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Abstract. Evolutionary multi-objective optimization of spiking nel networks
for solving classification problems is studied in this paBgrmeans of a Pareto-
based multi-objective genetic algorithm, we are able ténoige both classifica-
tion performance and connectivity of spiking neural netgowith the latency
coding. During optimization, the connectivity between tmaurons, i.e., whether
two neurons are connected, and if connected, both weightielag between the
two neurons, are evolved. We minimize the the classificagioor in percent-
age or the root mean square error for optimizing performaaceé minimize the
number of connections or the sum of delays for connectigtjntvestigate the
influence of the objectives on the performance and connctif’spiking neural
networks. Simulation results on two benchmarks show thegtBdased evolu-
tionary optimization of spiking neural networks is able fteoa deeper insight
into the properties of the spiking neural networks and ttoblem at hand.

1 Introduction

Spiking neural networks (SNNs) are believed to be bioldgiaaore plausible [1, 2]
and computationally more powerful than analog neural ngte/¢3]. However, the
computational power of SNNs has yet to be demonstrated |y to the fact that an
efficient supervised learning algorithm still lacks. In traist to analog neural networks,
for which various sophisticated supervised learning allgors have been developed [4],
only a very limited number of supervised learning algorighane available for training
SNNs, which can be attributed to the discontinuous natuspiing neurons.

SpikePop [5] is the first supervised learning algorithm thas been developed
based on the error backpropagation principle widely usettaiming analog neural
networks. However, SpikeProp has several weaknesses. thisperformance of the
learning algorithm is quite sensitive to parameter initaion. If a neuron is silent af-
ter initialization, no training is possible for the weighdfits incoming connections.
As a result, the neuron will never be able to produce any spiecond, SpikeProp is
only applicable to latency-based coding. Third, SpikeRvogks only for SNNs where
neurons spike only once in the simulation time. Fourth, 8piop has been developed
for training the weights only. To address these weakneadesy algorithms extending
the SpikeProp have been suggested [6-8].



Both SpikeProp and its variants are gradient-based leguaigorithms, where sim-
plifications have to be made to apply the gradient method.eBolve this problem
inherent to the SpikeProp learning algorithms, evolutigredgorithms [9, 10], which
have shown to be very successful in training analog neuraforks [11], have also
been employed for training spiking neural networks. Fomnepie, the connectivity and
the sign of the connectivity (the neuron is excitatory if dign is positive and inhibitory
if negative) of a spike response model (SRM) [12] are evofeed/ision-based robot
control using a genetic algorithm (GA). Similar work has teeported in [13] and
[14]. In [13], an adaptive GA is adopted to evolve the weighftthe SRM model for
robot navigation, while in [14], a parallel deferential &wion has been employed to
evolve the weights of the SRM. Both weights and delays of &agitate-and-fire (IAF)
model with dynamic synapses [15] and a SRM are evolved ugingvalution strat-
egy [16]. It is found that the performance of the SNNs are caraple to that of the
analog feedforward neural network on two benchmark problem

Encouraged by the success of the Pareto-based approackhommiearning [17],
this work employs a Pareto-based multi-objective genédgiorahm to evolve the con-
nectivity, weights and delays of the SRM. Different to sagbjective optimization,
Pareto-based multi-objective learning using multi-objecevolutionary algorithms [18]
is able to achieve a number of Pareto-optimal solutionsratian one single optimal
solution. By analyzing the trade-off between differenttéag objectives, such as the
performance and complexity, we are able to gain a deepghnsito the neural net-
work model as well as the problem to learn [19], by, e.g., iiging interpretable mod-
els and models that can generalize on unseen data from teRgotimal solutions.

Several objectives concerning learning performance andextivity can be taken
into account in optimizing spiking neural networks for soypged learning such as clas-
sification. In addition to minimizing the classification @rrwe can also minimize the
number of connections, or the total length of synaptic cotiors, which can be re-
placed by the sum of the delays in the SNN, assuming that tley detween two
neurons is proportional to the connection length betweemth

2 Spiking Neural Network M odel

The spiking network model adopted in this work is the saméhasohe in [5], which
has a feedforward architecture consisting of neurons iestby the SRM [12]. The
network architecture is shown in Fig. 1(a), where multiplaagptic terminals can exist
between two neurons, refer to Fig. 1(b). For clarity, we assthat the network has
only one output neuron.

Assume neurork receives spikes froniV pre-synaptic neurons that fire at time
instantt;;. For the sake of simplicity, we assume each neuron emit at anesspike
during the simulation interval, though this is not a resioic from our evolutionary
learning method. The internal state of neufoat timet, x(t), which represents the
membrane potential, can be described by
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Fig. 1. Feedforward spiking neural networks with multiple synapérminals between two neu-
rons (a) The feedforward architecture. (b) Two synaptimeations with multiple terminals.

wherem! is the number of synaptic terminals between neuroesd k, w!, is the
synaptic strength, angl(¢) is the unweighted contribution of neurarto neuronk
through the-th synaptic terminal, which can be expressed by

yi(t) = e(t — t; — diy,), )

wheree is a spike response function modeling the post-synapteniai,¢; is the firing
time of neuroni, andd., is the synaptic delay of thieth synaptic terminal. The spike
response function can be described as follows:

e(t) = 3)

{361%, if t >0

0, ift<0’

wherer is the membrane potential decay time constant.
When the membrane potential of neuronrosses a predefined threshéldt will

emit a spike. After firing, there is a refractory time duringpish no spikes can be

generated again. As we assumed that at most one spike wikibergted during the

simulation interval, the refractory time is set to be lartpen the simulation interval.

3 A Multi-Objective Genetic Algorithm for Pareto Learning

Evolutionary algorithms (EAs) are well suited for Paretwsséd multi-objective learn-
ing of spiking neural networks for several reasons. Firéts Ho not require explicit

gradient information for updating weights, unlike most eryised learning methods.
Second, not only weights, but synaptic delays and conrigctif'the network such as
the number of terminals between two neurons can also beed/ohhird, evolutionary

algorithms have shown to be very powerful for multi-objeetoptimization [18], thus

for multi-objective learning.

3.1 Genetic Representation of SNNs

In this work, a genetic algorithm using gray coding has betopted. Each individual
consists of two chromosomes encoding a connection matdxaaweight matrix, re-
spectively. An element in the connection matrix.j is an integer equal to or greater
than zero, representing the connectivity from neurtmneurork. We investigate both



single-terminal and multi-terminal synaptic connectidngase of single-terminal con-
nections, there is at most one connection between two nsuftre is no connection
from neuroni to neuronk if ¢;; = 0. If ¢;x > 0, then it represents the synaptic de-
lay between two neurons. In the multi-terminal casg, > 0 represents the number

of terminals between two neurons, and the synaptic delatrsederminals range from
1toc;. The weight matrix ;) encodes the strength of the connections between neu-
ron: and neurory.

3.2 Objectives

Existing supervised learning algorithms for training $pgkneural networks minimize
the error on training data only. In contrast, a multi-objeziearning algorithm can
take into account more than one objective with respect tnitrg performance as well
as the connectivity of the SNN. In this work, we adopt one eftihio error functions,

i.e., either the root mean square error (RMSE) or the claasifin error in percentage,
to optimize the performance of the SNN. Besides, either thebrer of connections or
the sum of delays is minimized for optimizing the connetyiaf the SNN.

3.3 Genetic Variations and Pareto-based Selection

The uniform crossover and bit-flip mutation are applied atabpbility of p. andp,,,,
respectively, to evolve the connectivity and weights of 8N. To select parent indi-
viduals for the next generation, we employ the crowded taoment selection method
proposed in NSGA-II [20]. First, the offspring and the parpopulations are com-
bined. Then, a non-dominated rank and a local crowdingmiigtare assigned to each
individual in the combined population. In non-dominatedkiag, the non-dominated
solutions are found out and assigned a rank of 1. These @otutionsist of the first
non-dominated front. After that, the non-dominated sohsdiwith rank 1 are removed
temporarily from the combined population. Then, non-daatéd solutions of the rest
individuals in the population are identified, which consithe second non-dominated
front. A rank of 2 is assigned to these solutions. This pracedepeats until all indi-
viduals are assigned to a non-dominated front. In the negt st crowding distance is
calculated for each individual with regard to the non-doabédl front it belongs to. The
crowding distance of a solution is the distance betweemitsrteighboring solutions
on the same non-dominated front in the objective space.geldistance is assigned to
the two boundary solutions on each non-dominated fronte Hae larger the crowding
distance is, the less crowded around the solution.

After non-dominated sorting and calculation of the crowgddistance, selection
begins. During selection, two solutions are chosen rangonile solution with the
better (lower) rank wins the tournament. If the two solusidrave the same rank, the
one with the larger crowding distance wins. If two solutidvave the same rank and
the same crowding distance, choose a winner randomly. Bhisiament procedure
continues until the parent population for the next generas filled up.

A diagram of the multi-objective genetic algorithm for apization of the connec-
tivity and weight of SNNs is shown in Fig. 2. The code of ouralthm is developed
within the SHARK environment [21].
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Fig. 2. A multi-objective GA for optimizing the connectivity and vgits of SNNs.

4 Empirical Studies

4.1 Experimental setup

The multi-objective learning algorithm has been testedvem benchmark problems
from the UCI Machine Learning Repository, namely, the Wisio breast cancer diag-
nosis data set and the Prima Indian diabetes data set. Theradata consists of 699
instances with 9 input attributes, and the diabetes dattaiztn768 examples with 8
inputs, all of which are normalized between 0 and 1. The dutpboth data sets is
either 0 or 1, meaning benign (negative) or malignant (pe3itThe data are divided
into training and test sets. Of the cancer data, 525 data pegrused for training and
174 pairs for test. Of the diabetes data, 576 examples fimirigaand 192 for test.

Temporal coding is used for both inputs and output, wherdrtpats are scaled
between 0 ms and 6 ms, and the outputs are normalized betWeas &nd 16 ms for
the cancer data, while for the diabetes data, the input lsdtetween 0 ms and 16 ms,
and the output is set to 20 ms for negative cases and 26 faiygoshes. For example,
given an input value of 0.1, a spike is generated at time 0.6ftes the reference time.
For setting the reference time, an reference input is ireduid the network, which
serves as the clock, as in [5]. Thus, the number of input meueguals the number of
attributes plus one. For an output value of 0, the outputareshould emit a spike at
time 16 ms, while for an output value of 1, the neuron shouldt arspike at time 10
ms. The simulation period is set to 50 ms with a step-size bin@s, the membrane
potential decay time constant)(is set to 11, and the threshadlds set to 1000.

Both parent and offspring populations consist of 100 irdlals, each of which is
composed of two chromosomes, one representing the cowiteetind the other the
weights. In the single-terminal case, each element of t@ection matrix is repre-
sented by a 4-bit gray-coded string, which means that theevaf the connectivity
elements is between 0 and 15. As mentioned in the previotissea connection value
of 0 means that the two neurons are not connected, while @Zaminteger encodes
the delay in millisecond between the two neurons. In othed&athe maximum delay
the genetic algorithm can evolve is 15 ms. In the multi-tex@hcase, the 4-bit string
means that a minimum of zero to a maximum of 15 terminals édsteen two neu-
rons. For example, if this value is zero, no terminals exé&tmeen the corresponding



two neurons. If this value is three, there are three terraibatween the neurons, and
the synaptic delay of the three terminals is 1 ms, 2 ms, and,3espectively. Each
synaptic weight is encoded by a 10-bit gray-coded stringithaitialized between -10
and 40. The maximum number of hidden neurons is set to 10.

The crossover probability is set to 0.6, and the mutatioa iaset to be inversely
proportional to the total length of the chromosome. Eachugiamary optimization has
been run for 300 generations and the results are averageteoviedependent runs.

4.2 Resultsfrom Networkswith Single-Terminal Connections
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Fig. 3. Results from 10 independent runs for Case 1 (denoted byisisterand Case 2 (denoted
by circles) from the cancer data. (a) Training, and (b) test.
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Fig. 4. Results from 10 independent runs for Case 3 (denoted byisisterand Case 4 (denoted
by circles) from the cancer data. (a) Training, and (b) test.
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We first perform simulation studies for the cancer data whemetwork has single-
terminal connections. We consider four different objextetups, where the two objec-
tives are: Number of connections and classification erras€Cl), number of connec-
tions and root mean square error (RMSE) (Case 2), sum of slalagt classification
error (Case 3), and sum of delays and RMSE (Case 4). The hgamsults for cases 1)
and 2) are presented in Fig. 3(a), where the asterisks ddmtesults for case 1) and
the circles the results for case 2). We can see from the fidnate different to single
objective learning, we obtain a number of non-dominatedtgmis in each run, which



trade the complexity against the performance. Besides, ate that smaller classifi-
cation errors have been obtained in case 1) than in case B).isThlso true on the
test data, refer to Fig. 3(b). In case the RMSE is used as ttendebjective, the al-
gorithm tends to obtain more complex networks. We also edtiat there is a clear
knee point on the Pareto front, i.e., the classificationretexreases rapidly when the
number of connections increases to about 5. After that,argment in performance is
minor as the complexity further increases. Thus, the aeni®nt of the non-dominated
front helps us to choose the most economic network for a givehlem. Note that in
the figures, results from 10 independent runs are merged,sbine of the solutions
become dominated by others, though the results from diffetes do not vary much.
The minimal classification error we obtained on the test #ath2%, which is a lit-
tle better than those reported in [5] and [16], where the ¢esir is 1.8% and 2.4%,
respectively. Our results are also comparable to those albgmeural networks with
two hidden layers [22], where the mean classification errothe test data is 1.15%
and 2.87%, respectively, when direct connections betwagut iand output nodes are
present or absent. In [22], the analog neural networks aieetd by RPROP, which is a
very efficient gradient-based learning algorithm [23].

The results for case 3) and case 4) are given in Fig. 4. Themeahce of the
achieved non-dominated NNs is quite similar to cases 1) anib2jet an impression on
the relationship between the two different measures fdiop@ance and connectivity,
we re-plot the results of Fig. 3 and Fig. 4 in terms of RMSE ig.B and Fig. 6,
respectively. From the figures, the following observatioas be made. First, it does
not make much difference whether RMSE or classificationrésrased for optimizing
the performance, neither does it, whether the number of extions or the sum of
delays is adopted for optimizing the connectivity. Secamdll cases, no overfitting has
occurred, which is of great interest compared to seriousfittiregs in analog networks
with high complexity [19].
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Fig. 5. Re-plots of the results from the cancer data for Case 1 (ddrint asterisks), and Case 2
(denoted by circles). (a) Training, and (b) test.

Simulations have also been conducted for the diabetes Batahis data set, we
show only the results for Cases 1 and 2, refer to Fig. 7(ah@training and Fig. 7(b)
for the test data. We note that for the diabetes data, theegiancy between the results
from different runs is much larger than that of the cancendathich suggests that
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Fig. 6. Re-plots of the results from the cancer data for Case 1 (ddrnt asterisks), and Case 2
(denoted by circles). (a) Training, and (b) test.

the diabetes data is more difficult to classify than the cada&. Since results on the
diabetes data using SNNs have not been reported elsewhemgmpare our results
with those in [22]. In that work, the mean classification ewwer 60 runs on the test
data is 25.83% when an analog network with two hidden layegsuaed. Thus, the
performance of the SNN is better than that of the analog heetevork in some of the
runs are. Finally, similar to the cancer data, no seriousfitthieg has been observed for
the diabetes data as the complexity of the network increases
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Fig. 7. Results from 10 independent runs from the diabetes datadse C (denoted by asterisks),
and Case 2 (denoted by circles). (a) Training, and (b) test.

4.3 Resultsfrom Networkswith Multi-ter minal Connections

We now discuss briefly the results on SNNs with multiple tevag between two con-
nections. The results for the cancer data are presented)irf8 Fivhere the number of
connections and the classification error are minimizedcé&there can be multiple ter-
minals between two neurons, the number of connections besomuch smaller than
the single terminal cases, though the performance on timértgaand test data is similar.
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5 Conclusion

In this paper, we suggest a method for optimizing the peréorre and connectivity of
SNNs using a Pareto-based genetic algorithm. Compareddtingxsupervised learn-
ing algorithms for SNNs, the Pareto-based approach corsshitth learning perfor-
mance and connectivity of the SNNs without aggregatingwiedbjectives. Either the
RMSE or classification error has been minimized for optingzihe performance, and
either the number of connections or the sum of delays hasréeemized for optimiz-
ing connectivity.

One main merit to use the Pareto-based learning is that welttam a number of
Pareto-optimal solutions that trade off performance agjainomplexity. By exploiting
the tradeoff solutions, we are able to gain an insight in® lgarning properties of
SNNs, e.g., the minimal complexity needed for a given pnoblBesides, we are able
to investigate whether overfitting occurs when the compyexfithe network increases.
In our study, no overfitting has been observed, no matter highv the complexity of
the network is. This is a very interesting finding, howevertter experiments must be
performed to confirm this observation.

No conclusion can be made on whether the RMSE or classificatimr should
be used for classification. We have also shown that complexithe SNNs are com-
parable, when the number of connections or the sum of detaysed to optimize
connectivity.

One of the future work is to compare SNNs using other codihgses than tem-
poral coding and to consider SNNs that can emit multiple epilithin the simula-
tion time. In addition, studying the relationship betweendtionality and connectivity
of large scale spiking networks using sophisticated nétveimulation software like
NEST [24] is our further research target.
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