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Abstract. Evolutionary multi-objective optimization of spiking neural networks
for solving classification problems is studied in this paper. By means of a Pareto-
based multi-objective genetic algorithm, we are able to optimize both classifica-
tion performance and connectivity of spiking neural networks with the latency
coding. During optimization, the connectivity between twoneurons, i.e., whether
two neurons are connected, and if connected, both weight anddelay between the
two neurons, are evolved. We minimize the the classificationerror in percent-
age or the root mean square error for optimizing performance, and minimize the
number of connections or the sum of delays for connectivity to investigate the
influence of the objectives on the performance and connectivity of spiking neural
networks. Simulation results on two benchmarks show that Pareto-based evolu-
tionary optimization of spiking neural networks is able to offer a deeper insight
into the properties of the spiking neural networks and the problem at hand.

1 Introduction

Spiking neural networks (SNNs) are believed to be biologically more plausible [1, 2]
and computationally more powerful than analog neural networks [3]. However, the
computational power of SNNs has yet to be demonstrated, mainly due to the fact that an
efficient supervised learning algorithm still lacks. In contrast to analog neural networks,
for which various sophisticated supervised learning algorithms have been developed [4],
only a very limited number of supervised learning algorithms are available for training
SNNs, which can be attributed to the discontinuous nature ofspiking neurons.

SpikePop [5] is the first supervised learning algorithm thathas been developed
based on the error backpropagation principle widely used intraining analog neural
networks. However, SpikeProp has several weaknesses. First, the performance of the
learning algorithm is quite sensitive to parameter initialization. If a neuron is silent af-
ter initialization, no training is possible for the weightsof its incoming connections.
As a result, the neuron will never be able to produce any spikes. Second, SpikeProp is
only applicable to latency-based coding. Third, SpikePropworks only for SNNs where
neurons spike only once in the simulation time. Fourth, SpikeProp has been developed
for training the weights only. To address these weaknesses,a few algorithms extending
the SpikeProp have been suggested [6–8].



Both SpikeProp and its variants are gradient-based learning algorithms, where sim-
plifications have to be made to apply the gradient method. To resolve this problem
inherent to the SpikeProp learning algorithms, evolutionary algorithms [9, 10], which
have shown to be very successful in training analog neural networks [11], have also
been employed for training spiking neural networks. For example, the connectivity and
the sign of the connectivity (the neuron is excitatory if thesign is positive and inhibitory
if negative) of a spike response model (SRM) [12] are evolvedfor vision-based robot
control using a genetic algorithm (GA). Similar work has been reported in [13] and
[14]. In [13], an adaptive GA is adopted to evolve the weightsof the SRM model for
robot navigation, while in [14], a parallel deferential evolution has been employed to
evolve the weights of the SRM. Both weights and delays of an integrate-and-fire (IAF)
model with dynamic synapses [15] and a SRM are evolved using an evolution strat-
egy [16]. It is found that the performance of the SNNs are comparable to that of the
analog feedforward neural network on two benchmark problems.

Encouraged by the success of the Pareto-based approach to machine learning [17],
this work employs a Pareto-based multi-objective genetic algorithm to evolve the con-
nectivity, weights and delays of the SRM. Different to single objective optimization,
Pareto-based multi-objective learning using multi-objective evolutionary algorithms [18]
is able to achieve a number of Pareto-optimal solutions rather than one single optimal
solution. By analyzing the trade-off between different learning objectives, such as the
performance and complexity, we are able to gain a deeper insight into the neural net-
work model as well as the problem to learn [19], by, e.g., identifying interpretable mod-
els and models that can generalize on unseen data from the Pareto-optimal solutions.

Several objectives concerning learning performance and connectivity can be taken
into account in optimizing spiking neural networks for supervised learning such as clas-
sification. In addition to minimizing the classification error, we can also minimize the
number of connections, or the total length of synaptic connections, which can be re-
placed by the sum of the delays in the SNN, assuming that the delay between two
neurons is proportional to the connection length between them.

2 Spiking Neural Network Model

The spiking network model adopted in this work is the same as the one in [5], which
has a feedforward architecture consisting of neurons described by the SRM [12]. The
network architecture is shown in Fig. 1(a), where multiple synaptic terminals can exist
between two neurons, refer to Fig. 1(b). For clarity, we assume that the network has
only one output neuron.

Assume neuronk receives spikes fromN pre-synaptic neurons that fire at time
instanttik. For the sake of simplicity, we assume each neuron emit at most one spike
during the simulation interval, though this is not a restriction from our evolutionary
learning method. The internal state of neuronk at timet, xk(t), which represents the
membrane potential, can be described by

xk(t) =
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Fig. 1. Feedforward spiking neural networks with multiple synaptic terminals between two neu-
rons (a) The feedforward architecture. (b) Two synaptic connections with multiple terminals.

wheremi is the number of synaptic terminals between neuronsi and k, wl

ik
is the

synaptic strength, andyl

i
(t) is the unweighted contribution of neuroni to neuronk

through thel-th synaptic terminal, which can be expressed by

yl
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ik), (2)

whereǫ is a spike response function modeling the post-synaptic potential,ti is the firing
time of neuroni, anddl

ik
is the synaptic delay of thel-th synaptic terminal. The spike

response function can be described as follows:

ǫ(t) =

{

t

τ
e1−

t

τ , if t ≥ 0
0, if t < 0

, (3)

whereτ is the membrane potential decay time constant.
When the membrane potential of neuronk crosses a predefined thresholdθ, it will

emit a spike. After firing, there is a refractory time during which no spikes can be
generated again. As we assumed that at most one spike will be generated during the
simulation interval, the refractory time is set to be largerthan the simulation interval.

3 A Multi-Objective Genetic Algorithm for Pareto Learning

Evolutionary algorithms (EAs) are well suited for Pareto-based multi-objective learn-
ing of spiking neural networks for several reasons. First, EAs do not require explicit
gradient information for updating weights, unlike most supervised learning methods.
Second, not only weights, but synaptic delays and connectivity of the network such as
the number of terminals between two neurons can also be evolved. Third, evolutionary
algorithms have shown to be very powerful for multi-objective optimization [18], thus
for multi-objective learning.

3.1 Genetic Representation of SNNs

In this work, a genetic algorithm using gray coding has been adopted. Each individual
consists of two chromosomes encoding a connection matrix and a weight matrix, re-
spectively. An element in the connection matrix (cik) is an integer equal to or greater
than zero, representing the connectivity from neuroni to neuronk. We investigate both



single-terminal and multi-terminal synaptic connections. In case of single-terminal con-
nections, there is at most one connection between two neurons. There is no connection
from neuroni to neuronk if cik = 0. If cik > 0, then it represents the synaptic de-
lay between two neurons. In the multi-terminal case,cik > 0 represents the number
of terminals between two neurons, and the synaptic delays ofthe terminals range from
1tocik. The weight matrix (wik) encodes the strength of the connections between neu-
ron i and neuronj.

3.2 Objectives

Existing supervised learning algorithms for training spiking neural networks minimize
the error on training data only. In contrast, a multi-objective learning algorithm can
take into account more than one objective with respect to training performance as well
as the connectivity of the SNN. In this work, we adopt one of the two error functions,
i.e., either the root mean square error (RMSE) or the classification error in percentage,
to optimize the performance of the SNN. Besides, either the number of connections or
the sum of delays is minimized for optimizing the connectivity of the SNN.

3.3 Genetic Variations and Pareto-based Selection

The uniform crossover and bit-flip mutation are applied at a probability of pc andpm,
respectively, to evolve the connectivity and weights of theSNN. To select parent indi-
viduals for the next generation, we employ the crowded tournament selection method
proposed in NSGA-II [20]. First, the offspring and the parent populations are com-
bined. Then, a non-dominated rank and a local crowding distance are assigned to each
individual in the combined population. In non-dominated ranking, the non-dominated
solutions are found out and assigned a rank of 1. These solutions consist of the first
non-dominated front. After that, the non-dominated solutions with rank 1 are removed
temporarily from the combined population. Then, non-dominated solutions of the rest
individuals in the population are identified, which consistof the second non-dominated
front. A rank of 2 is assigned to these solutions. This procedure repeats until all indi-
viduals are assigned to a non-dominated front. In the next step, a crowding distance is
calculated for each individual with regard to the non-dominated front it belongs to. The
crowding distance of a solution is the distance between its two neighboring solutions
on the same non-dominated front in the objective space. A large distance is assigned to
the two boundary solutions on each non-dominated front. Here, the larger the crowding
distance is, the less crowded around the solution.

After non-dominated sorting and calculation of the crowding distance, selection
begins. During selection, two solutions are chosen randomly. The solution with the
better (lower) rank wins the tournament. If the two solutions have the same rank, the
one with the larger crowding distance wins. If two solutionshave the same rank and
the same crowding distance, choose a winner randomly. This tournament procedure
continues until the parent population for the next generation is filled up.

A diagram of the multi-objective genetic algorithm for optimization of the connec-
tivity and weight of SNNs is shown in Fig. 2. The code of our algorithm is developed
within the SHARK environment [21].
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Fig. 2. A multi-objective GA for optimizing the connectivity and weights of SNNs.

4 Empirical Studies

4.1 Experimental setup

The multi-objective learning algorithm has been tested on two benchmark problems
from the UCI Machine Learning Repository, namely, the Wisconsin breast cancer diag-
nosis data set and the Prima Indian diabetes data set. The cancer data consists of 699
instances with 9 input attributes, and the diabetes data contains 768 examples with 8
inputs, all of which are normalized between 0 and 1. The output of both data sets is
either 0 or 1, meaning benign (negative) or malignant (positive). The data are divided
into training and test sets. Of the cancer data, 525 data pairs are used for training and
174 pairs for test. Of the diabetes data, 576 examples for training and 192 for test.

Temporal coding is used for both inputs and output, where theinputs are scaled
between 0 ms and 6 ms, and the outputs are normalized between 10 ms and 16 ms for
the cancer data, while for the diabetes data, the input is scaled between 0 ms and 16 ms,
and the output is set to 20 ms for negative cases and 26 for positive ones. For example,
given an input value of 0.1, a spike is generated at time 0.6 msafter the reference time.
For setting the reference time, an reference input is included in the network, which
serves as the clock, as in [5]. Thus, the number of input neurons equals the number of
attributes plus one. For an output value of 0, the output neuron should emit a spike at
time 16 ms, while for an output value of 1, the neuron should emit a spike at time 10
ms. The simulation period is set to 50 ms with a step-size of 0.1 ms, the membrane
potential decay time constant (τ ) is set to 11, and the thresholdθ is set to 1000.

Both parent and offspring populations consist of 100 individuals, each of which is
composed of two chromosomes, one representing the connectivity and the other the
weights. In the single-terminal case, each element of the connection matrix is repre-
sented by a 4-bit gray-coded string, which means that the value of the connectivity
elements is between 0 and 15. As mentioned in the previous section, a connection value
of 0 means that the two neurons are not connected, while a non-zero integer encodes
the delay in millisecond between the two neurons. In other words, the maximum delay
the genetic algorithm can evolve is 15 ms. In the multi-terminal case, the 4-bit string
means that a minimum of zero to a maximum of 15 terminals existbetween two neu-
rons. For example, if this value is zero, no terminals exist between the corresponding



two neurons. If this value is three, there are three terminals between the neurons, and
the synaptic delay of the three terminals is 1 ms, 2 ms, and 3 ms, respectively. Each
synaptic weight is encoded by a 10-bit gray-coded string that is initialized between -10
and 40. The maximum number of hidden neurons is set to 10.

The crossover probability is set to 0.6, and the mutation rate is set to be inversely
proportional to the total length of the chromosome. Each evolutionary optimization has
been run for 300 generations and the results are averaged over ten independent runs.

4.2 Results from Networks with Single-Terminal Connections
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Fig. 3. Results from 10 independent runs for Case 1 (denoted by asterisks), and Case 2 (denoted
by circles) from the cancer data. (a) Training, and (b) test.
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Fig. 4. Results from 10 independent runs for Case 3 (denoted by asterisks), and Case 4 (denoted
by circles) from the cancer data. (a) Training, and (b) test.

We first perform simulation studies for the cancer data when the network has single-
terminal connections. We consider four different objective setups, where the two objec-
tives are: Number of connections and classification error (Case 1), number of connec-
tions and root mean square error (RMSE) (Case 2), sum of delays and classification
error (Case 3), and sum of delays and RMSE (Case 4). The learning results for cases 1)
and 2) are presented in Fig. 3(a), where the asterisks denotethe results for case 1) and
the circles the results for case 2). We can see from the figure that, different to single
objective learning, we obtain a number of non-dominated solutions in each run, which



trade the complexity against the performance. Besides, we note that smaller classifi-
cation errors have been obtained in case 1) than in case 2). This is also true on the
test data, refer to Fig. 3(b). In case the RMSE is used as the second objective, the al-
gorithm tends to obtain more complex networks. We also notice that there is a clear
knee point on the Pareto front, i.e., the classification error decreases rapidly when the
number of connections increases to about 5. After that, improvement in performance is
minor as the complexity further increases. Thus, the achievement of the non-dominated
front helps us to choose the most economic network for a givenproblem. Note that in
the figures, results from 10 independent runs are merged, thus some of the solutions
become dominated by others, though the results from different runs do not vary much.
The minimal classification error we obtained on the test datais 1.2%, which is a lit-
tle better than those reported in [5] and [16], where the testerror is 1.8% and 2.4%,
respectively. Our results are also comparable to those of analog neural networks with
two hidden layers [22], where the mean classification error on the test data is 1.15%
and 2.87%, respectively, when direct connections between input and output nodes are
present or absent. In [22], the analog neural networks are trained by RPROP, which is a
very efficient gradient-based learning algorithm [23].

The results for case 3) and case 4) are given in Fig. 4. The performance of the
achieved non-dominated NNs is quite similar to cases 1) and 2). To get an impression on
the relationship between the two different measures for performance and connectivity,
we re-plot the results of Fig. 3 and Fig. 4 in terms of RMSE in Fig. 5 and Fig. 6,
respectively. From the figures, the following observationscan be made. First, it does
not make much difference whether RMSE or classification error is used for optimizing
the performance, neither does it, whether the number of connections or the sum of
delays is adopted for optimizing the connectivity. Second,in all cases, no overfitting has
occurred, which is of great interest compared to serious overfittings in analog networks
with high complexity [19].
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Fig. 5. Re-plots of the results from the cancer data for Case 1 (denoted by asterisks), and Case 2
(denoted by circles). (a) Training, and (b) test.

Simulations have also been conducted for the diabetes data.For this data set, we
show only the results for Cases 1 and 2, refer to Fig. 7(a) for the training and Fig. 7(b)
for the test data. We note that for the diabetes data, the discrepancy between the results
from different runs is much larger than that of the cancer data, which suggests that
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Fig. 6. Re-plots of the results from the cancer data for Case 1 (denoted by asterisks), and Case 2
(denoted by circles). (a) Training, and (b) test.

the diabetes data is more difficult to classify than the cancer data. Since results on the
diabetes data using SNNs have not been reported elsewhere, we compare our results
with those in [22]. In that work, the mean classification error over 60 runs on the test
data is 25.83% when an analog network with two hidden layers are used. Thus, the
performance of the SNN is better than that of the analog neural network in some of the
runs are. Finally, similar to the cancer data, no serious overfitting has been observed for
the diabetes data as the complexity of the network increases.
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Fig. 7. Results from 10 independent runs from the diabetes data for Case 1 (denoted by asterisks),
and Case 2 (denoted by circles). (a) Training, and (b) test.

4.3 Results from Networks with Multi-terminal Connections

We now discuss briefly the results on SNNs with multiple terminals between two con-
nections. The results for the cancer data are presented in Fig. 8, where the number of
connections and the classification error are minimized. Since there can be multiple ter-
minals between two neurons, the number of connections becomes much smaller than
the single terminal cases, though the performance on the training and test data is similar.
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Fig. 8. Results on the cancer data from SNNs with multiple terminals. Asterisks denote the train-
ing data and circles the test data.

5 Conclusion

In this paper, we suggest a method for optimizing the performance and connectivity of
SNNs using a Pareto-based genetic algorithm. Compared to existing supervised learn-
ing algorithms for SNNs, the Pareto-based approach considers both learning perfor-
mance and connectivity of the SNNs without aggregating the two objectives. Either the
RMSE or classification error has been minimized for optimizing the performance, and
either the number of connections or the sum of delays has beenminimized for optimiz-
ing connectivity.

One main merit to use the Pareto-based learning is that we canobtain a number of
Pareto-optimal solutions that trade off performance against complexity. By exploiting
the tradeoff solutions, we are able to gain an insight into the learning properties of
SNNs, e.g., the minimal complexity needed for a given problem. Besides, we are able
to investigate whether overfitting occurs when the complexity of the network increases.
In our study, no overfitting has been observed, no matter how high the complexity of
the network is. This is a very interesting finding, however, further experiments must be
performed to confirm this observation.

No conclusion can be made on whether the RMSE or classification error should
be used for classification. We have also shown that complexity of the SNNs are com-
parable, when the number of connections or the sum of delays is used to optimize
connectivity.

One of the future work is to compare SNNs using other coding schemes than tem-
poral coding and to consider SNNs that can emit multiple spikes within the simula-
tion time. In addition, studying the relationship between functionality and connectivity
of large scale spiking networks using sophisticated network simulation software like
NEST [24] is our further research target.
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