as a result of
experience. Another is immune defense, which typically
has a constitutive and an inducible component, often
based on different mechanisms (e.g., antimicrobial pep-
tides vs. antibodies). Still another category comprises be-
havioral responses that can compensate for physiological
deficiencies, such as behavioral thermoregulation in rep-
tiles (Huey et al. 2003). We also apply the model to de-
velopmental noise, where the genotypic value is simply the
mean phenotype expressed by a given genotype. The model
may also be formally applied to plastic responses such as
the dependence of body size on developmental tempera-
ture (seen in many insects), with x defined as the expected
phenotype at some particular reference temperature. In
such a case, however, the distinction between the innate
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phenotype and the plasticity would be arbitrary, dependent
on the choice of reference temperature. It is thus mostly
the other forms of plasticity described above that we focus
on in this article.

We assume that selection is acting on the phenotype z,
with individual fitness given by the fitness function (fitness
landscape) f(z). When the fitness of a genotype x, w(x),
is averaged over all phenotypes, it produces

w(x) p E[f(f(x, a))]. (1)

The response of the mean genotypic value to selectionx̄
depends on the selection differential on x :

xmax xp(x)w(x, a)dx∫xmin
¯S p � x (2)x xmax p(x)w(x, a)dx∫xmin

(Lande 1979), where is the mean x, (xmin, xmax) is thex̄
range of x in the population, p(x) is the probability density
function of the distribution of x, and the denominator is
the mean fitness. In the following analysis, we assume that
within the range (xmin, xmax), is a monotonic func-w(x, a)
tion of x and is differentiable in both variables. If all genetic
variation in x is additive (or if reproduction is asexual),
the response to selection simply equals the selection dif-
ferential. This does not hold with dominance or epistasis,
but it is reasonable to assume that in most cases the re-
sponse to selection will be positively correlated with Sx.
Thus, the impact of plasticity on the evolutionary change
in can be predicted by analyzing its effect on Sx. Wex̄
analyze this effect by focusing on one plasticity parameter
ak at a time and studying �Sx/�ak. If �Sx/�ak has the same
sign as Sx, a marginal increase in ak will make the selection
differential greater in magnitude, thus resulting in stronger
response to selection. The reverse holds if �Sx/�ak and Sx

have opposite signs.
As can be seen from equation (2), the sign of �Sx/�ak

will in general depend on the shape of and on thew(x, a)
distribution of x in the population. To make further pro-
gress, we assume that the sign of is con-2� ln w(x, a)/�x�ak

stant in the interval (xmin, xmax). In other words, we assume
that the proportional effect of the plasticity parameter ak

on the genotypic fitness is either monotonicallyw(x, a)
increasing or monotonically decreasing within the range
of genotypic variation. In the appendix we show that, in
this case,

2�S �xsign p sign ln w(x, a) . (3)( ) ( )�a �x�ak k

This result has a relatively straightforward intuitive inter-
pretation. Consider first the case .2� ln w(x, a)/�x�a p 0k

This implies is a constant; that is, a mar-� ln w(x, a)/�ak

ginal increase in ak has the same proportional effect on
the fitness of all genotypes. This is equivalent to multi-
plying by a constant, which has no effect on thew(x, a)
selection differential Sx. If, in turn, 2� ln w(x, a)/�x�a 1k

, the fitness of genotypes with greater x increases pro-0
portionally more (or decreases proportionally less) due to
an increase in ak than does the fitness of genotypes with
smaller x. If at the same time genotypic fitness increases
with x (which implies ), an increase in ak will magnifyS 1 0x

the relative difference in fitness among genotypes, resulting
in greater Sx. If, in contrast, genotypic fitness decreases
with x (i.e., ), an increase in ak will reduce variationS ! 0x

in relative fitness among genotypes, resulting in Sx smaller
in absolute value (with , this implies ).S ! 0 �S /�a 1 0x x k

Similar reasoning can be carried out for the case
. Because quan-2 2� ln w(x, a)/�x�a ! 0 � ln w(x, a)/�x�ak k

tifies how marginal gain in relative fitness from increased
plasticity changes with the genotypic value, we refer to it
as the fitness gain gradient.

To summarize, result (3) implies that an increase in
parameter ak will make the selection differential greater in
magnitude and so accelerate evolution if the fitness gain
gradient has the same sign as the selection differential; it
will slow evolution if the two signs are opposite. Below
we apply this result to several forms of plasticity to derive
the conditions under which they are expected to facilitate
or hinder evolutionary change. We also use it to explain
the results, sometimes seemingly disparate, of several spe-
cific models from the literature.

Developmental Noise

In the classical quantitative genetic model, developmental
noise and microenvironmental variation add a normally
distributed random variate � with zero mean and variance
VE to the phenotypic value. Here VE is the only plasticity
parameter (i.e., ), so the reaction norm can bea p [V ]E

written as

f(x, V ) p x � �. (4)E

Based on the third-order Taylor approximation, the ge-
notypic fitness is then

VE ′′w(x, V ) � f(x) � f (x), (5)E 2

where f ′′(x) denotes the second derivative of the pheno-
typic fitness function f(z) evaluated at x. This approxi-
mation applies to any distribution of � that is symmetric
around zero, not just normal. Thus, greater developmental
noise will increase the genotypic fitness if the phenotypic
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fitness function f(z) is convex and reduce the genotypic
fitness if f(z) is concave. The magnitude of this effect in-
creases with the curvature of f(z). Thus, if the curvature
of a convex f(z) increases in the direction of increasing
fitness, the fitness of already fitter genotypes will increase
more; developmental noise will magnify the differences in
absolute fitness between genotypes. Similarly, if the cur-
vature of a concave f(z) decreases in the direction of higher
fitness, the fitness of already fitter genotypes will be re-
duced less by the developmental noise, and so the absolute
differences in genotypic fitness will again be magnified.
Both these cases correspond to f � having the same sign
as f ′. Conversely, if the curvature of a convex f(z) decreases
or if the curvature of a concave f(z) increases in the di-
rection of increasing fitness (i.e., f � is the opposite sign
to f ′), the absolute differences in genotypic fitness will be
reduced. However, the rate of evolution depends on the
relative rather than absolute differences in fitness. To find
out the conditions under which greater developmental
noise will magnify or reduce the relative differences in
genotypic fitness, we apply result (3) to derive the ex-
pression for the fitness gain gradient:

2 ′′′ ′ ′′� f(x)f (x) � f (x)f (x)
ln w(x, V ) � 2 . (6)E ′′ 2�x�V (2f(x) � V f (x))E E

The denominator of the right-hand side is positive, so the
sign will depend on the numerator. Note that the sign of
Sx is the same as the sign of f ′(x). Hence, based on result
(3), an increase in the noise variance VE will magnify rel-
ative differences in fitness and thus result in a stronger
response to selection if the expression in the numerator
of equation (6) has the same sign as f ′(x). This result holds
for all symmetric noise distributions as long as the fitness
function f(z) can be sufficiently well approximated by the
third-order Taylor series. For a linear fitness function the
fitness gain gradient is zero; that is, VE does not affect
evolution.

This general result can be used to explain the results of
several previous models (Cavalli-Sforza and Feldman 1976;
Anderson 1995; Ancel 2000), which predicted that nor-
mally distributed noise should slow the response to selec-
tion. Those authors assumed a Gaussian fitness function

, where v is the optimal phenotype2f(z) p c exp [�s(z � v) ]
and s determines the strength of selection; the parameter
c has only a scaling effect (both s and c are assumed pos-
itive). Setting, without loss of generality, and sub-v p 0
stituting this fitness function in the numerator of equation
(6), one arrives at

′′′ ′ ′′ 2 2 2f(x)f (x) � f (x)f (x) p 8c s x exp (�2sx ). (7)

This expression is negative for and positive forx ! 0 x 1

; that is, its sign is always opposite to that of f ′(x). Thus,0
our model predicts that, with a Gaussian fitness landscape,
developmental noise of any symmetric distribution (not
just normal) is expected to slow evolution, in agreement
with the results of the models cited above.

Consider, however, an alternative fitness landscape
. In this case, again setting4f(z) p c exp [�s(z � v) ] v p

,0

′′′ ′ ′′ 2 4 4f(x)f (x) � f (x)f (x) p 24c sx(4sx � 1) exp (�2sx ),

(8)

which for has the same sign as f ′(x). Thus,�1/2 �1/4FxF ! 2 s
for this fitness function, our model predicts that increased
noise should magnify the selection differential when most
of the population distribution is within of the�1/40.71s
optimum. This effect is illustrated by a numerical example
in figure 1, which also shows how it affects the evolutionary
trajectory of the population mean. Thus, the conclusion
of Cavalli-Sforza and Feldman (1976), Anderson (1995),
and Ancel (2000)—that in a quantitative genetic frame-
work, developmental noise slows the response to direc-
tional selection—resulted from their choice of a Gaussian
fitness function.

Directional Plasticity or Learning

Learning and many forms of plasticity result in a direc-
tional change of the phenotype, often but not always in
the direction of increasing fitness. As the simplest model
of such a directional plasticity, we consider a shift of the
phenotype by a constant value u, with a negligible noise
component; that is,

f(x, u) p x � u, (9)

so the genotypic fitness . In this case,w(x, u) p f(x � u)
the gain gradient becomes

2 ′′ ′ 2 2� f(z)f (z) � (f (z)) d
ln w(x, u) p p ln f(z), (10)

2 2�x�u (f(z)) dz

where f and its derivatives are evaluated at z p
. To interpret result (10) in the light off(x, u) p x � u

equation (3), note that greater plasticity implies greater
; that is, for , greater plasticity means smaller u.FuF u ! 0

Consider first adaptive plasticity, that is, a shift of the
phenotype toward higher fitness (u has the same sign as
f ′(z) and Sx). Inspection of equations (3) and (10) reveals
that such plasticity will accelerate evolution if the phe-
notypic fitness landscape f(z) is logarithmically convex and
will slow it down if it is logarithmically concave. Con-
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Figure 1: Effect of normally distributed noise with variance VE on the
rate of evolution under fitness function given by f(z) p exp [�s(z �

, with and . A, Selection differential Sx as a function of4v) ] s p 1 v p 0
the population mean, assuming (solid line), (long-V p 0 V p 0.04E E

dashed line), and (short-dashed line). B, Predicted evolutionaryV p 0.1E

trajectory of the population mean, assuming at generation 0.x̄ p �1
Distribution of x was assumed to be normal with additive genetic variance

; the response to selection was modeled as .¯V p 0.01 Dx p V SG G x

(solid line) or (short-dashed line). Genotypic fitness andV p 0 V p 0.1E E

selection differential were calculated by numerical integration of equa-
tions (1) and (2) using Mathematica, version 5.0 (i.e., the approximation
in eq. [5] was not used).

versely, maladaptive plasticity (u of the opposite sign from
f ′(z)) will slow evolution for logarithmically convex f(z)
and accelerate evolution for logarithmically concave f(z).
Note that a Gaussian function is always logarithmically
concave, and so is a linear function; hence, adaptive plas-
ticity with a constant shift in the phenotype will slow the
response to selection described by one of these functions.

Obviously, the form of directional plasticity assumed
above, with a constant shift in the phenotype, is only the
simplest one. A slightly more general form of the reaction
norm allows for the phenotypic effect to depend on the
genotypic value:

f(x, u) p x � uy(x), (11)

where u is a parameter quantifying the degree of plasticity
and y(x) is a monotonic function. For this reaction norm,
the gain gradient is

2 ′′ ′ 2� f(z)f (z) � (f (z))′ln w(x, u) p y(x)(1 � uy (x))
2�x�u (f(z))

′f (z)′� y (x) ,
f(z)

(12)

where f and its derivatives are evaluated at .z p f(x, u)
The first term on the right-hand side is analogous to the
entire right-hand side of equation (10); it reflects the fact
that a plastic shift in the phenotype exposes the population
to a different portion of the fitness function, which may
have a different logarithmic slope. The second term reflects
the fact that the shift may magnify or reduce the phe-
notypic differences between genotypes. Note that this latter
effect is different from the effect of developmental noise,
which increases phenotypic variance without magnifying
differences among genotypes. For the sake of simplicity,
we restrict the following discussion to (selection′f (z) 1 0
for larger phenotypic values), as well as andu ≥ 0

(adaptive plasticity).y(x) ≥ 0
Consider four cases, illustrated in figure 2. If the fitness

landscape is logarithmically convex ( )2 2� ln f(z)/�z 1 0
and the shift of the phenotype is greater for greater ge-
notypic values ( ), plasticity will move the phe-′y (x) 1 0
notypes toward a steeper portion of the fitness curve and
simultaneously magnify phenotypic variation due to dif-
ferences in x (i.e., stretch the distribution; fig. 2A). Both
effects magnify the variation in log fitness among ge-
notypes, so evolution is expected to be accelerated. Con-
versely, if the fitness function is logarithmically concave
( ) and the shift in the phenotype is greater2 2� ln f(z)/�z ! 0
for smaller x ( ), plasticity moves the distribution′y (x) 1 0
of phenotypes toward a logarithmically less steep part of
the fitness landscape and additionally reduces the phe-
notypic differences among genotypes (fig. 2D). Both re-
duce the variation in log fitness among the genotypes, and
thus the response to selection is predicted to be slowed.
If but , plasticity will stretch the2 2 ′� ln f(z)/�z ! 0 y (x) 1 0
phenotypic distribution but expose the population to a
less steep part of the fitness function (fig. 2B). The overall
effect on the fitness differences among genotypes and thus
on the selection differential will depend on which of those
two antagonistic effects is greater. The same holds for the
case in figure 2C, where but ;2 2 ′� ln f(z)/�z 1 0 y (x) ! 0
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Figure 2: Schematic representation of how directional plasticity defined in equation (11) affects the way variation in the genotypic values x translates
into variation in log fitness, which in turn affects the response of mean x to selection. The solid line shows the log of the fitness function f(z), and
the shaded areas symbolize the distributions of phenotypes and fitness without plasticity (light shading) and with plasticity (dark shading). Directional
plasticity (symbolized by an arrow) shifts the distribution of the phenotypes but may also magnify (A, B) or reduce (C, D) the phenotypic expression
of variation in x. The curvature of the log fitness function (convex in A and C; concave in B and D) determines how the shift in the mean of the
distribution changes the variation in log fitness.

that is, plasticity compresses the phenotypic distribution
but exposes it to a steeper part of the log fitness curve.

The above argument explains the results of Papaj (1994),
who modeled the effect of learning on the rate of evolution.
He assumed a negatively quadratic fitness function

, which is logarithmically concave2f(z) p 1 � (1 � z)
( ). Furthermore, he2 2 �2 �2� ln f(z)/�z p �z � (2 � z) ! 0
assumed a reaction norm of the form given in equation
(11), with , and u being an increasing func-y(x) p 1 � x
tion of the learning rate and the number of learning op-
portunities. The assumption of Papaj’s model thus cor-
responds to the situation in figure 2D, predicting that an
increase in u due to higher learning rate or more learning
opportunities should lead to a decrease in the rate of evo-
lution, which his model indeed predicted.

The situation depicted in figure 2D is likely to occur in
the vicinity of an optimum. First, the fitness function is
likely to be concave (and thus also logarithmically con-
cave) around the optimum. Second, if the ability to modify

the phenotype adaptively is large relative to the distance
from the optimum, most individuals will be able to show
the optimal (or nearly optimal) phenotype. In such a case,
individuals closer to the optimum would necessarily ben-
efit less from learning, and evolution would be decelerated.
In the extreme case, directional plasticity may allow all
individuals to compensate fully for the deficiencies of their
genotype and express the optimal phenotype, which will
eliminate fitness differences, thus preventing evolutionary
change. This is the case of “ideal deterministic learning”
examined by Borenstein et al. (2006), which explains their
prediction that plasticity decelerates evolution. However,
Borenstein et al. (2006, p. 1,565) extrapolated from that
special case to make a general statement that, “If selection
takes place only within the domain of a simple fitness
function that does not include multiple local optima, plas-
ticity hinders the evolutionary process.” The above analysis
shows that this generalization does not hold.
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Needle-in-a-Haystack Fitness Landscape

In the first model to demonstrate that plasticity may fa-
cilitate evolution, Hinton and Nowlan (1987; see also May-
nard Smith 1987) considered a situation where there is a
single “good” phenotype with high fitness while fitness of
all other phenotypes is identical and low. Thus, using Hin-
ton and Nowlan’s own words, the fit phenotype is like a
needle in a haystack. This form of selection approximates
a situation where fitness is increased by successfully per-
forming a complex behavioral task, such as retrieving nec-
tar from a complex flower. Performing the task halfway
does not bring any reward and may even be associated
with costs. Because the phenotypes closer to, but not yet
at, the optimum do not have higher fitness than those
farther away, natural selection is not effective in bringing
the population closer to the optimum. In a multilocus
individual-based simulation model, Hinton and Nowlan
have shown that allowing for trial-and-error learning helps
a population initially far away from the optimum to even-
tually reach it. Similar fitness landscape was considered in
several other models studying interaction of plasticity and
evolution (Fontanari and Meir 1990; French and Messin-
ger 1994; Ancel 1999, 2000).

To analyze this case within the framework of this model,
we consider a version of the needle-in-a-haystack fitness
landscape with a continuous phenotype, where the phe-
notypic fitness for z within d/2 of the opti-f(z) p 1 � k
mum and for z outside this interval; , andf(z) p 1 k 1 0
d is assumed to be positive and small. Note that f(z) is
not differentiable, so the results of the last two sections
cannot be applied directly, but the general result in equa-
tion (3) can still be used. Without loss of generality, we
assume that the optimum is at and that the pop-z p 0
ulation mean is below the optimum (i.e., ). We firstx̄ ! 0
implement plasticity as in equation (4), that is, as normally
distributed developmental noise with variance VE; this is
equivalent to Hinton and Nowlan’s random search with
a single search round. The probability that genotype x
produces the optimal phenotype is , where q(z)x�d/2 q(z)dz∫x�d/2

is the probability density function of a normal distribution
with zero mean and variance VE. Because d is small relative
to VE, this probability can be approximated as dq(x), so
the genotypic fitness can be written as

2kd �x
w(x, V ) p 1 � exp . (13)E ( )� 2V2pV EE

The fitness gain gradient can then be written as

2�
ln w(x, V ) pE

�x�VE

2x
2� �Bx p(3V � x ) exp � kd 2V , (14)E E[ ( ) ]2VE

where B stands for

kd
, (15)

5 2 2� �2V {kd � 2pV exp [x /(2V )]}E E E

which is always positive. For reasonably small values of k
and d ( ), the second term in the brackets of equa-kd ≤ VE

tion (14) is much smaller than the first, and the nonzero
solution to is very close to2� ln w(x, V )/�x�V p 0E E

(the solid line in fig. 3 represents the exact2V p x /3E

numerical solution). If, as assumed above, the population
is below the optimum ( ), the fitness gain gradient isx ! 0
positive for and negative for . That is,2 2V ! x /3 V 1 x /3E E

selection is predicted to be most effective in pushing the
population toward the optimum if the noise variance is
roughly one-third of the squared distance to the optimum.
Recall that the result in equation (3) is not formulated in
terms of the population mean but rather assumes thatx̄
the sign of the fitness gain gradient is the same within the
range (xmin, xmax). Thus, applying this result strictly, the
value of VE that maximizes the selection differential Sx for
a given distribution of x is somewhere in the interval
( ). In practice, it will usually be close to but2 2x /3, x /3min max

not exactly at . As an example, the dotted line in figure2x̄ /3
3A shows the values of VE that maximize the selection
coefficient Sx if the genotypic values are normally distrib-
uted with mean and variance . Additional nu-x̄ V p 1G

merical exploration (not shown) indicates that the fitness
gain gradient approach predicts quite well the value of VE

maximizing the selection differential unless the population
mean is within about of the optimum. In the latter1/22(V )G

case, even a small amount of noise reduces Sx. These results
offer an intuitive explanation for the finding that plasticity
accelerates evolution on a needle-in-a-haystack fitness
function when the population is far away from the opti-
mum but it slows it down when the population is close
to the optimum (French and Messinger 1994; Ancel 2000).

Hinton and Nowlan (1987) and French and Messinger
(1994) implemented trial-and-error learning with multiple
random-search trials. If the probability of finding the op-
timal phenotype in a single trial is q, then the probability
of finding it at least once in n trials is . Wen1 � (1 � q)
now treat the number of learning trials as the focal plas-
ticity parameter; the corresponding genotypic fitness is
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Figure 3: Numerical analysis of the fitness gain gradient approach for
the needle-in-a-haystack fitness function. A, Random noise, corre-
sponding to equation (13). The solid line shows a solution to

; below the line, the gain gradient is positive;2� ln w(x, V )/�x�V p 0E E

above it, it is negative. The dotted line indicates the noise variance VE

that maximizes the selection differential Sx for a given genotypic popu-
lation mean . B, Random search with n trials, corresponding to equationx̄
(16). The solid lines show solutions to for three2� ln w(x, n)/�x�n p 0
values of VE; the gain gradient is positive below the lines. The dotted
lines show the number of search trials n that maximizes the selection
differential Sx. In both panels, and ; the variable on thek p 1 d p 0.1
horizontal axis is x for the solid lines and for the dotted lines. Thex̄
calculations of Sx (dotted lines) assumed that the genotypic values were
normally distributed with mean and variance .x̄ V p 1G

n
2d �x

w(x, n) p 1 � k 1 � 1 � exp . (16){ [ ( )] }� 2V2pV EE

We can now use the fitness gain gradient approach to ask
how the number of learning trials affects the rate of evo-
lution. The expression for is rather un-2� ln w(x, n)/�x�n
wieldy, so we do not give it here. Numerical analysis in-
dicates that the fitness gain gradient is positive for small
n but becomes negative as n increases above a threshold

value (shown as solid lines in fig. 3B). This threshold value
of n at which the fitness gain gradient reaches its maximum
for a given x predicts quite well the number of search trials
that actually maximize the selection differential (dotted
lines, fig. 3B). These results offers an intuitive explanation
for the conclusion from the simulation model by French
and Messinger (1994) that a small degree of learning may
accelerate evolution on a needle-in-a-haystack landscape,
but allowing many learning trials or high learning ability
slows evolutionary change.

Discussion

The modeling approach developed in this article offers a
general theoretical framework to study the effect of plas-
ticity and related processes, such as developmental noise
and learning, on the rate of evolution under directional
selection. This framework is formulated in terms of the
effect of plasticity on the shape of the relationship between
genotype and fitness, as defined by the fitness gain gradient
(eq. [3]). If the proportional gain of fitness due to plasticity
is greater for genotypes that are already fitter, plasticity
will magnify the selection differential and thus should ac-
celerate evolution. Conversely, if genetically less fit individ-
uals gain proportionally more fitness from plasticity, the
relative differences in fitness between genotypes become re-
duced and the selection becomes effectively weaker. These
conditions assume that the sign of the fitness gain gradient
is constant throughout the range of variation in genotypic
values in the population. If the fitness gain gradient
changes the sign (e.g., has a maximum) well within the
range of the genotypic variability of the population, our
qualitative approach does not predict the overall effect on
the rate of evolution. Thus, the maximum of the fitness
gain gradient with respect to a plasticity parameter does
not predict the exact value of the parameter that would
maximize the rate of evolution. Our numerical examples
demonstrate, however, that this value will usually be close
to the value for which the corresponding fitness gain gra-
dient evaluated at the population mean changes its sign
from positive to negative.

Despite this limitation, our approach provides a gen-
eral heuristic explanation for the qualitative effects of
plasticity on evolution under directional selection, irre-
spective of mechanisms generating plasticity and the un-
derlying genetic details. We show that it explains a number
of disparate theoretical and simulation results published
previously. It can also potentially be used to interpret ex-
perimental results. Finally, it can be applied to artificial
intelligence and robotics, where combinations of simulated
evolution (genetic algorithms) and plasticity (random
noise and learning) are applied to solve complex problems
(e.g., Nolfi 1999; Harvey et al. 2005).



Plasticity, Learning, and Evolution E55

The fitness gain gradient reflects the combination of
two elements: the effect of plasticity on the phenotype
(described by the reaction norm) and the relationship be-
tween phenotype and fitness (the fitness function). This
allowed us to express the conditions for an accelerating
versus decelerating effect of plasticity on evolution for
some simple forms of the reaction norm. These conditions
are expressed in a rather straightforward way in terms of
mathematical properties of the fitness landscape. In par-
ticular, if the change of the phenotype due to plasticity is
adaptive (i.e., toward higher fitness) and its magnitude is
similar for all genotypes, evolution is predicted to be ac-
celerated if the logarithm of the fitness function is convex
and decelerated when it is concave. More generally, a fit-
ness landscape with a convex logarithm is more likely than
one with a concave logarithm to result in evolution being
accelerated due to directional plasticity, even if the effect
of learning on the phenotype differs among genotypes. We
could also formulate the conditions for evolution to be
accelerated versus slowed by adding a nongenetic variance
component (developmental noise) to the phenotype with-
out changing the mean. In particular, in contrast to results
of Anderson (1995) and Ancel (2000), we could find con-
ditions under which symmetrically distributed noise ac-
celerated evolution. This is possible under some highly
nonlinear fitness functions, where noise makes genotypes
closer to the optimum much less likely than genotypes
farther away from the optimum to produce particularly
unfit phenotypes or much more likely to produce excep-
tionally fit phenotypes. An extreme case of the latter sit-
uation is the needle-in-a-haystack fitness landscape, as-
sumed in simulation models that predicted an accelerating
effect of both noise and learning on the rate of evolution
(Hinton and Nowlan 1987; Fontanari and Meir 1990;
French and Messinger 1994). Our results also show that
the influence of plasticity on the rate of evolution is sen-
sitive to the choice of specific model of plasticity. In par-

ticular, directional effects will generally have a different
influence than developmental noise.

In this article, we concentrated on the qualitative effect
(acceleration vs. deceleration) and did not systematically
investigate its magnitude. The accelerating effect of plas-
ticity should tend to be greatest under strongly nonlinear
fitness landscapes, like the needle-in-a-haystack landscape
considered in the previous section. However, the accel-
erating effect of plasticity on evolution may also be large
if the effect of plasticity on the phenotype is much larger
in individuals that already show some genetic predispo-
sition toward that phenotype. Conversely, if the fitness gain
gradient is strongly negative, that is, when genetically
poorly fit individuals show a particularly strong adaptive
plasticity, plasticity might even reverse the ranking of ge-
notypes with respect to fitness. This would result in se-
lection pushing the population away from the genetic op-
timum, which could be one way for a population to cross
an “adaptive valley” to reach a higher “adaptive peak.” It
is unclear how biologically likely such a scenario is. More
work is needed to evaluate systematically the magnitude
of the effect of plasticity and learning on the rate of evo-
lution. Nonetheless, the experimental results of Mery and
Kawecki (2004) indicate that the effect may be large
enough to be of biological relevance. We hope to stimulate
further theoretical and experimental studies on the im-
portance of plasticity in driving or inhibiting evolutionary
change.
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APPENDIX

Proof of Result (3)

Expression (3) of the main text can be written more formally as

2 �
ln w(x, a) 1 0, then �S /�a 1 0 (A1a)x

�x�a
2 �

if, for all x � (x , x ), ln w(x, a) ! 0, then �S /�a ! 0 (A1b) , (A1)min max x
�x�a

2� ln w(x, a) p 0, then �S /�a p 0 (A1b)x
�x�a

where Sx is defined in equation (2). Here we show that this proposition holds true under the assumptions of the model.
We define

x x x x1 1 1 1

�w(x, a) �w(x, a)
Q(x , x ) p p(x)w(x, a)dx xp(x) dx � xp(x)w(x, a)dx p(x) dx (A2)0 1 � � � �( )( ) ( )( )�a �a

x x x x0 0 0 0

Note that

�S Q(x , x )x min maxp . (A3)
2¯�a w

The sign of �Sx/�a is thus determined by the sign of Q(xmin, xmax), and proving proposition (A1) reduces to showing
that Q(xmin, xmax) has the same sign as . In the following, we first show that the sign of2� w(x, a)/�x�a

determines the sign of the corresponding expression defined for a narrow interval within the dis-2� ln w(x, a)/�x�a
tribution of x, Q( ), where and d is small enough for the functions to be treated asx , x � d x ! x ! x � d ! x0 0 min 0 0 max

linear. Then we show that, for any , , widening the interval (i.e., increasing x1 or decreasing x0) doesx ≤ x x ≤ xmin 0 1 max

not change the sign of Q(x0, x1), and so Q(xmin, xmax) has the same sign as Q( ).x , x � d0 0

Within a narrow interval ( ), we can make the following linear approximations:x , x � d0 0

�w(x , a)0w(x, a) p w(x , a) � (x � x ) , (A4a)0 0
�x

2�w(x, a) �w(x , a) � w(x , a)0 0p � (x � x ) , (A4b)0
�a �a �x�a

where denotes evaluated at . The function p(x) could be linearized in an analogous�w(x , a)/�x �w(x, a)/�x x p x0 0

way, but it is simpler to express it as

x � x 0p(x) p p(x ) � [p(x � d) � p(x )]. (A4c)0 0 0
d

With these substitutions, after carrying out the integration and rearranging of terms,

2d
2 2Q(x , x � d) p [p (x ) � 4p(x )p(x � d) � p (x � d)]0 0 0 0 0 072

2� w(x , a) �w(x , a) �w(x , a)0 0 0# w(x , a) � . (A5)0( )�x�a �x �a
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The term in the first set of brackets is positive, so the sign of the expression on the right-hand side of equation (A5)
depends on the term after the times sign. Note, however, that

2 2� 1 � w(x, a) �w(x, a) �w(x, a)
ln (w(x, a)) p w(x, a) � . (A6)

2 ( )�x�a (w(x, a)) �x�a �x �a

Thus, the sign of Q( ) is the same as the sign of evaluated at x0.
2x , x � d � ln (w(x, a))/�x�a0 0

Proposition (A1) requires that the same holds for Q(xmin, xmax), assuming that the sign of is2� ln (w(x, a))/�x�a
constant throughout the interval. In other words, we need to show that as the limits of the integrals in Q(x0, x1) are
extended from ( ) to (xmin, xmax), the sign of Q(x0, x1) does not change. Consider first extending the upperx , x � d0 0

limit x1:

x x1 1

�Q(x , x ) �w(x , a) �w(x, a)0 1 1p x p(x ) p(x)w(x, a)dx � p(x )w(x , a) xp(x) dx1 1 � 1 1 �
�x �a �a1

x x0 0

x x1 1

�w(x , a) �w(x, a)1� p(x ) xp(x)w(x, a)dx � x p(x )w(x , a) p(x) dx. (A7)1 � 1 1 1 �
�a �a

x x0 0

This can be simplified by extracting p(x1), placing all other terms under a single integral and rearranging:

x x1 1

�Q(x , x ) �w(x , a) �w(x, a)0 1 1p p(x ) (x � x)p(x)w(x, a)dx � w(x , a) (x � x)p(x) dx1 � 1 1 � 1[ ]�x �a �a1
x x0 0

x1

�w(x , a) �w(x, a)1p p(x ) (x � x)p(x) w(x, a) � w(x , a) dx1 � 1 1( )�a �a
x 0

x1

1 �w(x , a) 1 �w(x, a)1p p(x )w(x , a) (x � x)p(x)w(x, a) � dx (A8)1 1 � 1 ( )w(x , a) �a w(x, a) �a1
x 0

x1

� ln w(x , a) � ln w(x, a)1p p(x )w(x , a) (x � x)p(x)w(x, a) � dx.1 1 � 1 ( )�a �a
x 0

For , the function under the last integral equals zero; for , its sign is determined by the term in the lastx p x x ! x1 1

parentheses, which has the same sign as . (Note that implies2 2� ln w(x, a)/�x�a � ln w(x, a)/�x�a 1 0 � ln w(x , a)/�a 11

for , and vice versa.) Hence, the sign of is the same as the sign of� ln w(x, a)/�a x ! x �Q(x , x )/�x1 0 1 1

, assuming that the sign of the latter is constant within interval (x0, x1) and that .2� ln w(x, a)/�x�a p(x )w(x , a) 1 01 1

Similarly, the effect of changing the lower limit x0 is described by

x1

�Q(x , x ) � ln w(x, a) � ln w(x , a)0 1 0p p(x )w(x , a) (x � x)p(x)w(x, a) � dx. (A9)0 0 � 0 ( )�x �a �a0
x 0
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For , the term in the last parentheses the same sign as ; however, the term is negative,2x 1 x � ln w(x, a)/�x�a x � x0 0

so the function under the integral has the opposite sign from for .2� ln w(x, a)/�x�a x ! x ! x0 1

The above argument proves proposition (A1) as follows. Consider first the case (A1a). If for2� ln w(x, a)/�x�a 1 0
all , then for any interval (x0, x1) of width d within (xmin, xmax; eq. [A5]). Furthermore,x � (x , x ) Q(x , x ) 1 0min max 0 1

and , so as the interval is extended in either direction (increasing x1 toward xmax�Q(x , x )/�x ≤ 0 �Q(x , x )/�x ≥ 00 1 0 0 1 1

or decreasing x0 toward xmin), Q(x0, x1) remains positive (eqq. [A8], [A9]). Hence, andQ(x , x ) 1 0 �S /�a 1 0min max x

(eq. [A3]), which proves proposition (A1a). Proof of case (A1b) is analogous: if for all2� ln w(x, a)/�x�a 1 0 x �
, then for a narrow interval of width d; furthermore, and(x , x ) Q(x , x ) ! 0 �Q(x , x )/�x ≥ 0min max 0 1 0 1 0

; hence, and . Finally, for the case (A1c), if for all2�Q(x , x )/�x ≤ 0 Q(x , x ) ! 0 �S /�a ! 0 � ln w(x, a)/�x�a p 00 1 1 min max x

, then for an narrow interval of width d, and it remains zero as the interval is broadenedx � (x , x ) Q(x , x ) p 0min max 0 1

because and ; hence, .�Q(x , x )/�x p 0 �Q(x , x )/�x p 0 Q(x , x ) p �S /�a p 00 1 0 0 1 1 min max x
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