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ABSTRACT
Surrogate-Assisted Memetic Algorithm(SAMA) is a hybrid
evolutionary algorithm, particularly a memetic algorithm
that employs surrogate models in the optimization search.
Since most of the objective function evaluations in SAMA
are approximated, the search performance of SAMA is likely
to be affected by the characteristics of the models used.
In this paper, we study the search performance of using
different metamodeling techniques, ensembles, and multi-
surrogates in SAMA. In particular, we consider the SAMA-
TRF, a SAMA model management framework that incorpo-
rates a trust region scheme for interleaving use of exact ob-
jective function with computationally cheap local metamod-
els during local searches. Four different metamodels, namely
Gaussian Process (GP), Radial Basis Function (RBF), Poly-
nomial Regression (PR), and Extreme Learning Machine
(ELM) neural network are used in the study. Empirical
results obtained show that while some metamodeling tech-
niques perform best on particular benchmark problems, en-
semble of metamodels and multi-surrogates yield robust and
improved solution quality on the benchmark problems in
general, for the same computational budget.

Categories and Subject Descriptors
G.16 [Numerical Analysis]: Optimization—global opti-
mization
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1. INTRODUCTION
Evolutionary Algorithm(EA), a stochastic computational

model inspired by the neo-Darwinian theory of evolution,
has been used as the major optimization framework in vari-
ous complex real-world optimization problems, such as space
structure design [1], aerodynamic shape design [2], stator
blade design [3], and biomedical applications [4]. However,
as a population-based algorithm, thousands of calls to the
analysis codes are often required to locate a near optimal
solution in most conventional EA. The rising trend of us-
ing time-consuming simulation codes in scientific and en-
gineering works has further increased the impracticality of
EA as a global optimization tool. To alleviate this prob-
lem, in EA it has been a standard practice for computation-
ally cheap approximation or surrogate models to be used
in lieu of exact model, hence the term Surrogate-Assisted
Evolutionary Algorithm (SAEA). Among these techniques,
Polynomial Regression (PR, also known as response surface
method), Artificial Neural Network (ANN), Radial Basis
Function (RBF), and Gaussian Process (GP) (also referred
to as Kriging or Design and Analysis of Computer Exper-
iments (DACE) models) are the most prominent and com-
monly used [5][6][7]. In [5], Ratle proposed a strategy for
integrating GA with Kriging metamodel and uses a heuris-
tic convergence criterion to decide when the model should
be updated. The work was extended by El-Beltagy et al. [8]
who considered the issue of balancing the concerns of opti-
mization with those of Design of Experiments (DOE). Jin et.



al. proposed the coupling of ES with neural network mod-
els in [9]. The concept of generation control and individual
control in the evolutionary search was introduced. Further,
some empirical criteria for switching between the exact fit-
ness function and approximate models throughout the EA
search are provided. Other ideas on using pre-selection to
decide the portions of the EA population that undergoes
exact fitness evaluations were also considered in [10].

In [11], Ong et. al. propose a surrogate assisted memetic
algorithm for solving optimization problems with computa-
tionally expensive fitness function and general constraints,
on a limited computational budget. The essential backbone
of the framework is an evolutionary algorithm coupled with
a trust region managed feasible sequential quadratic pro-
gramming solver in the spirit of Lamarckian learning. The
TRF is used for interleaving use of exact models for the ob-
jective and constraint functions with computationally cheap
surrogate models during local search. Extensions to enhance
search efficiency and approximation accuracy using gradient
information and multi-level surrogates were also considered
in [13] and [14] recently. In this paper, we perform a de-
tail study on the search performance of SAMA when dif-
ferent approximation metamodels are employed. It is com-
mon knowledge that different metamodels have heteroge-
neous characteristics, hence the SAMA, which is heavily de-
pendent on approximation of the fitness functions, is likelt
to be affected by the modeling methods used. We investi-
gate these effects in SAMA-TRF, which was introduced in
[11]. In total, four different metamodels, namely Gaussian
Process (GP), Radial Basis Function (RBF), Polynomial Re-
gression (PR), and Extreme Learning Machine (ELM) Neu-
ral Network are investigated in this study.

To facilitate our discussion, the remainder of this paper is
structured as follows. In Section 2, we review the standard
Surrogate-Assisted Memetic Algorithm(SAMA) and its vari-
ant, SAMA-TRF, which is used throughout this paper. The
four different metamodels applied in the study are briefly
elaborated in Section 3. Section 4 then presents an em-
pirical study on different combination of metamodels and
benchmark functions. In this section, a study on using mul-
tiple metamodels in SAMA is also presented, both in the
forms of an ensemble of metamodels and multi-surrogates.
Finally, section 5 concludes this paper.

2. SURROGATE ASSISTED MEMETIC AL-
GORITHMS

Memetic Algorithms (MAs) are population-based meta
- heuristic search methods that are inspired by Darwinian
principles of natural evolution and Dawkins notion of a meme
defined as a unit of cultural evolution that is capable of local
refinements.

A unique property of MA is the heavy use of the local
search strategy throughout the entire evolutionary search.If
designed correctly, they should converge to high quality so-
lutions more efficiently than conventional evolutionary algo-
rithms [15].

Note that no form of approximations is employed in the
standard MA. Hence, the core idea of the SAMA is to re-
duce the number of calls to the computationally expensive
function by replacing the exact fitness function used in the
local search phase of the standard MA with computationally
cheap surrogates. The SAMA-TRF incorporates a Trust-

BEGIN
Initialize: Generate a database containing a population of
designs.
While(computational budget is not exhausted)

• Evaluate all individuals in the population using the
exact fitness function.

• For each non-duplicated individual in the EA popula-
tion

– MA: Apply local search strategy using original
exact fitness functions.

– SAMA: Apply local search strategy using online
surrogates.

– SAMA-TRF : Apply k iterations of TRF-
regulated local search strategy using online sur-
rogates.

End For

• Replace the individuals in the population with the lo-
cally improved solution in the spirit of Lamarckian
learning.

• Apply standard EA operators to create a new popula-
tion.

End While
END

Figure 1: Pseudo codes of the standard MA, SAMA,
and SAMA-TRF

Region Framework (TRF) in the standard SAMA for inter-
leaving use of exact objective function with computation-
ally cheap local surrogate models during local searches [16].
Since gradient-based local search algorithm involved in EAs
makes use of line searches to locate a new iterate, the issue
of range of validity of the surrogate models or the control of
approximation errors can be directly addressed by using ad
hoc move limits or a trust region framework. As shown by
Alexandrov et al. [17], the trust-region strategy for adap-
tively controlling the move limits guarantees global conver-
gence under some mild assumptions on the accuracy of the
surrogate model. The core differences between the standard
MA, SAMA, and SAMA-TRF are highlighted in Fig. 1.

The Trust Region Framework (TRF) is used to ensure the
convergence to the local optimum of the exact computation-
ally expensive fitness function [16], [12]. More specifically,
for each non-duplicated individuals in the population, the
local search proceeds with a sequence of trust-region sub-
problems of the form

Minimize :f̂k(x + xk
c ) (1)

where k = 0, 1, 2, . . . , kmax, f̂(x) is the approximation func-
tion corresponding to the objective function f(x), xk

c and
Ωk are the initial guess and the trust-region radius used for
local search at iteration k, respectively.

For each subproblem (or during each trust-region itera-
tion), surrogate models of the exact fitness function, viz.,

f̂k(x) is created dynamically. The m nearest neighbors



of the initial guess, xk
c , are extracted from the archived

database of design points evaluated so far using the exact
analysis codes. These points are then used to construct local
surrogate models of the exact objective function.

The surrogate models thus created are used to facilitate
the necessary fitness function estimations in the local searches.
During local search, we initialize the trust-region Ω using the
minimum and maximum values of the design points used to
construct the surrogate model. After each iteration, the
trust-region radius Ωk is updated based on a measure which
indicates the accuracy of the surrogate model at the kth
local optimum, xk

lo. After computing the exact values of
the fitness function at this point, the figure of merit, ρk, is
calculated as

ρk =
f(xk

c )− f(xk
lo)

f̂(xk
c )− f̂(xk

lo)
(2)

The above equations provide a measure of the actual versus
predicted change in the exact fitness function values at the
kth local optimum. The value of ρk is then used to update
the trust-region radius as follows [17]:

Ωk+1 = 0.25Ωk, if ρk ≤ 0.25,

= Ωk, if 0.25 < ρk ≤ 0.75, (3)

= ξΩk, if ρk > 0.75,

where ξ = 2, if ||xk
lo−xk

c ||∞ = Ωk or ξ = 1, if ||xk
lo−xk

c ||∞ <
Ωk.

The trust-region radius, Ωk, is reduced if the accuracy
of the surrogate, measured by ρk is low. Ωk is doubled
if the surrogate is found to be accurate and the kth local
optimum, xk

lo, lies on the trust-region bounds. Otherwise
the trust-region radius remains unchanged.

The exact solutions of the fitness functions at the kth
local optimum are combined with the existing neighboring
data points to generate new surrogate models in the subse-
quent trust-region iterations. The initial guess for the k+1
iteration is defined by

xk+1
c = xk

lo, if ρk > 0

= xk
c , if ρk ≤ 0. (4)

The trust-region process for an individual terminates when
the maximum number of trust-region iterations permissible,
kmax, and configurable by the user is reached. Lamarckian
learning then proceeds if the kmax local optimum solution
obtained is an improvement over that of the initial individ-
ual.

3. METAMODELING TECHNIQUES
In this section, we briefly discuss four different meta-

models used for comparison in this paper, i.e. Gaussian
Process(GP), Radial Basis Function(RBF), Polynomial Re-
gression(PR), and Extreme Learning Machine(ELM) Neural
Network.

Throughout the discussion, we assume the following. Let
D = {xi, ti}, i = 1 . . . n denote the training dataset, where
xi ∈ Rd is the input design vector, ti ∈ R is the corre-
sponding target value, and xi = (xi1 , xi2 , . . . , xid), d de-
notes the dimension of the problem, we have ti = f(xi) =
f(xi1 , . . . , xid).

3.1 Kriging / Gaussian Process (GP)

The GP surrogate model [19] assumes the presence of an
unknown true modeling function f(x) and an additive noise
term v to account for anomalies in the observed data. Thus:

t = f(x) + v (5)

From a stochastic process viewpoint, the collection t =
{t1, t2, ..., tn} is called a Gaussian process if every subset of
t has a joint Gaussian distribution. More specifically,

P (t|C, {xn}) =
1

Z
exp

�
−1

2
(t− µ)T C−1(t− µ)

�
(6)

where C is a covariance matrix parameterized in terms of hy-
perparameters θ, i.e., Cij = k(xi, xj ; θ) and µ is the process
mean. The Gaussian process is characterized by this covari-
ance structure since it incorporates prior beliefs both about
the true underlying function as well as the noise model. In
the present study, we use the following exponential covari-
ance model

k(xi, xj) = e−(xi−xj)T Θ(xi−xj) + θd+1 (7)

where Θ = diag{θ1, θ2, ..., θd} ∈ Rd×d is a diagonal matrix
of undetermined hyperparameters, and θd+1 ∈ R is an ad-
ditional hyperparameter arising from the assumption that
noise in the dataset is Gaussian (and output dependent). We
shall henceforth use the symbol θ to denote the vector of un-
determined hyperparameters, i.e., θ = {θ1, θ2, ..., θd+1}. In
practice, the undetermined hyperparameters are tuned to
the data using the evidence maximization framework.

3.2 Radial Basis Function (RBF)
In RBF, the local surrogate models are interpolating ra-

dial basis function networks of the form

t̂ = f̂(x) =

nX
i=1

αiK(||x− xi||) (8)

where K(||x−xi||) : Rd → R is a RBF and α = {α1, α2, . . . , αn} ∈
Rn denotes the vector of weights. Typical choices for the
kernel include linear splines, cubic splines, multiquadrics,
thin-plate splines, and Gaussian functions [20].

3.3 Polynomial Regression (PR)
In PR model [21], we define an exponent vector ε con-

taining positive integers (π1, π2, . . . , πd) and define xε
i as an

exponent input vector (xi1
π1 , xi2

π2 , . . . , xid
πd).

Given a set of exponent vectors ε1, ε2, . . . , εm and the set
of data (xi, ti), where i = 1, 2, . . . , n, the polynomial model
of (m− 1)th order has the form:

t̂i = C1x
ε1
i + C2x

ε2
i + . . . + Cmxεm

i (9)

where C1, C2, . . . , Cm are the coefficient vectors to be esti-
mated, and Cj = (cj1 , cj2 , . . . , cjd), j = 1, 2, . . . , m. The
least square method is then used to estimate the coefficients
of the polynomial model.

3.4 Extreme Learning Machine (ELM) Neu-
ral Network

The ELM Neural Network [22] consists of three layers:
input, hidden, and output layers. The input weights are
assigned randomly while the output weights are determined
analytically using Moore-Penrose pseudoinverse formulated
as follows:



W =
�
HT H

�−1

HT t (10)

where W = (w1, w2, ..., wd) is the output weights, H is an
h×n matrix as the output of an h-neuron hidden layer for n
data, and t = (t1, t2, ..., tn) denotes the final prediction value
at the output layer. Since no iterative computations are
needed, ELM trains very fast when compared to technique
such as Backpropagation algorithm [22][23].

4. EMPIRICAL STUDY
In this section, we present an empirical study on SAMA-

TRF using the four approximation methods discussed in pre-
vious section. Several commonly used benchmark test func-
tions in evolutionary optimization, i.e., Ackley, Griewank,
Rosenbrock, and Step functions, used in the present study,
are formulated in equations 11, 12, 13, and 14, respectively.
Without loss of generality, in this study, 10D functions are
considered. Please note that for simplicity, in this section
the term SAMA and its variant, SAMA-TRF are used in-
terchangeably as only SAMA-TRF is considered.

Ackley

f(x) = 20 + e− 20e
−0.2

s
1
n

nP
i=1

x2
i − e

1
n

nP
i=1

cos(2πxi)

(11)

−32.768 ≤ xi ≤ 32.768, i = 1, 2, . . . , n.

Griewank

f(x) = 1 +
Pn

i=1 x2
i /4000−Qn

i=1 cos(xi/
√

i) (12)

−600 ≤ xi ≤ 600, i = 1, 2, . . . , n.

Rosenbrock

f(x) =
Pn−1

i=1 (100× (xi+1 − x2
i )

2 + (1− xi)
2) (13)

−2.048 ≤ xi ≤ 2.048, i = 1, 2, . . . , n− 1.

Step

f(x) =
Pn

i=1bx2
i c (14)

−5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.

For the metamodels used, the following settings are ap-
plied. Linear spline is used as the kernel function for the
RBF model. The PR model is a second order model, while
the ELM Neural Network uses 100 hidden neurons and unipo-
lar sigmoid activation function. For the GP model, the hy-
perparameters are determined using evidence maximization
framework as discussed in previous section.

With the maximum computational budget allowable con-
figured as 6000 exact fitness evaluations, search trends of
Simple GA, MA, and SAMA with different metamodels are
plotted in Figures 2-5 which are averaged over 20 indepen-
dent runs. All optimization schemes used are configured to
have population size of 50, uniform crossover and mutation
with probability of 0.9 and 0.01, respectively. Elitism and
ranking selection are also used in the experiments. The trust
region iteration used, k, for the SAMA is configured to be 3,
as suggested in [11]. Using k=3, a single local search on each
individual will consume three exact fitness evaluations. The
number of nearest neighbours used to build local approxi-
mation model, m is configured to be 10 times the problem
dimensionality, i.e. 100 points for the 10D problems. It is
worth noting that all these settings are determined empiri-
cally from some preliminary runs. To obtain a database to

be used by the models in early stages of the optimization,
the first 10 generations uses the Simple GA, hence the first
500 exact fitness evaluations result in similar convergence
trends as can be observed in the figures.

From these results, it is notable that most of the SAMA
variants considered here, are capable of converging to good
solution quality more efficiently than standard GA and MA
on the benchmark problems. This makes good sense since
SAMA, which employs local search heavily using approxi-
mation, generally search more efficiently. Most importantly,
since the surrogates are used in place of the exact fitness
function when conducting local searches, the SAMA-RBF,
SAMA-GP, SAMA-PR, and SAMA-ELM incurs significantly
lower computational efforts than the standard GA for the
same search generations. However, on the unimodal Rosen-
brock function, standard MA performs competitively to the
SAMA variants.

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

18

20

Exact Fitness Function Evaluation

F
itn

es
s 

V
al

ue

Ackley

GA

SAMA−ELM

SAMA−PR

SAMA−GP

SAMA−RBF

MA

Figure 2: Convergence trends of Simple GA, MA,
SAMA-RBF, SAMA-GP, SAMA-PR, and SAMA-
ELM for Ackley function.

0 1000 2000 3000 4000 5000 6000

10
−2

10
−1

10
0

10
1

10
2

10
3

Exact Fitness Function Evaluation

F
itn

es
s 

V
al

ue
 (

Lo
g)

Griewank

GA

SAMA−RBF

SAMA−PR

SAMA−GP

SAMA−ELM

MA

Figure 3: Convergence trends of Simple GA, MA,
SAMA-RBF, SAMA-GP, SAMA-PR, and SAMA-
ELM for Griewank function.

4.1 Quality Measures of Metamodels in SAMA
In this subsection, we investigate the quality of the meta-

models used and how they relate to the search performance
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Figure 5: Convergence trends of Simple GA, MA,
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ELM for Step function.

of SAMA. To begin, we focus on the two criteria commonly
used to assess the quality of surrogate models, i.e. the root
mean square error (rmse) and correlation coefficient (r).

If f(x) denotes the original fitness function and the ap-

proximated function is f̂(x), the approximation errors at any
design point xi is e(xi) , i.e., the uncertainty introduced by
the surrogate at xi, may then be defined as

e(xi) = |f(xi)− f̂(xi)| (15)

For each non-duplicated individual, if n fitness calls to f̂(x)
are made in the SAMA local search strategy, the root mean
square error, rmse can be derived as

rmse =

rPn
i=1 e2(xi)

n
. (16)

While the correlation coefficient r is defined by

r =
N
P

tt̂−P t
P

t̂q
[N
P

t2 − (
P

t)2][N
P

t̂2 − (
P

t̂)2]
. (17)

where N is the sample size used. t denotes the exact
fitness values from the independent test set, and t̂ are the

fitness values estimated by the surrogate. If a correlation
coefficient of 1 is obtained, this implies that the surrogate
models the test set accurately.

Benchmark rmse
Functions GP PR RBF ELM

Ackley 1.135 3.127 0.589 19.832
Griewank 2.117 0.250 2.597 15.341

Rosenbrock 25.473 99.712 67.619 196.421
Step 0.533 1.418 0.864 12.309

Table 1: Criterion-1 (rmse) measures for GP, PR,
RBF, and ELM surrogates

Benchmark r correlation
Functions GP PR RBF ELM

Ackley 0.964 0.834 0.995 0.542
Griewank 0.957 0.934 0.979 0.799

Rosenbrock 0.796 0.736 0.829 0.527
Step 0.901 0.947 0.964 0.412

Table 2: Criterion-2 (r correlation) measures for GP,
PR, RBF, and ELM surrogates

Benchmark Rank of Search Performance
Functions GP PR RBF ELM

Ackley 2 1 4 3
Griewank 3 1 2 4

Rosenbrock 1 3 2 4
Step 3 1 2 4

Table 3: Criterion-3 (final solution quality) mea-
sures for GP, PR, RBF, and ELM surrogates

Locally optimized solutions using the different models in
the SAMA run are archived to form the sample set for evalu-
ating the quality of different surrogates. The obtained rmse
and r measures when used in optimizing the benchmark
functions are reported in Tables 1 and 2, respectively. The
best performing metamodeling technique of each function is
highlighted in italic. It is also worth noting that in opti-
mization, it would be more interesting in predicting search
improvement in the context of optimization as opposed just
to the quality of the approximation. Hence, a third criterion
is introduced here based on the rank of the problem solution
quality for a fixed computational budget. The solution qual-
ity of the benchmark functions for different metamodels at
the end of of 6000 exact evaluations is summarized in Table
3. In terms of rmse, i.e. the measures of absolute errors in
the prediction, GP exhibits the least error among all four.
On the other hand, RBF appears best as far as the corre-
lation measure, i.e. the intensity of association between the
exact and predicted data set, is concerned. However, it is
worth noting that the numerical values tabulated in Tables
1-3 do not reflect this straightforward relationship. Further,
even though PR does not exhibit any good accuracy on both
rmse and r measures, it generates the best solution quality
on 3 out of the 4 benchmark problems considered. Obvi-
ously, the generalizing capabilities of the 2nd-order PR leads
to smoothing in the multimodal characteristics of the orig-
inal(exact) fitness function, leading to faster convergence



rate. The same observations was reported in [24][26] and
termed as the ‘blessing of uncertainty’ in [25]. Nevertheless,
it is also worth noting that while the ‘blessing of uncertainty’
may be useful, to some extent, mild assumption on the ac-
curacy of the metamodeling technique must be maintained.
For instance, the use of ELM in SAMA lead to poor solution
quality due to the significantly poor accuracies in both rmse
and r measures (see Tables 1-3).

4.2 SAMA Using Ensemble of Metamodels and
Multi-Surrogates

From the numerical results obtained in previous subsec-
tion, it is worth keeping in mind that uncertainty introduced
by approximation errors in the surrogate model can bene-
fit as well as obstruct effective optimization search. Since
there is often no prior knowledge on which surrogates or
ensembles would be most appropriate for the problem of in-
terest, the use of multiple metamodels in the SAMA search
appears to be an intuitive alternative. It is worth noting
that the use of multiple metamodels can come in various
forms. Recent studies in [27] and [28] show that using dif-
ferent metamodels in multiple local searches or in the form of
an ensemble, respectively, generally leads to improved gen-
eralization property and solution quality, representing some
promising approaches for mitigating the effects of ‘curse of
uncertainty’ as well as benefiting from ‘bless of uncertainty’.

In this study, we consider an Ensemble-SAMA (ESAMA)
and several variants of SAMA with multiple local searches
that employs different metamodel (MSAMAs), which are
listed in Table 4. For clarity, the differences between ESAMA
and MSAMA are illustrated in Figure 6.

No. of No. of Exact
Local Searches Evaluations

Scheme per Individual per Individual
(for trust region
iteration, k=3)

ESAMA-GPPR 1(GPPR) 3
MSAMA-GP+PR 2(GP, PR) 6

MSAMA-GPPR+GP 2(GPPR, GP) 6
MSAMA-GPPR+PR 2(GPPR, GP) 6

MSAMA-GPPR+GP+PR 3(GPPR, GP, PR) 9

Table 4: The different combinations of using multi-
ple metamodels in MSAMA search.

The ESAMA considered here is a variant of SAMA which
utilizes a surrogate ensemble of GP and PR models and de-
noted as ESAMA-GPPR. The two models are chosen as they
have shown to be more robust than others based on our re-
sults in section 4.1. In GPPR ensemble, every approximated
value is obtained from an aggregated model M(x), con-
structed from the average of GP and PR models. MSAMA-
GP+PR represents a two-model MSAMA, hence two local
searches are performed for each individual, i.e. one local
search per model. Note that surrogate ensemble may also be
considered as one of the independent surrogate models used
in MSAMA. Hence, the mixture of ESAMA and MSAMA
are represented as MSAMA-GPPR+GP and MSAMA-GPPR
+PR schemes, where one local search is performed using an
ensemble while another uses either GP or PR model alone.
The last scheme considered is MSAMA-GPPR+GP+PR,
which consumes a higher computational effort per individ-
ual evaluation, among all five considered, since three lo-
cal searches are performed for every individual. Note that
since the trust region iteration k=3, each local search in
any scheme will incur three exact function evaluations per
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Figure 6: Comparison between ESAMA and
MSAMA.

individual.
The convergence trends for optimizing the four test func-

tions are presented in Figures 7-10. The figures show that
in most cases, SAMA schemes using multiple metamodels,
i.e. MSAMA and/or ESAMA, generally perform better than
those counterparts that employs only a single metamodel.
For the Ackley, Griewank, and Step functions, MSAMA-
GPPR+PR scheme results in best convergence search trends.
SAMA seems to leverage well from synergies between GPPR
ensemble and PR models in these cases. On the other hand,
as three extra exact evaluations are required in MSAMA-
GPPR+GP+PR scheme, in most cases, this scheme did not
materializes when compared to others for the same compu-
tational budget.

From our investigations, it should be noted that while
some mild assumption on the accuracy of the metamodel-
ing technique used is necessary for SAMA, the capability
to smooth the function is also useful for achieving improved
or faster convergence rate. While some metamodeling tech-
niques perform best on particular benchmark problems, en-



semble of metamodels and multi-surrogates yield robust and
improved solution quality on the benchmark problems in
general, for the same computational budget. Hence, using
ensembles of metamodels and/or multiple metamodels are
indeed more effective in SAMAs.
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Figure 7: Convergence trends of using different com-
binations of GP and PR models in SAMA for Ackley
function.
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Figure 8: Convergence trends of using different
combinations of GP and PR models in SAMA for
Griewank function.

5. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the effects of utilizing

different metamodels in Surrogate-Assisted Memetic Algo-
rithm with Trust Region Framework (SAMA-TRF), a vari-
ant of SAMA which incorporates a trust region framework
for interleaving use of exact objective function with compu-
tationally cheap local approximation during local searches.
Four different metamodels, namely Gaussian Process (GP),
Radial Basis Function (RBF), Polynomial Regression (PR),
and Extreme Learning Machine (ELM) neural network are
used in the study. Empirical results show that while all
metamodels used result in search improvement compared to
standard GA, some metamodels, such as PR and GP do
show great robustness when applied to all test functions. A
study of different schemes which utilize multiple metamodels
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Figure 9: Convergence trends of using different com-
binations of GP and PR models in SAMA for Rosen-
brock function.
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Figure 10: Convergence trends of using different
combinations of GP and PR models in SAMA for
Step function.

in SAMA-TRF has also been presented and shows promising
results for further study. In our future work, more study will
be performed on constructing a robust model management
framework which can take advantage from all the different
metamodeling techniques through the use of multiple meta-
models in SAMA in particular, and SAEA in general.
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