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Abstract. This paper presents a sensor-based walking and reaching ar-
chitecture for humanoid robots. It enables the robot to interact with its
environment using a smooth whole body motion control driven by stabi-
lized visual targets. Interactive selection mechanisms are used to switch
between behavior alternatives for searching or tracking objects as well
as different whole body motion strategies for reaching. The decision be-
tween different motion strategies is made based on internal predictions
that are evaluated by parallel running instances of virtual whole-body
controllers. The results show robust object tracking and a smooth inter-
action behavior that includes a large variety of whole-body postures.

1 Introduction

Research on humanoid robots is increasingly focusing on interaction in complex
environments, including autonomous decision making and complex coordinated
behavior. Several interactive robot systems were already introduced. A complete
architecture for a small humanoid (Sony Qrio) that uses a central action selec-
tion driven by so called behavior values provided by the individual behaviors is
described in [1] [2]. Kismet [3] also realizes a variety of interaction abilities and
contains both a powerful vision and attention system and behavior selection. The
main focus of this system is child-like interaction and developmental learning.

In this paper, we will present a system that enables a humanoid robot to
interact with a human. The perception is based on a so called proto-object repre-
sentation. Proto-objects are a concept originating from psychophysical modeling
[4] [5] [6]. They can be thought of as coherent regions or groups of features in
the field of view that are trackable and can be pointed or referred to without
identification. Novel in the context of humanoid robots are the following key
points:

– The use of proto objects to form stable hypothesis for behavior generation,
e. g. for tracking or reaching for objects.

– Decision mechanisms that evaluate behavioral alternatives based on sensory
information and internal prediction.



– A motion control system that can be driven by a wide range of possible
target descriptions and that ensures smooth well coordinated whole body
movements.
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Fig. 1. Overview of the system design.

The general design of the system is depicted in Fig. 1. The perception system uses
visual features and stereo based 3d information to detect relevant visual stimuli.
It keeps this information as proto-objects in a short-term sensory memory. This
sensory memory is then used to derive targets for visual tracking and to form
stable object hypotheses from which movement targets for reaching movements
can be derived. A prediction based decision system selects the best movement
strategy and executes it in real time. The internal prediction as well as the
executed movements exploit an integrated control system that uses a flexible
target description in task space in addition to cost-functions in null space to
achieve well coordinated and smooth whole body movements.

2 Proto-object based perception

In the following, the characteristics of the perception are explained in more
detail.

Proto-object Candidate Extraction: To generate proto-objects, the image
processing has to find entities in the environment that are dynamically stable
in position and extent. Efficient methods to find such entities are color and
texture segmentation algorithms, or feature extractors for unique salient points.
To obtain 3d information, stereo disparity calculations or other stereo algorithms
can be used. We extract 3d ellipsoids from the visual input based on a color
segmentation and a disparity algorithm. The extracted blobs encode the position,
metric size, and orientation of significant visual stimuli.



Proto-Objects in Sensory Memory: To form stable object hypotheses, the
sensory information is buffered and organized consistently. This is done in form
of proto-objects in sensory memory. The incoming blobs are mapped to proto-
objects in sensory memory. If the memory is empty, a proto-object is generated
from blob data. If the sensory memory already contains one or more proto-
objects, a prediction for each proto-object is generated. The prediction is com-
pared to the new measurement. According to the result, either a new proto-object
is generated, or the prediction is employed to update an existing proto-object.

Evaluation / Selection of Interaction Objects: The output from the sen-
sory memory is evaluated with respect to the object criteria (in this case distance,
size, and minimum elongation). The results are categorized into

– Found: The object is found in the visual field.
– Memorized: The object is not found in the visual field, but has been found

recently.
– Inaccurate: The object is found, but close to the image boundary. Since it

is only partially visible, the estimation results are likely to be inaccurate.

The 3-d data and the above evaluation result is sent to the behaviors (search,
track, reach). Each behavior can then extract the relevant information.

3 Behavior Generation

3.1 Tracking and Searching

The output of the sensory memory is used to drive two different head behaviors:
1) searching for objects and 2) gazing at or tracking objects. Separate from these
behaviors is a decision instance or arbiter [7] that decides which behavior should
be active at any time. The decision of the arbiter is solely based on a scalar
value that the behaviors provide, which we call a fitness value. This fitness value
describes how well a behavior can be executed at any time. In this concrete case,
tracking needs at least an inaccurate proto object position to look at. Thus the
tracking behavior will output a fitness of 1 if any proto object is present and a
0 otherwise. The search behavior has no prerequisites at all and thus its fitness
is fixed to 1.

The search behavior is realized by means of a very low resolution inhibition of
return map with a simple relaxation dynamics. If the search behavior is active
and new vision data is available it will increase the value of the current gaze
direction in the map and select the lowest value in the map as the new gaze
target. The tracking behavior is realized as a multi-tracking of 3-dimensional
points. The behavior takes all relevant proto-objects and object hypotheses into
account and calculates the pan/tilt angles for centering them in the field of
view. The two visual interaction behaviors together with the arbiter switching
mechanism show very short reaction times and have proven efficient to quickly
find and track objects.



3.2 Reaching

Similarly to the search and track behaviors, the reaching behavior is driven by
the sensory memory. It is composed of a set of internal predictors and a strat-
egy selection instance. Each predictor includes a whole body motion controller
and a cost function evaluation. The underlying whole body motion control is
based on the scheme by Liégeois [8][9][10] for redundant systems. The trajec-
tories to reach towards the proto objects are generated interactively using a
dynamical systems approach. The trajectories are projected into joint space us-
ing a weighted generalized pseudo-inverse of the task Jacobian. Redundancies
are resolved by mapping the gradient of an optimization criterion into the null
space of the motion. In this work a joint limit avoidance criterion is used. Details
on the whole body control algorithm are given in [11][12]. The whole body con-
troller is coupled with a walking and balancing controller, which stabilizes the
motion. This scheme allows to perform even fast dynamic whole body motions
in a stable way.

Strategy selection
The idea is to evaluate a set of different behavior alternatives (“strategies”)
that solve the task in different ways. In the following, the task of reaching to-
wards an object and aligning the robot’s palm with the objects longitudinal
axis will be regarded. In a first step, the visual target is split up into different
motion commands, with which the task can be achieved. Four commands are
chosen: Reaching towards the target with the left and right hand, both while
standing and walking. While the strategies that reach while standing assume
the robot model to be fixed, the strategies involving walking are based on on
a kinematic “floating base” description of the robot model (Fig. 2 [11]). This
way, the heel position of the control model is permanently updated according
to the given target and the null space criteria that are incorporated within the
whole body motion controller. This leads to a very interesting property of the
control scheme: the control algorithm will automatically compute the optimal
stance position and orientation with respect to a given target and the chosen
null space criteria. If a walking strategy is selected, the floating frame is set as
the target for a step pattern generator, which generates appropriate steps to
reach the computed heel position and orientation. Now each strategy computes
the motion and an associated cost according to its specific command. The cost
describes the suitability of the strategy in the current context. It is based on
the evaluation of a multi-criteria cost function that is composed of the following
measures:

– Reachability: Penalizes if the target cannot be reached with the respective
strategy.

– Postural discomfort: Penalizes the proximity to the joint limits when
reaching towards the target.

– “Laziness”: Penalizes the strategies that make steps. This way, the robot
prefers standing over walking.



Fig. 2. “Floating” heel frame: The stance position of the feet is the result of the null
space motion. It is a local optimum with regard to the given task.

– Time to target: Penalizes the approximate number of steps that are re-
quired to reach the target. This makes the robot dynamically change the
reaching hand also during walking.

The costs are evaluated by the strategy selection process, and the strategy with
the lowest cost is identified. The corresponding command is given to the physical
robot. The robot is controlled with the identical whole body motion controller
that is employed for the internal simulations. An interesting characteristic of
the system is the temporal decoupling of real robot control and simulation. The
strategies are sped up by a factor of 10 with respect to the real-time control,
so that each strategy has converged to the target while the physical robot still
moves. Therefore, the strategies can be regarded as prediction instances, since
they look some time ahead of the real robot. Nevertheless, the control algorithms
running within the strategies and on the robot are identical. From a classical
point of view, the predictions could be seen as alternative results of a planning
algorithm. A major difference is their incremental character. We use a set of
predictors as continuously acting robots that each execute the task in a different
way. The most appropriately acting virtual robot is mapped to the physical
instance.

4 Results

The system as described above was tested many times with different people
interacting with Asimo with a variety of target objects. The scenario was always
to have a human interaction partner who has an elongated object that was shown
or hidden in various ways to Asimo. The system is not restricted to only one
object. If a number of objects are close to each other, the system will try to keep
all objects in the field of view. If they are further apart, the objects leaving the
field of view will be neglected after a short while and the system will track the
remaining object(s). Objects are quickly found and reliably tracked even when
moved quickly. The robot will reach for any elongated object of appropriate
size that is presented within a certain distance — from 20cm to about 3m.



Fig. 3. Snapshot series from an experiment.

Asimo switches between reaching with the right and left hand according to the
relative object position with some hysteresis. It makes steps only when necessary.
Fig. 3 shows a series of snapshots taken from an experiment. From second 1-7,
Asimo is reaching for the green bottle with its right hand. This corresponds
to the first phase in Fig. 4. At second 8, the object gets out of reach of the
right hand, and the strategy selection mechanism selects the left hand reaching
strategy, still while the robot is standing (Second phase in Fig. 4). At second 12,
the object can neither be reached with the left hand while standing. The strategy
selection mechanism now selects to reach for the object with the left hand while
walking towards it (Third phase in Fig. 4). The whole body motion control
generates smooth motions and is able to handle even extreme postures which
gives a very natural and human-like impression even to the casual observer.

5 Conclusions

We presented an architecture that interactively generates robot behaviors to
interact with a human partner. The scheme employs internal predictions of be-
havioral alternatives in order to select the most suitable behavior in a given
situation. The presented methods work in real-time and have successfully been
tested on the humanoid robot Asimo. Future work will go in the direction of
interactivity, planning and real-time simulation, and providing efficient tools for
decision making processes and learning.



Fig. 4. Progression of fitness values over time.
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