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Summary. Rule extraction from neural networks is a powerful tool for knowledge
discovery from data. In order to facilitate rule extraction, trained neural networks
are often pruned so that the extracted rules are understandable to human users. This
chapter presents a method for extracting interpretable rules from neural networks
that are generated using an evolutionary multi-objective algorithm. In the algorithm,
the accuracy on the training data and the complexity of the neural networks are
minimized simultaneously. Since there is a tradeoff between accuracy and complexity,
a number of Pareto-optimal neural networks, instead of one single optimal neural
network, are obtained. We show that the Pareto-optimal networks with a minimal
degree of complexity are often interpretable in that understandable logic rules can
be extracted from them straightforwardly. The proposed approach is verified on two
benchmark problems.

1.1 Introduction

Knowledge acquired by neural networks is not easily understandable to hu-
man beings since the acquired knowledge is distributed among the weights
and nodes of the neural networks. Many efforts have been made to extract
symbolic or fuzzy rules from trained neural networks to gain a deep insight
into the neural networks [1, 2, 4, 5, 6], which is of particular importance when
the neural networks are employed for critical applications, or when neural
networks are used for knowledge discovery from data [7].

As indicated in [1], two main issues must be taken into account in ex-
tracting rules from trained neural networks. First, the extracted rules should
contain the same information that is learned by the original neural network.
No significant information loss should occur, nor should additional informa-
tion be introduced into the rules. Second, the extracted rules should be un-
derstandable to human users. As discussed in [8, 9, 3], one important aspect
that is closely related to the interpretability of the extracted rules is the com-
plexity of the extracted rules, including the number of rules and the number
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of premises in the rules. It is suggested that for the rules to be easily under-
standable, the number of rules should be limited, and the number of premises
should be small (usually less than 10). To improve the comprehensibility of
the extracted rules, it is a common practice to prune the neural networks
using regularization techniques.

Two basic approaches, namely, the de-compositional approach and the
pedagogical approach, have been developed for extracting rules from trained
neural networks [1]. The de-compositional approach translates each node in
the neural network into a rule, in which the inputs of the node are the premises
of the rule, and the output is the consequence of the rule. The pedagogical
approach, by contrast, treats the neural network as a blackbox and considers
rule extraction as a learning process.

This chapter presents an approach to extracting interpretable rules from
neural networks that are generated using an evolutionary multi-objective ap-
proach. The basic idea is to generate a number of Pareto-optimal neural
networks that reflect a tradeoff between accuracy and complexity. Multiple
neural networks of a variety of model complexities, instead of either a single
signal-type or symbol-type model, will be generated using a multi-objective
evolutionary algorithm combined with a local search, where accuracy and
complexity serve as two conflicting objectives. It has been shown in [10, 11]
that by analyzing the Pareto front, we are able to identify neural networks
that are interpretable and those that are able to generalize on unseen data.

The use of evolutionary multi-objective algorithms [16, 15] for addressing
machine learning problems has attracted increasing interest over the past few
years. On the one hand, evolutionary algorithms are well suited for solving
multi-objective problems mainly because they are population based search
methods, which are able to achieve an approximation of the Pareto-front in
one single run. On the other hand, machine learning problems are inherently
multi-objective problems, where tradeoffs between accuracy and complexity,
between accuracy and diversity, between accuracy and interpretability, and
between stability and plasticity have to be taken into account. The marriage
of evolutionary multi-objective optimization and machine learning has shown
to be very fruitful, see [12] for a complete and updated overview of the
research results.

Section 1.2 discusses very briefly the existing methods for controlling model
complexity in the context of model selections in machine learning. Methods
for extracting rules from neural networks are introduced. Section 1.3 shows
that any formal neural network regularization method that simultaneously
minimizes the accuracy and complexity can be treated as a multi-objective
optimization problem. The details of the evolutionary multi-objective algo-
rithm, together with the local search method will be provided in Section 1.4.
Two illustrative examples are given in Section 1.5, where a number of Pareto-
optimal neural networks are generated using the evolutionary multi-objective
optimization algorithm. It will be shown that among the models generated by
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the multi-objective evolutionary algorithm, interpretable logic rules can be
extracted from the compact Pareto-optimal neural networks.

1.2 Rule Extraction and Complexity Control

1.2.1 Model Selection in Machine Learning

By model selection, we mean to choose the best model for a set of given data,
assuming that a number of models is available. Here, the meaning of “best”
needs to be further explained. In general, a model is the best if the prediction
error on the unseen data is minimal. Several criteria have been proposed based
on the Kullback-Leibler Information Criterion [14]. Two most popular criteria
are Akaike’s Information Criterion (AIC) and Bayesian Information Criterion
(BIC). For example, model selection according to the AIC is to minimize the
following criterion:

AIC = −2 log(L(θ|y, g) + 2 K, (1.1)

where, L(θ|y, g) is the maximized likelihood for data y given a model g with
model parameter θ, K is the number of effective parameters of g.

The two terms in in Equation (1.1) indicate that model selection has to deal
with two criteria. The first criterion minimizes the approximation error on the
training data, whereas the second one minimizes the complexity of the model.
There is a conflict between the two objectives, i.e., we cannot minimize the
two objectives simultaneously. Usually, the smaller the error on the training
data, the larger the complexity of the neural network. Obviously, a trade-off
between accuracy and model complexity has to be handled in model selection.

Consequently, model selection criteria have often been employed to control
the complexity of models to a desired degree. This approach is usually known
as regularization in the neural network learning [13]. The main purpose of
neural network regularization is to avoid the overfitting of the training data
by means of controlling the complexity of the neural network. In this way, the
generalization capability of a neural network is improved. By generalization,
it is meant that a trained neural network should perform well not only on the
training data, but also on unseen data.

1.2.2 Complexity Reduction in Rule Extraction

Generally, neural networks are difficult to understand for human users. Due
to this reason, many efforts have been made to extract symbolic or fuzzy rules
from trained neural network [1, 2, 4]. Two assumptions are often made during
rule extraction from trained neural networks. First, units in the neural network
are either maximally active or inactive. To meet this requirement, regulariza-
tion techniques such as structural regularization [24], weight sharing [3] or
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network pruning [31] are usually implemented before rule extraction, which
in effect reduces the complexity of neural networks and thus also contributes
to the comprehensibility of the extracted rules. The complexity reduction pro-
cedure prior to rule extraction is also termed skeletonization [18]. The second
assumption is that a label, or in other words, a meaning needs to be associated
with each unit. This is of less concern if rules are extracted from the output
neurons.

Rule extraction from trained neural networks can be seen as a model se-
lection process that trades off between accuracy and interpretability, where
preference is put on the interpretability of the model. Thus, the trade-off
between accuracy and complexity in model selection also reflects a trade-off
between accuracy and interpretability.

Existing methods for extracting symbolic rules from trained neural net-
work can largely be divided into three steps: neural network training, network
skeletonization, and rule extraction [4].

1.3 Multi-objective Optimization Approach to

Complexity Reduction

1.3.1 Neural Network Regularization

Neural network regularization can be realized by including an additional term
that reflects the model complexity in the cost function of the training algo-
rithm:

J = E + λΩ, (1.2)

where E is the approximation error on the training data, Ω is the regular-
ization term representing the complexity of the network model, and λ is a
hyperparameter that controls the strength of the regularization. The most
common error function in training or evolving neural networks is the mean
squared error (MSE):

E =
1

N

N
∑

i=1

(yd(i) − y(i))2, (1.3)

where N is the number of training samples, yd(i) is the desired output of the
i-th sample, and y(i) is the network output for the i-th sample. For the sake
of clarity, we assume that the neural network has only one output. Refer to
[13] for other error functions, such as the Minkowski error or cross-entropy.

Several measures have also been suggested for denoting the model complex-
ity Ω. A most popular regularization term is the squared sum of all weights
of the network:

Ω =
1

2

∑

k

w2
k, (1.4)
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where k is an index summing up all weights. This regularization method has
been termed weight decay.

One weakness of the weight decay method is that it is not able to drive
small irrelevant weights to zero, when gradient-based learning algorithms are
employed, which may result in many small weights [28]. An alternative is to
replace the squared sum of the weights with the sum of absolute value of the
weights:

Ω =
∑

i

|wi|. (1.5)

It has been shown that this regularization term is able to drive irrelevant
weights to zero [26].

Note, however, that the weakness of weight decay is more related to the
learning method (e.g., a gradient-based learning algorithm) other than the
complexity measure itself. Different to the conclusions reported [26], where a
gradient-based learning method has been used, it has been shown in [25] that
regularization using the sum of squared weights is able to change (reduce) the
structure of neural networks as efficiently as using the sum of absolute weights,
when an evolutionary algorithm is employed to minimize the structure of
neural networks.

A more direct measure for model complexity of neural networks is the
number of connections contained in the neural network:

Ω =
∑

i

∑

j

cij , (1.6)

where cij equals 1 denotes that there is connection from neuron j to neuron
i, and not if cij = 0. It should be noticed that the above complexity measure
is not generally applicable to gradient-based learning methods.

1.3.2 Multi-objective Optimization Approach to Regularization

It is quite straightforward to notice that neural network regularization in
equation (1.2) can be reformulated as a bi-objective optimization problem:

min {f1, f2} (1.7)

f1 = E, (1.8)

f2 = Ω, (1.9)

where E is defined in equation (1.3), and Ω is one of the regularization terms
defined in equation (1.4), (1.5), or (1.6).

It is noticed that regularization is traditionally formulated as a single ob-
jective optimization problem as in Equation (1.2) rather than a multi-objective
optimization problem as in equation (1.7). In our opinion, this tradition can
be mainly attributed to the fact that traditional gradient-based learning al-
gorithms are not able to solve multi-objective optimization problems.
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Fig. 1.1. Coding of the structure and parameters of neural networks using a con-
nection matrix and a weight matrix.

2

1

3

5
0  0  0  0  0  0

0  0  0  0  0  0

1  1  0  0  0  1

4

6

1  1  0  0  0  1

0  0  1  1  0  0  

Fig. 1.2. An example of a connection matrix and its corresponding neural network
structure.

1.4 Evolutionary Multi-objective Optimization of Neural

Networks

1.4.1 Coding the Structure and Parameters of Neural Networks

A connection matrix and a weight matrix are employed to describe the struc-
ture and the weights of the neural networks, see Fig. 1.1. The connection
matrix specifies the structure of the network, whereas the weight matrix de-
termines the strength of each connection. Assume that a neural network con-
sists of M neurons in total, including the input and output neurons, then
the size of the connection matrix is M × (M + 1), where an element in the
last column indicates whether a neuron is connected to a bias value. In the
matrix, if element cij , i = 1, ..., M, j = 1, ..., M equals 1, it means that there
is a connection between the i-th and j-th neuron and the signal flows from
neuron j to neuron i. If j = M + 1, it indicates that there is a bias in the i-th
neuron. Fig. 1.2 illustrates a connection matrix and the corresponding net-
work structure. It can be seen from the figure that the network has two input
neurons, two hidden neurons, and one output neuron. Besides, both hidden
neurons have a bias.
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The strength (weight) of the connections is defined in the weight matrix.
Accordingly, if cij in the connection matrix equals zero, the corresponding
element in the weight matrix must be zero too.

1.4.2 Evolutionary Variations and Life-time Learning

A genetic algorithm has been used for optimizing the structure and weights
of the neural networks. Binary coding has been used representing the neu-
ral network structure and real-valued coding for encoding the weights. Five
genetic operations have been introduced in the global search, four of which
mutate the connection matrix (neural network structure) and one of which
mutates the weights. The four mutation operators are insertion of a hidden
neuron, deletion of a hidden neuron, insertion of a connection and deletion of
a connection [21]. A Gaussian-type mutation is applied to mutate the weight
matrix. No crossover has been employed in this algorithm.

After mutation, an improved version of the Rprop algorithm [22] has been
employed to train the weights. This can be seen as a kind of life-time learning
(the first objective only) within a generation. After learning, the fitness of
each individual with regard to the approximation error (f1) is updated. In
addition, the weights modified during the life-time learning are encoded back
to the chromosome, which is known as the Lamarckian type of inheritance.

The Rprop learning algorithm [29] is believed to be a fast and robust
learning algorithm. Let wij denotes the weight connecting neuron j and neuron
i, then the change of the weight (∆wij) in each iteration is as follows:

∆w
(t)
ij = −sign

(

∂E(t)

∂wij

)

· ∆
(t)
ij , (1.10)

where sign(·) is the sign function, ∆
(t)
ij ≥ 0 is the step-size, which is initialized

to ∆0 for all weights. The step-size for each weight is adjusted as follows:

∆
(t)
ij =















ξ+ · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0

ξ− · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0

∆
(t−1)
ij , otherwise

, (1.11)

where 0 < ξ− < 1 < ξ+. To prevent the step-sizes from becoming too large or
too small, they are bounded by ∆min ≤ ∆ij ≤ ∆max.

One exception must be considered. After the weights are updated, it is
necessary to check if the partial derivative changes sign, which indicates that
the previous step might be too large and thus a minimum has been missed.
In this case, the previous weight change should be retracted:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0. (1.12)
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Recall that if the weight change is retracted in the t-th iteration, the ∂E(t)/∂wij

should be set to 0.
In reference [22], it is argued that the condition for weight retraction in

equation (1.12) is not always reasonable. The weight change should be re-
tracted only if the partial derivative changes sign and if the approximation
error increases. Thus, the weight retraction condition in equation (1.12) is
modified as follows:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0 and E(t) > E(t−1). (1.13)

It has been shown on several benchmark problems in [22] that the modified
Rprop (termed as Rprop+ in [22]) exhibits consistently better performance
than the Rprop algorithm.

1.4.3 Crowded Tournament Selection

To select the offspring for the next generation, we employ the crowded tourna-
ment selection method proposed in the NSGA-II algorithm [17]. At first, the
offspring and the parent populations are combined. Then, a non-dominated
rank and a local crowding distance are assigned to each individual in the
combined population. In the non-dominated ranking, the non-dominated so-
lutions are found out and assigned a rank 1. These solutions consist of the
first non-dominated front. After that, the non-dominated solutions with rank
1 are removed from the population. Then, non-dominated solutions in the rest
of the individuals are identified, which is the second non-dominated front. A
rank of 2 is assigned to these solutions. This procedure repeats until all the in-
dividuals are assigned to a non-dominated front. In the next step, a crowding
distance is calculated for each individual with regard to the non-dominated
front it belongs to. The crowding distance of solution i in the non-dominated
front j is the distance of the two neighboring of solution sj

i in the objective
space.

dj
i =

m
∑

k=1

|fk(sj
i−1) − fk(sj

i+1)|, (1.14)

where m is the number of objectives in the multi-objective optimization prob-
lem, solutions sj

i−1 and sj
i+1 are the two neighboring solutions of solution sj

i .
A large distance is assigned to the boundary solutions in each non-dominated
front. Here, the larger the crowding distance is, the less crowded around the
solution sj

i .
In selection, two solutions are chosen randomly. The solution with the

better (lower) rank wins the tournament. If the two solutions have the same
rank, the one with the larger crowding distance wins. If the two solutions with
the same rank and the same crowding distance, choose a winner randomly.
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Fig. 1.3. The activation function of the hidden nodes.

1.5 Illustrative Examples

1.5.1 Experimental Setup

To demonstrate that interpretable logic rules can be extracted from the com-
pact Pareto-optimal solutions, the evolutionary multi-objective algorithm is
applied to two benchmark problems, namely, the Breast Cancer Diagnosis
data and the Iris data.

Although a non-layered neural network can be generated using the cod-
ing scheme described in Section 1.3, feedforward networks with one hidden
layer will be generated. The maximum number of hidden nodes is set to 10.
The hidden neurons are nonlinear and the output neurons are linear. The
activation function used for the hidden neurons is as follows,

g(z) =
x

1 + |x|
, (1.15)

which is illustrated in Fig. 1.3.
In this study, the complexity measure defined in Equation (1.6) has been

used as the objective describing the complexity of the neural networks.
The population size of the evolutionary algorithm is 100 and the opti-

mization is run for 200 generations. One of the five mutation operations is
randomly chosen and performed on each individual. The standard deviation
of the Gaussian mutations applied to the weight matrix is set to 0.05. The
weights of the network are initialized randomly in the interval of [−0.2, 0.2].
In the Rprop+ algorithm, the step-sizes are initialized to 0.0125 and bounded
between [0, 50] during the adaptation, and ξ− = 0.2, ξ+ = 1.2, which are the
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default values recommended in [22] and 50 iterations are implemented in each
lifetime learning.

1.5.2 Breast Cancer Diagnosis

The breast cancer benchmark problem in the UCI repository of machine
learning database was collected by Dr. W.H. Wolberg at the University of
Wisconsin-Madison Hospitals [27]. Studies have been carried out to extract
symbolic rules from trained neural network using the three-step procedure for
rule extraction on this benchmark problem [32, 30]. The benchmark problem
contains 699 examples, each of which has 9 inputs and 2 outputs. The inputs
are: clump thickness (x1), uniformity of cell size (x2), uniformity of cell shape
(x3), marginal adhesion (x4), single epithelial cell size (x5), bare nuclei (x6),
bland chromatin (x7), normal nucleoli (x8), and mitosis (x9). All inputs are
normalized, to be more exact, x1, ..., x9 ∈ {0.1, 0.2, ..., 0.8, 0.9, 1.0}. The two
outputs are complementary binary value, i.e., if the first output is 1, which
means “benign”, then the second output is 0. Otherwise, the first output is
0, which means “malignant”, and the second output is 1. Therefore, only the
first output is considered in this work. The data samples are divided into two
groups: one training data set containing 599 samples and one test data set
containing 100 samples. The test data are unavailable to the algorithm during
the evolution.

The non-dominated solutions obtained at the 200-th generation are plotted
in Fig. 1.4. Note that many solutions in the final population are the same and
finally 41 non-dominated solutions have been generated.

Among the 41 neural networks, the simplest one has only 4 connections:
1 input node, one hidden node and 2 biases, see Fig. 1.5. The mean squared
error (MSE) of the network on the training and test data are 0.0546 and
0.0324, respectively.

Assuming that a case can be decided to be “malignant” if y < −0.75, and
“benign” if y > 0.75. For the neural network in Fig. 1.5, if the output of the
hidden node is z, we have:

−0.68z + 0.57 > 0.75, (1.16)

which means that
z < −0.28. (1.17)

Let a denote the summed input of the hidden node, we obtain

a

1 + |a|
< −0.28, (1.18)

which implies that
a < −0.39. (1.19)

Therefore, we get:
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Fig. 1.4. The Pareto front containing 41 non-dominated solutions representing
neural networks of a different model complexity.

x2
8.21 − 0.68

−2.33 0.57

1.0 1.0

y

Fig. 1.5. The structure of the simplest Pareto-optimal neural network.

8.21x2 − 2.33 < −0.39, (1.20)

and finally we have:
x2 < 0.21. (1.21)

Thus, we can derive that if x2 < 0.21, then the case is “benign”. The same
procedure can be applied to the malignant case.

As a result, the following two logic rules can be extracted from the simplest
Pareto-optimal neural network (denoted as MOO NN1):

R1: If x2 (uniformity) ≥ 0.5, then malignant; (1.22)

R2: If x2 (uniformity) ≤ 0.2, then benign. (1.23)

Based on these two simple rules, only 2 out of 100 test samples will be
misclassified, and 4 of them cannot be decided with a predicted value of 0.49,
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Fig. 1.6. The prediction results of the simplest Pareto-optimal neural network on
test data.
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Fig. 1.7. The structure of the second simplest Pareto-optimal neural network.

which is very ambiguous. The prediction results on the test data are presented
in Fig 1.6.

Now let us look at the second simplest Pareto-optimal neural network,
which has 6 connections in total. The connection and weights of the network
are given in Fig. 1.7, and the prediction results are provided in Fig. 1.8.
The MSE of the network on training and test data are 0.0312 and 0.0203,
respectively.

In this network, x2, x4 and x6 are present. If the same assumptions are
used in deciding whether a case is benign or malignant, then we could extract
the following rules: (denoted as MOO NN2)

R1: If x2 (uniformity) ≥ 0.6 or

x6 (bare nuclei) ≥ 0.9 or
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Fig. 1.8. The prediction results of the second simplest Pareto-optimal neural net-
work on test data.

x2 (uniformity) ≥ 0.5 ∧ x6 (bare nuclei) ≥ 0.2 or

x2 (uniformity) ≥ 0.4 ∧ x6 (bare nuclei) ≥ 0.4 or

x2 (uniformity) ≥ 0.3 ∧ x6 (bare nuclei) ≥ 0.5 or

x2 (uniformity) ≥ 0.2 ∧ x6 (bare nuclei) ≥ 0.7, then malignant;

(1.24)

R2: If x2 (uniformity) ≤ 0.1 ∧ x6 (bare nuclei) ≤ 0.4 or

x2 (uniformity) ≤ 0.2 ∧ x6 (bare nuclei) ≤ 0.2, then benign; (1.25)

Compared to the simplest network, with the introduction of two additional
features x6 and x4 (although the influence of x4 is too small to be reflected
in the rules), the number of cases that are misclassified has been reduced to
1, whereas the number of cases on which no decision can be made remains to
be 4, although the ambiguity of the decision for the four cases do decrease.

The above two neural networks are very simple in structure. We have
shown that for such networks of a low model complexity, interpretable logic
rules can be extracted. In the following, we will take a look at two neural
networks obtained in the multi-objective optimization, which are of better
accuracy but are of more signal-type quality, i.e., no interpretable rules can
be extracted.

The first network of relatively higher model complexity has 16 connec-
tions, whose structure and weights are described in Fig. 1.9. The prediction
results are plotted in Fig. 1.10. In this network, only x3 is absent and there
are 2 hidden nodes. The MSE on training and test data sets are 0.019 and
0.014, respectively. From Fig. 1.10, we can see that the classification accu-
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Fig. 1.9. The Pareto-optimal neural network with 16 connections.
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Fig. 1.10. The prediction results of the Pareto-optimal neural network on test
data.

racy is better: only two cases are misclassified. However, extracting symbolic
rules from the network becomes much more difficult. Besides, although the
architecture of the two simple networks still exist in the current network, it
not longer shows a dominating influence. Thus, the “skeleton” defined by the
simple networks has been lost.
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Fig. 1.11. The prediction results of the most complex Pareto-optimal neural net-
work obtained in the simulation.

The most complex network obtained in the run has 74 connections. All
input features are included in the network and the number of hidden nodes is
9. The MSE on the training data set is 0.0060, however, the MSE on the test
data set increases to 0.066 with 5 samples misclassified and 1 undetermined. It
seems that the network has over-fitted the training data and the understanding
of the network is difficult. The prediction results of this neural network are
provided in Fig. 1.11.

1.5.3 The Iris Data

The second data set we looked at is the Iris data which was originated from
references [33, 27]. The data set contains 3 classes of 40 instances each, where
each class refers to a type of iris plant. The three classes are: Iris Setosa (class
1, represented by -1), Iris Versicolor (class 2, represented by 0), and Iris Vir-
ginica (class 3, represented by 1). Four attributes are used to predict the iris
class, i.e., sepal length (x1), sepal width (x2), petal length (x3), and petal
width (x4), all in centimeter. Among the three classes, class 1 is linearly sep-
arable from the other two classes, and class 2 and 3 are not linearly separable
from each other, refer to Fig. 1.12.

The same parameter settings have been used to generate the Pareto-
optimal neural networks that minimize the accuracy and the complexity. The
final population contains 11 non-nominated solutions, which are plotted in
Fig. 1.13. The most compact Pareto-optimal solution has 8 connections in
total, and only attribute x3 is used for prediction, see Figs. 1.14 and 1.15 for
the structure of the neural network and the prediction results. Although this
simple network is not able to separate all the three classes, we can extract
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Fig. 1.12. The distribution of the Iris data set.

the following single rule, which is able to separate class 1 from the other two
classes.

R1: If x3 (petal length) ≤ 2.2, then Iris Setosa. (1.26)

If we look at the class distribution in Fig. 1.13, we find that this simple
rule effectively captures the condition under which class 1 can be separated
from the other 2 classes. Let us now take a closer look at the input-output
relation, refer to Fig.1.18, we find that attribute x3 and x4 alone are able to
separate class 1. However, it is clearly more advantageous to choose attribute
x3 than x4, and our optimization method has selected the optimal feature for
separating class 1 from classes 2 and 3.

Now let us investigate the second simplest Pareto-optimal neural network.
Similarly, we can extract the following two logic rules:

R1: If x3 (petal length) ≤ 2.2 ∧ x4 (petal width) ≤ 1.0, then Iris Setosa; or

R2: If x3 (petal length) > 2.2 ∧ x4 (petal width) ≤ 1.4, then Iris Versicolor; or

R3: If x4 (petal width) ≥ 1.8, then Iris Virginica;

(1.27)

The correctness of the rules can be checked by looking at the input-output
distribution of the data in Fig. 1.18.
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Fig. 1.13. Pareto-optimal solutions generated from the Iris data.
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Fig. 1.14. The neural network structure of the simplest Pareto-optimal solution.

1.6 Conclusions

Extracting correct and interpretable rules from data is of great interest for
data mining. This chapter suggests a method for generating a set of Pareto-
optimal using an evolutionary multi-objective optimization algorithm. Among
the Pareto-optimal neural networks, we show that interpretable logic rules can
be easily extracted from the compact Pareto-optimal solutions. This idea has
been verified on the Breast Cancer Diagnosis data set and the Iris data set. We
show that the compact Pareto-optimal neural networks, though very simple
and not perfect in terms of approximation accuracy, are able to select the
most relevant attributes and effectively separate the classes in the data set.
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Fig. 1.15. The desired and predicted results of the simplest Pareto-optimal neural
network on the training data.
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Fig. 1.16. The neural network structure of the second simplest Pareto-optimal
solution.

When the complexity increase, it is then difficult to extract understandable
logic rules from the neural networks, though the approximation accuracy is
better.

As discovered in our previous study [11], the Pareto-optimal solutions that
are located in the knee part of the Pareto-front are the most likely the ones
that generalize well on unseen data. Together with the findings in this work,
we show that Pareto-based multi-objective approach to machine learning is
advantageous over traditional approaches where different objective functions
are summed up. This advantage is made possible by achieving a Pareto front
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Fig. 1.17. The desired and predicted results of the second simplest Pareto-optimal
neural network on the training data.
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Fig. 1.18. The input-output distribution of the Iris data.

consisting of a number of solutions, which is able to reveal much deeper in-
sights into the system than a single neural network.
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