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Purely Auditory Online-Adaptation of Auditory-Motor Maps

Tobias Rodemann, Kalina Karova, Frank Joublin, and ChnsBaerick

Abstract— We present a system for an online-adaptation of mode. This calibration procedure would need to be repeated
auditory-motor maps that doesn't require a special set-up or whenever any relevant aspect has changed. Among those as-
dedicated robc_)t movements and can therefore'work during the pects are microphones (type or position), recording harelwa
normal operation of the robot. Our approach is based purely . .
on auditory cues and motor position feedback for estimating robot b°‘{'y (espeC|aIIy. the head), Sour_“_’ preprocessmg, cue
the correct sound source position. The system can learn the COmputation, and environmental conditions like echoes or
correct auditory-motor map within 1-2 hours, starting from a  background noise (if those can’t be fully compensated by
random initialization, in a room with an active radio as the the preprocessing). Since it is difficult to estimate justvho
main sound source. well the current map is adapted one either has to recalibrate

frequently or risk a severe performance degradation due to

I. INTRODUCTION badly tuned audio-motor maps. The obvious solution there-

fore is to do a continuous, unsupervised, online adaptation
of the audio-motor map during normal operation of the

bot so that the system always operates at or close to the
timum. A similar approach has been shown already for

In robotics there are a number of implicit or explicit
sensory-motor maps which contain the information need
to map sensory inputs to motor outputs. One of these

the audio-motor map that relates sound localization cues Sual saccading systems [4]. In this paper we will descaibe

source position/bearing (or the motor _com_mand to focuS Qethad for online adaptation of audio-motor maps using only
the sound squrce). Most sound !oca!|zat|on systg_ms usea[a,lditory and motor information. Since audio localization
set of two blnaurallcues fqr estimating the .posm(_)n of ues (IID and ITD) are computed continuously by the sound
sound source. The first cue is the Interaura'l Time D'ﬁerenqﬁcalization system (e.g. [1], [5], [6]), the main issue in
(ITD) .Wh'Ch depends basically on _the d'S‘a”_CG betWee@nline adaptation is to get a good position estimation witho
the microphones and, for a humanoid robot with two €a'%elying on the potentially decalibrated auditory motor map

theref(()jre 0’? t?]e lslze andl Iform (_)f tg?f robot's IrDeagﬁ]Thﬁlakashima et al. [7], [8] presented a system where vision
second cue is the Interaural Intensity Difference (IID)) is used to provide the position information. However, this

gepgn?s ohn Sf'zﬁ' fqrm, materla] and de||15|ty of theb.robot’ proach requires a specific set-up, since it is a-prion ver
ead. In the following we restrict ourselves to a binaurdligic it 1o find the matching visual source to an audio

SySt?‘m’ but the same appr(_)ach °°‘_“d also be used for arr jurce. In [7] the problem was solved by explicitly marking

of m|crophongs. BelbChtbiatd See €.g. [11. 2], [8lihe audio source in the environment (a red marker on the
In order to estimate the sound source position from measur dspeaker) beforehand to ensure correct visual position
audio cues it is necessary to know the relation between CUSStimation. Another approach was used by [3], where a face
and positions - the audio motor map. For ITD this relatio racker was used to identify the position of a human speaker.

is often, as in the case of most microphone arrays, relgtivel,. approach assumes that there is just one human in the

easy to compute. In other CaSFle’ e.g. when m|c_rophones fironment and that all sounds are generated by this person
mounted on a humanoid robot’s head, the relation becomesIt seems obvious to use vision feedback to provide the

somewhat Tor% comgllcated. The ”2 cue shows .?n e\_/r cessary position information for the online-adaptatigut
more complex dependence on sound source position. an uncontrolled real-world environment it is extremely

”D'm_"tof map also changes frequently, e.g. w_hen hardwa%ﬁfficult to know which visual target corresponds to which
_modnﬁcaﬂons are m?de- Therefore, when using IID or t?aluditory one. Even with sophisticated audio and visual pro-
improve ITD, the audio-motor map has to be relearned. Th%?essing modules (providing access to e.g. speaker andtobjec
c_al|br_at|on process normally requires that a number _Of dour?dentity) it is hard to imagine how to find the correct visual
files is played from several position (ideally from diffeten target, especially given the limited viewing angle of most

3D. posmons, bUt. no_rmally only the azimuth posm_on IScamera systems which means that most auditory sources will
varied). During this time the robot has to stand still anci

h d hould b e | listi . Dbe outside the camera’s field of view. Therefore we believe

no ot €r sound sources should be gctlve. nrea Istic gett'.nthat at least for the bootstrapping of the audio-motor map,

this will require at least one hour in a dedicated operatiop purely auditory method for position estimation has to be
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position could be altered. Animals were capable of adaptingxtract a number of binaural cues: the Interaural Envelope
to this new situation. It was recently found [10] that everDifference (IED), the Interaural Intensity Difference ),
mature ferrets are capable of readapting their audio-motand Interaural Time Difference (ITD). Cues are measured
map after severe externally induced modifications and thanly at signal onsets to reduce the effect of echoes [2]. IED
this readaptation works even without vision, relying purel and ITD are both based on the difference between consec-
on auditory and motor inputs. utive zero-crossings [12] of the left and right microphone
signal. While ITD acts directly on the GFB signal, IED
operates on the signal envelope after an additional higl-pa
In this section we will outline the basic architecture offiltering. 11D is computed as the difference between the left
the sound processing system (see Fig. 1). We will focugnd right envelope signal divided by the maximum of left
on the major items only, for a more detailed descriptiomnd right. In order to reduce stationary noise we employ
please consult [1], [2]. The hardware setup is a humanoisinaurally synchronized spectral subtraction (see [1}r O
(styrofoam) head with silicon pinnae mounted on top of @nline test system uses 40 frequency channels between 50
pan/tilt element. As sound sources we used loudspeakersgid 4000 Hz (due to the limited range of the speaker

Il. SYSTEM ARCHITECTURE

normal radios. The latter setup is depicted in Fig. 2. in the radio), while the simulation test system uses 100
- frequency channels between 100 Hz and 10 kHz. The choice
% By integrate | | Tracker of frequency channels is not relevant for the adaptation
=27 cue triple
] T algorithm. During ego-motion of the head we interrupt sound
localization due to motor noise.
calculate fauditory motor
cue triple map
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Fig. 1. The complete system graph. In addition to the normahdou
localization architecture (as described in [1]), there @Bs® three modules
for online adaptation (grey box): one calculates the curegalization error

to update the adaptation width, the next one estimates the position of the
sound source and the last one updates the audio-motor map ishisied
for the main sound localization system.

channel 70
channel 80
channel 90

IED value in ms

relative sound source position relative sound source position

Fig. 3. Example audio motor maps for ITD, IID, and IED (left columim
the right column single channels are visualized. The maps generated
via an offline calibration of one of our robot heads. The cuetare(box)
represents the information that can be obtained from a ssmied source
position for an ideal (broadband) sound signal.

IIl. ONLINE ADAPTATION

In this section we will outline the basic principles of the
online adaptation approach. We will first discuss how to
estimate the position of the sound source and how to adapt
the audio motor map and then describe some extensions and
criteria for evaluating the quality of the audio-motor map.

In our system the audio-motor map contains the relations
Fig. 2. The humanoid head mounted on a panftilt element in frbmt o between audio (I_o_cahzanqn) (?ues like ITD. or . lID and
radio used as a sound source. sound source position. Calibration or adaptation is done by

memorizing the cues measured at a known sound source

After sound acquisition from a stereo microphone systerposition, while sound localization involves searching tioe
we employ a Gammatone Filterbank (GFB) with Equivalenposition in the audio-motor map whose cue vector (see Fig.3)
Rectangular Bandwidth (ERB) [11] to split the signal intobest matches the currently measured cues. Since cue values
separate frequency bands (frequency channels). We théepend on the frequency channel, there is one cue entry




for every frequency channel and every position (for IED,

IID, and ITD each). We represent this information in the ITD,—1TD;

cue matrixC(f, ), where f is the channel index ang = @
the relative angle towards the sound source. Positions are TD: - o — TTDs - ot

sampled in the range between -90 and +90 degrees in steps W = 1 M2 2 ML 3)
of 10 degrees. Individual entries in the map are the mean over ITD1 —1TD2

several measurements from the same position. Note that théior this we make the assumption that when the head moves
is oneC(f, @) for IED, IID, and ITD each. For simplicity, the active source before and after the movement is at the
however, we treat them as a single one. same position. This assumption will not always be true but in
the majority of cases. We will later discuss how to optimize

A. Basic principles o L
P _p ) _ . the chance of satisfying this criterion. Head movements can
Our central idea is to use a linear model for estimating thgg arbitrary, either randomly as for our test scenario, ertdu

relation between sound source position and ITD. The lined,me other task like sound localization or visual explorati

model is chosen, because it is the simplest one with onlyo; every pair of positions and assuming that audio cues

two parameters that need to be estimated. Model paramet@fg, 4 pe computed before and after the move, the audio

can be estimated by using ITD measurements from tWe\otor map can be updated for two different positions:
different positions. In this section ITD measurements are

averaged over a larger frequency range (between 100 and
650 Hz, since ITD is unambiguous in this range) to increase ¢ = avi—® 4)
robustness. The ITD/IID-position relation is visualized i ® = av2— . (5)

Fig. 4. The two graphs show ITD (top) and IID (bottom)

mean values for different positions of the sound sourcea(da@nd the cue vector can be moved towards the measured
taken from an offline calibration). The two graphs look veryalues at positiong (i = 1,2):

similar, but there is a crucial difference: ITD values are

very close to zero for sound sources in front of the robot ~k+1 _ ki ( k )

(0°) while 1ID values are normally not. The reason is that cha) @ +p-(m()-C(f.0)) 6)

ITD basically depends on the distance between the soumrfkre, m(f) is the IED, IID, or ITD value measured at
source and the two ears. For a symmetric ear design apative positiong in frequency channef. The learning
stimulus in front of the robot will have an equal distanceparametei3 determines the degree of adaptation for a single
to the two microphones. Therefore virtually all humanoidadaptation stefr. A good choice is a value g8 = 0.3.

robots will have an ITD of approximately zero for sources

at zero degrees azimuth. IID in contrast depends not only average ITD

on the position of the microphones but also on the detailed (Oer the Treauency channels between 100 Hz and 660 12
characteristics of the microphones, the external andriater

0.2
0.1

structure and material of the head, and amplification factor 0
of the recording hardware. -01
. N -0.21- i

We note another important aspect of the mean ITD: it ‘ ‘ ‘ w w w w w
. . -80 -60 -40 -20 0 20 40 60 80
is almost linear between -60 and +60 degrees. At more sound source posiion

. . . average
peripheral angles the curve deviates from the linear course (over the frequency channels between 650 Hz and 4 kHz))
0.4 == T T T ; : :

but in our experiments we found a generally good fit to the

. 0.2
linear model.

Theoretically, the influence of source distance on ITD or 02l i
[ID should be minimal (at least beyond 1 m), however, we ~o4f ‘ ‘ ‘ ‘ ‘ ‘ |
didn’t perform extended tests, and under realistic coonlti w0 E0 0 e posiie 00
some performance reduction for sounds from different dis-
tances has to be expected. Fig. 4. Mean cue values of ITD (top) and 11D (bottom) for diffet sound

Taking the observations that zero ITDs are reached at zegaurce POS:%H,S' imegfaﬁ%ld ?;/Sr_diffetrem frequencynokis. Note that for
degree azimuth and making the linear approximation of the“¢9"¢¢s 112 1S zero whiie fi21s not.

ITD to position ¢ relation:
B. Neighborhood adaptation

ITD=a-(¢— ), @ Learning can be improved considerably when updating not
with a as the slope angy as the sound source position, weonly those cue vectors for the current but also for neighmagpri
just need two independent measurements of the sound soupositions. This is especially important when starting fram
to estimate the true position. These two measurem&m®{ random initialization or after a stronger decalibratione W
andITD;) are taken from two different positionsg; and therefore update cue vectors for all positiapss [—90,90]
av2) of the head (see also Fig. 5). We can then estinaate but modulate the step size by the distance from the measured
and @ by: position:



average ITDvalue ‘ ‘ online learning with the calibrated maps we introduce two
linear approximation i Nnew error measures:

0.61

oa— —— measured ITD values ) Knowing the (correct) reference ma@e’ the difference

' source position to the online adapted map after each updating step can be
02t A Oyp / 1 calculated using the following difference error:

or : '—(Po ] E(Ij( _Zfzfp|cref(f5(p)_ck(f7(p)| (9)

I h iff — )
-0.2f ‘: : N Im2 8 I 1 YolC (T, )|
—oal ju_,:(_,; v | with a sum over all po;itionsp, a_nd frequency channels
o @ f. The difference error is normalized by the sum over all
—06 ] rectified entries in the offline calibrated reference nai.
280 <60 20 -2 : o 40 60 80 The localization erroE, indicates the mean deviation of

-20 0 .20 ~ -
head motor position - ay, the estimated positiop from the true sound source position

. . o _ _ ¢. This estimation of the target sound source position
Fig. 5. Linear approximation model: average ITD as a functibretative . lculated . h in | lizati h
sound source position and linear model approximation basetivoriTD Is calculate usmg the mam _Oca|zat|0n system (nOt the
measurements at positions; and aw2. Based on these measurements themodel based position estimation) and the current, learned
rue sound source posiiay and the two relative positiong and ¢ can  gydio-motor map. The localization errgy is calculated as

e computed. - . ~

P an average of the estimation errgr— @ for target sounds
coming from all possible positions. In our simulations we
considered only the front area and therefgse [—90°; 90°].

) This procedure can either be done using a simulation with
ACKL(, ) —B-exp(— (¢~ ®) > ) (m(f) _Ck(f7¢)) _an offline-calibrated map as the basis for cue generation or

202 &) by testing the system online:
The parameteu defines the range of the adaptation neigh- 1 %0 N
borhood. The larger it is the quicker the map will adapt B = NPositions%,z,gom_(p" (10)

initially, but the lower the final quality of the map. It is
therefore important to modifyy depending on the current As a reference, offline calibrated maps in conjunction with
performance of the audio motor map. Overall performanceur sound localization system [1] produce a mean localiza-
can be measured in many ways, we employ the followintjon error of around 2 under comparable conditions.
procedure: whenever the system tries to target an audio _
source, we measure the mean ITD after the move. In &i Offline tests
ideal case it should be zero (assuming that the sound sourcélo study the system in a controlled environment we used
hasn’t moved). Any deviation from zero indicates an error itMatlab to provide simulated inputs and head movements.
the sound localization, i.e. the audio motor map. Integgati Binaural cues were generated from an offline calibratedcaudi
these errors over many localization attempts, the system canotor map with white noise added (with the same variance
estimate its own performance and update the neighborhoad those measured during calibration). Head movements were
rangeo. The ITD-based localization err@jtp is calculated at random and binaural cues were produced for a fixed sound
as the mean of measured ITD values in a time window of 6ource position.
seconds after a targeting move. Based on this error we canin the robot system the learning has to be precise and also
define an update rule far: fast. Figure 6 shows the learning progress using the linear

1 model with parameters optimized for quick adaptation.

(8)

"1+exp(—s(Eirp —t)) "

16 45

Here gp is the maximum adaptation rangethe slope of 1 g
the sigmoidal and the ITD threshold. Example values are 4 *? .
s= 20, gp = 80", andt = 0.2. The advantage of this error
function is that it can be computed online and does not
require the knowledge of the true audio-motor map. o

0 0
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The online adaptation was tested first in Matlab using Si”hg. 6. Learning with parameters tuned for adaptation sp€egs were
ulated data and then in a real-world scenario. We invegtijat simulated using an offline calibrated map.
the performance when starting from a random audio-motor
map in both cases. The online implementation runs in our With tuned parameters the adaptation speed can be in-
own middleware system RTBOS [13] on a single CPU. Thereased and the map is learned within 100 steps (with a
system graph is depicted in Fig. 1. To compare the results tufcalization errorE, = 4°). For this simulation the following



learning parameters were useg.= 80°, s=20 andt =0.2. gp=0.5. The ITD erroiErp is initialized with zero and rises

The learning step size 8 =0.3. slowly. Therefore, in the beginning adaptation is very slow
Good performance (less thafi fhean localization error) but speeds up after a few hundred learning steps. Starting

is reached after just 100 adaptation steps and an acceptabith a highero would speed up the learning accordingly.

value already after 20 steps. Considering that one adaptatiHere, we used an adaptation ratefof 0.1.

can be done in an online system roughly every 15 seconds

(see below), the system could adapt from random initial- Estimation __ Result
. . ol . . estimation error within 1 5%
ization within about 300 seconds (5 minutes) under ideal estimation eror within 5 567
conditions. estimation error within 10 47%
estimation error within 20 70%

B. Online scenario estimation error over 30 20%
. . . . mean estimation error 1399

We tested online adaptation in a real-world scenario by mean estimated radio positioh —1.3°

setting our system in a normal (3x5m) room (echo decay
constantTgg = 625 ms) and putting a conventional radio in
front of the system (at O degrees). The audio-motor map
was initially set to random for all cues. Then radio and
online adaptation were turned on and the head was moved

TABLE |
ESTIMATION PERFORMANCE FOR THE RADIO SCENARIO

horizontally in a random fashion every 15 s. This long Histogram
period guarantees that sound signals can be measured for S0 ‘ ‘ ‘
extended periods of time before and after the head moves. 200

In this scenario the radio was the main, but not the only,

sound source - there was some background noise from the 01

computing hardware and from neighboring office rooms.

Also the echoes were considerable. From our experience
we know that most of the background noise and echoes are 150F
handled by our preprocessing architecture (see [1], [2B. W
let the system do online adaptation for several hours and the

2001

Hits

100+

evaluated the results. We first analyzed the performance of sof
the position estimation, see Fig. 7. As can be seen, in most L
cases the position of the sound source is well estimated (see ®"Ts0 10 50 0 50 10 150
. . . . Angle (in 10 degrees)
also Table 1). In almost 50% of trials the position estimatio
was correct within 10 The few, really large errors could Fig. 7. Histogram of position estimation errors.

be selected out easily. The mean position estimation is not

exactly on target (estimated mean position-i%.3° and the

histogram peaks at-5°). About this we have to note that . Difeenceeror
it was difficult to position the radio exactly at zero degrees
relative to the robot head. Therefore the small localizatio , e
error is probably due to the limited precision of the set-up.

Furthermore, minor asymmetries in the head shape might
also contribute. In any way, as we will see, this had no

negative effect on the quality of the learned maps.

Next we monitored the status of the audio-motor map
over time, see Figs. 8 and 9. Since the correct result is
not known, we can only compare the online adapted map
with one gained through an offline calibration in the same | = X3=----- =
settings (which also took more than 1 hour of time). Fig. 8
shows the difference errdggiss for ITD and IID. As can S
be seen, the adaptation is finished after about 400 update *"200 400 600 800 000 1200 1400 1600 1300 2000
steps (less than 2 hours of real time). Fig. 9 shows the
development of the online calibrated map (11D) over leagnin Fig. 8. Difference between offline-calibrated and onlinkyated maps.
steps (there is, on average, one learning step roughly every
15 s) and in the bottom right corner the offline calibrated In a real-world environment we can't guarantee that the
map. Columns 1 and 3 show the IID-motor map, whilemain constraints of the position estimation model are sat-
columns 2 and 4 the value for a single frequency channédfied (source at same position before and after the move,
(1000 Hz). Dashed lines indicate the online adapted mapnly one sound source). In order to minimize adaptation
the solid lines the offline calibrated maps. The adaptatioarrors we employ a number of checks to sort out potentially
width o is updated according to egn. 8 wish=20,t =0.3, wrong position estimations: Firstly we measure localmati
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Fig. 9. Adaptation of (IID) online map over time. In columns 1 &the
IID map is depicted for different updating steps. Columns 2 4dépict the
values for a single frequency channel (1 kHz), comparingocated data 2]

(solid line) with the online adapted values (dashed line).

cues over a period of 6 seconds before and after the movel3]
ignoring all cues measured before and after these periods
and also during the head movement. This increases the
chance that all measured cues are from the same sourd
source. Furthermore we only use position estimations for
head movements beyond a certain threshold value (more thas
6m = 30° head rotation between two measurements). In our
tests this led to a substantial improvement in position- esti
mation precision. Finally, by comparing the estimated slop

a from eqgn. 3 for the current position estimation with the [6]
mean estimated slope from previous measurements, we can
sort out measurements with a considerable deviation from
the mean. Obviously, we also sort out position estimations
outside the possible ranga-90°). [

V. SUMMARY AND OUTLOOK

We have presented a method for online adaptation 0{‘8
audio-motor maps that relies solely on audio cues and motor
feedback. We use a simple linear model of the mean ITQ4
value. Although more complex models can be chosen, the po-
sition estimation performance with our approach was ajread
satisfying. Our system is capable of self-adaptation imace [10]
ios with comparatively few constraints on the environment
and shows a robust and quick convergence of the audio-motor
map. The approach is therefore well suited for applications
complex robotic systems, where frequent recalibratioris n[12]
feasible. The adaptation can work while the robot is used for
some other task, allowing a more efficient use of a general[y:ﬂ
very limited hardware resource (on-the-fly operation). &mnd
ideal conditions adaptation can be done within 5-10 minutes
and even under real-world conditions, the audio-motor maps
can be learned in less than 2 hours. With some tuning
even lower values will probably be possible. The number

of required updating steps is relatively low, however it
; takes some time to robustly collect enough auditory cue
measurements for an efficient training. The performance of
the system could be extended in a nhumber of ways, by e.qg.
using other auditory cues to verify that the sound source
; before the move is the same as the one after the move.
/ This could be based for example on pitch tracking. It would

also be possible to use an additional visual feedback signal
for higher precision and increased robustness, by integrat
the two position estimations and updating the map based on
the combined results. Another possible option is to replace
the linear model with a sinusoidal or sigmoidal function.
This would provide a better fit to the observed ITD curve
especially for more lateral positions, but would require to
estimate more parameters.
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