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Purely Auditory Online-Adaptation of Auditory-Motor Maps

Tobias Rodemann, Kalina Karova, Frank Joublin, and Christian Goerick

Abstract— We present a system for an online-adaptation of
auditory-motor maps that doesn’t require a special set-up or
dedicated robot movements and can therefore work during the
normal operation of the robot. Our approach is based purely
on auditory cues and motor position feedback for estimating
the correct sound source position. The system can learn the
correct auditory-motor map within 1–2 hours, starting from a
random initialization, in a room with an active radio as the
main sound source.
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I. I NTRODUCTION

In robotics there are a number of implicit or explicit
sensory-motor maps which contain the information needed
to map sensory inputs to motor outputs. One of these is
the audio-motor map that relates sound localization cues to
source position/bearing (or the motor command to focus on
the sound source). Most sound localization systems use a
set of two binaural cues for estimating the position of a
sound source. The first cue is the Interaural Time Difference
(ITD) which depends basically on the distance between
the microphones and, for a humanoid robot with two ears,
therefore on the size and form of the robot’s head. The
second cue is the Interaural Intensity Difference (IID), which
depends on size, form, material and density of the robot’s
head. In the following we restrict ourselves to a binaural
system, but the same approach could also be used for arrays
of microphones. For more information see e.g. [1], [2], [3].
In order to estimate the sound source position from measured
audio cues it is necessary to know the relation between cues
and positions - the audio motor map. For ITD this relation
is often, as in the case of most microphone arrays, relatively
easy to compute. In other cases, e.g. when microphones are
mounted on a humanoid robot’s head, the relation becomes
somewhat more complicated. The IID cue shows an even
more complex dependence on sound source position. The
IID-motor map also changes frequently, e.g. when hardware
modifications are made. Therefore, when using IID or to
improve ITD, the audio-motor map has to be relearned. This
calibration process normally requires that a number of sound
files is played from several position (ideally from different
3D positions, but normally only the azimuth position is
varied). During this time the robot has to stand still and
no other sound sources should be active. In realistic settings
this will require at least one hour in a dedicated operation
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mode. This calibration procedure would need to be repeated
whenever any relevant aspect has changed. Among those as-
pects are microphones (type or position), recording hardware,
robot body (especially the head), sound preprocessing, cue
computation, and environmental conditions like echoes or
background noise (if those can’t be fully compensated by
the preprocessing). Since it is difficult to estimate just how
well the current map is adapted one either has to recalibrate
frequently or risk a severe performance degradation due to
badly tuned audio-motor maps. The obvious solution there-
fore is to do a continuous, unsupervised, online adaptation
of the audio-motor map during normal operation of the
robot so that the system always operates at or close to the
optimum. A similar approach has been shown already for
visual saccading systems [4]. In this paper we will describea
method for online adaptation of audio-motor maps using only
auditory and motor information. Since audio localization
cues (IID and ITD) are computed continuously by the sound
localization system (e.g. [1], [5], [6]), the main issue in
online adaptation is to get a good position estimation without
relying on the potentially decalibrated auditory motor map.
Nakashima et al. [7], [8] presented a system where vision
is used to provide the position information. However, this
approach requires a specific set-up, since it is a-priori very
difficult to find the matching visual source to an audio
source. In [7] the problem was solved by explicitly marking
the audio source in the environment (a red marker on the
loudspeaker) beforehand to ensure correct visual position
estimation. Another approach was used by [3], where a face
tracker was used to identify the position of a human speaker.
This approach assumes that there is just one human in the
environment and that all sounds are generated by this person.

It seems obvious to use vision feedback to provide the
necessary position information for the online-adaptation. But
in an uncontrolled real-world environment it is extremely
difficult to know which visual target corresponds to which
auditory one. Even with sophisticated audio and visual pro-
cessing modules (providing access to e.g. speaker and object
identity) it is hard to imagine how to find the correct visual
target, especially given the limited viewing angle of most
camera systems which means that most auditory sources will
be outside the camera’s field of view. Therefore we believe
that at least for the bootstrapping of the audio-motor map,
a purely auditory method for position estimation has to be
used.

The ability to adapt sensory-motor maps is well-known in
biology. A specific class of experience-dependent plasticity is
known from experiments with barn owls (see e.g.[9]). Using
ear plugs the relation between localization cues and sound



position could be altered. Animals were capable of adapting
to this new situation. It was recently found [10] that even
mature ferrets are capable of readapting their audio-motor
map after severe externally induced modifications and that
this readaptation works even without vision, relying purely
on auditory and motor inputs.

II. SYSTEM ARCHITECTURE

In this section we will outline the basic architecture of
the sound processing system (see Fig. 1). We will focus
on the major items only, for a more detailed description
please consult [1], [2]. The hardware setup is a humanoid
(styrofoam) head with silicon pinnae mounted on top of a
pan/tilt element. As sound sources we used loudspeakers or
normal radios. The latter setup is depicted in Fig. 2.
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Fig. 1. The complete system graph. In addition to the normal sound
localization architecture (as described in [1]), there arealso three modules
for online adaptation (grey box): one calculates the current localization error
to update the adaptation widthσ , the next one estimates the position of the
sound source and the last one updates the audio-motor map whichis used
for the main sound localization system.

Fig. 2. The humanoid head mounted on a pan/tilt element in front of a
radio used as a sound source.

After sound acquisition from a stereo microphone system
we employ a Gammatone Filterbank (GFB) with Equivalent
Rectangular Bandwidth (ERB) [11] to split the signal into
separate frequency bands (frequency channels). We then

extract a number of binaural cues: the Interaural Envelope
Difference (IED), the Interaural Intensity Difference (IID),
and Interaural Time Difference (ITD). Cues are measured
only at signal onsets to reduce the effect of echoes [2]. IED
and ITD are both based on the difference between consec-
utive zero-crossings [12] of the left and right microphone
signal. While ITD acts directly on the GFB signal, IED
operates on the signal envelope after an additional high-pass
filtering. IID is computed as the difference between the left
and right envelope signal divided by the maximum of left
and right. In order to reduce stationary noise we employ
binaurally synchronized spectral subtraction (see [1]). Our
online test system uses 40 frequency channels between 50
and 4000 Hz (due to the limited range of the speaker
in the radio), while the simulation test system uses 100
frequency channels between 100 Hz and 10 kHz. The choice
of frequency channels is not relevant for the adaptation
algorithm. During ego-motion of the head we interrupt sound
localization due to motor noise.
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Fig. 3. Example audio motor maps for ITD, IID, and IED (left column). In
the right column single channels are visualized. The maps weregenerated
via an offline calibration of one of our robot heads. The cue vector (box)
represents the information that can be obtained from a singlesound source
position for an ideal (broadband) sound signal.

III. O NLINE ADAPTATION

In this section we will outline the basic principles of the
online adaptation approach. We will first discuss how to
estimate the position of the sound source and how to adapt
the audio motor map and then describe some extensions and
criteria for evaluating the quality of the audio-motor map.

In our system the audio-motor map contains the relations
between audio (localization) cues like ITD or IID and
sound source position. Calibration or adaptation is done by
memorizing the cues measured at a known sound source
position, while sound localization involves searching forthe
position in the audio-motor map whose cue vector (see Fig.3)
best matches the currently measured cues. Since cue values
depend on the frequency channel, there is one cue entry



for every frequency channel and every position (for IED,
IID, and ITD each). We represent this information in the
cue matrixC( f ,φ), where f is the channel index andφ
the relative angle towards the sound source. Positions are
sampled in the range between -90 and +90 degrees in steps
of 10 degrees. Individual entries in the map are the mean over
several measurements from the same position. Note that there
is oneC( f ,φ) for IED, IID, and ITD each. For simplicity,
however, we treat them as a single one.

A. Basic principles

Our central idea is to use a linear model for estimating the
relation between sound source position and ITD. The linear
model is chosen, because it is the simplest one with only
two parameters that need to be estimated. Model parameters
can be estimated by using ITD measurements from two
different positions. In this section ITD measurements are
averaged over a larger frequency range (between 100 and
650 Hz, since ITD is unambiguous in this range) to increase
robustness. The ITD/IID-position relation is visualized in
Fig. 4. The two graphs show ITD (top) and IID (bottom)
mean values for different positions of the sound source (data
taken from an offline calibration). The two graphs look very
similar, but there is a crucial difference: ITD values are
very close to zero for sound sources in front of the robot
(0◦) while IID values are normally not. The reason is that
ITD basically depends on the distance between the sound
source and the two ears. For a symmetric ear design any
stimulus in front of the robot will have an equal distance
to the two microphones. Therefore virtually all humanoid
robots will have an ITD of approximately zero for sources
at zero degrees azimuth. IID in contrast depends not only
on the position of the microphones but also on the detailed
characteristics of the microphones, the external and internal
structure and material of the head, and amplification factors
of the recording hardware.

We note another important aspect of the mean ITD: it
is almost linear between -60 and +60 degrees. At more
peripheral angles the curve deviates from the linear course,
but in our experiments we found a generally good fit to the
linear model.

Theoretically, the influence of source distance on ITD or
IID should be minimal (at least beyond 1 m), however, we
didn’t perform extended tests, and under realistic conditions
some performance reduction for sounds from different dis-
tances has to be expected.

Taking the observations that zero ITDs are reached at zero
degree azimuth and making the linear approximation of the
ITD to positionφ relation:

ITD = a· (φ −φ0), (1)

with a as the slope andφ0 as the sound source position, we
just need two independent measurements of the sound source
to estimate the true position. These two measurement (ITD1

and ITD2) are taken from two different positions (αM1 and
αM2) of the head (see also Fig. 5). We can then estimatea
andφ0 by:

a =
ITD2− ITD1

αM2−αM1
(2)

φ0 =
ITD1 ·αM2− ITD2 ·αM1

ITD1− ITD2
. (3)

For this we make the assumption that when the head moves
the active source before and after the movement is at the
same position. This assumption will not always be true but in
the majority of cases. We will later discuss how to optimize
the chance of satisfying this criterion. Head movements can
be arbitrary, either randomly as for our test scenario, or due to
some other task like sound localization or visual exploration.
For every pair of positions and assuming that audio cues
could be computed before and after the move, the audio
motor map can be updated for two different positions:

φ1 = αM1−φ0 (4)

φ2 = αM2−φ0. (5)

and the cue vector can be moved towards the measured
values at positionsφi (i = 1,2):

Ck+1( f ,φi) = Ck+1( f ,φi)+β ·
(

mi( f )−Ck( f ,φ)
)

.(6)

Here, mi( f ) is the IED, IID, or ITD value measured at
relative positionφi in frequency channelf . The learning
parameterβ determines the degree of adaptation for a single
adaptation stepk. A good choice is a value ofβ = 0.3.
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Fig. 4. Mean cue values of ITD (top) and IID (bottom) for different sound
source positions, integrated over different frequency channels. Note that for
0 degrees ITD is zero while IID is not.

B. Neighborhood adaptation

Learning can be improved considerably when updating not
only those cue vectors for the current but also for neighboring
positions. This is especially important when starting froma
random initialization or after a stronger decalibration. We
therefore update cue vectors for all positionsφx ∈ [−90,90]
but modulate the step size by the distance from the measured
position:
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Fig. 5. Linear approximation model: average ITD as a function of relative
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∆Ck+1( f ,φx) = β ·exp

(

−
(φx−φ0)

2

2σ2

)

·
(

mi( f )−Ck( f ,φ)
)

.

(7)
The parameterσ defines the range of the adaptation neigh-
borhood. The larger it is the quicker the map will adapt
initially, but the lower the final quality of the map. It is
therefore important to modifyσ depending on the current
performance of the audio motor map. Overall performance
can be measured in many ways, we employ the following
procedure: whenever the system tries to target an audio
source, we measure the mean ITD after the move. In an
ideal case it should be zero (assuming that the sound source
hasn’t moved). Any deviation from zero indicates an error in
the sound localization, i.e. the audio motor map. Integrating
these errors over many localization attempts, the system can
estimate its own performance and update the neighborhood
rangeσ . The ITD-based localization errorEITD is calculated
as the mean of measured ITD values in a time window of 6
seconds after a targeting move. Based on this error we can
define an update rule forσ :

σ = σ0 ·
1

1+exp(−s(EITD − t))
(8)

Here σ0 is the maximum adaptation range,s the slope of
the sigmoidal andt the ITD threshold. Example values are
s= 20, σ0 = 80◦, and t = 0.2. The advantage of this error
function is that it can be computed online and does not
require the knowledge of the true audio-motor map.

IV. RESULTS

The online adaptation was tested first in Matlab using sim-
ulated data and then in a real-world scenario. We investigated
the performance when starting from a random audio-motor
map in both cases. The online implementation runs in our
own middleware system RTBOS [13] on a single CPU. The
system graph is depicted in Fig. 1. To compare the results of

online learning with the calibrated maps we introduce two
new error measures:

Knowing the (correct) reference mapCref the difference
to the online adapted map after each updating step can be
calculated using the following difference error:

Ek
diff =

∑ f ∑φ
∣

∣Cref( f ,φ)−Ck( f ,φ)
∣

∣

∑ f ∑φ |Cref( f ,φ)|
, (9)

with a sum over all positionsφ , and frequency channels
f . The difference error is normalized by the sum over all
rectified entries in the offline calibrated reference mapCref.

The localization errorEL indicates the mean deviation of
the estimated position̂φ from the true sound source position
φ0. This estimation of the target sound source positionφ
is calculated using the main localization system (not the
model based position estimation) and the current, learned
audio-motor map. The localization errorEL is calculated as
an average of the estimation errorφ − φ̂ for target sounds
coming from all possible positions. In our simulations we
considered only the front area and thereforeφ0 ∈ [−90◦;90◦].
This procedure can either be done using a simulation with
an offline-calibrated map as the basis for cue generation or
by testing the system online:

EL =
1

NPositions

90

∑
φ0=−90

∣

∣φ0− φ̂
∣

∣

. (10)

As a reference, offline calibrated maps in conjunction with
our sound localization system [1] produce a mean localiza-
tion error of around 2◦ under comparable conditions.

A. Offline tests

To study the system in a controlled environment we used
Matlab to provide simulated inputs and head movements.
Binaural cues were generated from an offline calibrated audio
motor map with white noise added (with the same variance
as those measured during calibration). Head movements were
at random and binaural cues were produced for a fixed sound
source position.

In the robot system the learning has to be precise and also
fast. Figure 6 shows the learning progress using the linear
model with parameters optimized for quick adaptation.
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With tuned parameters the adaptation speed can be in-
creased and the map is learned within 100 steps (with a
localization errorEL = 4◦). For this simulation the following



learning parameters were used:σ0 = 80◦, s= 20 andt = 0.2.
The learning step size isβ = 0.3.

Good performance (less than 5◦ mean localization error)
is reached after just 100 adaptation steps and an acceptable
value already after 20 steps. Considering that one adaptation
can be done in an online system roughly every 15 seconds
(see below), the system could adapt from random initial-
ization within about 300 seconds (5 minutes) under ideal
conditions.

B. Online scenario

We tested online adaptation in a real-world scenario by
setting our system in a normal (3x5m) room (echo decay
constantT60 = 625 ms) and putting a conventional radio in
front of the system (at 0 degrees). The audio-motor map
was initially set to random for all cues. Then radio and
online adaptation were turned on and the head was moved
horizontally in a random fashion every 15 s. This long
period guarantees that sound signals can be measured for
extended periods of time before and after the head moves.
In this scenario the radio was the main, but not the only,
sound source - there was some background noise from the
computing hardware and from neighboring office rooms.
Also the echoes were considerable. From our experience
we know that most of the background noise and echoes are
handled by our preprocessing architecture (see [1], [2]). We
let the system do online adaptation for several hours and then
evaluated the results. We first analyzed the performance of
the position estimation, see Fig. 7. As can be seen, in most
cases the position of the sound source is well estimated (see
also Table I). In almost 50% of trials the position estimation
was correct within 10◦. The few, really large errors could
be selected out easily. The mean position estimation is not
exactly on target (estimated mean position is−1.3◦ and the
histogram peaks at−5◦). About this we have to note that
it was difficult to position the radio exactly at zero degrees
relative to the robot head. Therefore the small localization
error is probably due to the limited precision of the set-up.
Furthermore, minor asymmetries in the head shape might
also contribute. In any way, as we will see, this had no
negative effect on the quality of the learned maps.

Next we monitored the status of the audio-motor map
over time, see Figs. 8 and 9. Since the correct result is
not known, we can only compare the online adapted map
with one gained through an offline calibration in the same
settings (which also took more than 1 hour of time). Fig. 8
shows the difference errorEdi f f for ITD and IID. As can
be seen, the adaptation is finished after about 400 update
steps (less than 2 hours of real time). Fig. 9 shows the
development of the online calibrated map (IID) over learning
steps (there is, on average, one learning step roughly every
15 s) and in the bottom right corner the offline calibrated
map. Columns 1 and 3 show the IID-motor map, while
columns 2 and 4 the value for a single frequency channel
(1000 Hz). Dashed lines indicate the online adapted map,
the solid lines the offline calibrated maps. The adaptation
width σ is updated according to eqn. 8 withs= 20, t = 0.3,

σ0 = 0.5. The ITD errorEITD is initialized with zero and rises
slowly. Therefore, in the beginning adaptation is very slow
but speeds up after a few hundred learning steps. Starting
with a higherσ would speed up the learning accordingly.
Here, we used an adaptation rate ofβ = 0.1.

Estimation Result
estimation error within 1◦ 5%
estimation error within 5◦ 26%
estimation error within 10◦ 47%
estimation error within 20◦ 70%
estimation error over 30◦ 20%
mean estimation error 13.99◦

mean estimated radio position −1.3◦

TABLE I

ESTIMATION PERFORMANCE FOR THE RADIO SCENARIO.
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In a real-world environment we can’t guarantee that the
main constraints of the position estimation model are sat-
isfied (source at same position before and after the move,
only one sound source). In order to minimize adaptation
errors we employ a number of checks to sort out potentially
wrong position estimations: Firstly we measure localization
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cues over a period of 6 seconds before and after the move -
ignoring all cues measured before and after these periods
and also during the head movement. This increases the
chance that all measured cues are from the same sound
source. Furthermore we only use position estimations for
head movements beyond a certain threshold value (more than
θm = 30◦ head rotation between two measurements). In our
tests this led to a substantial improvement in position esti-
mation precision. Finally, by comparing the estimated slope
a from eqn. 3 for the current position estimation with the
mean estimated slope from previous measurements, we can
sort out measurements with a considerable deviation from
the mean. Obviously, we also sort out position estimations
outside the possible range (±90◦).

V. SUMMARY AND OUTLOOK

We have presented a method for online adaptation of
audio-motor maps that relies solely on audio cues and motor
feedback. We use a simple linear model of the mean ITD
value. Although more complex models can be chosen, the po-
sition estimation performance with our approach was already
satisfying. Our system is capable of self-adaptation in scenar-
ios with comparatively few constraints on the environment
and shows a robust and quick convergence of the audio-motor
map. The approach is therefore well suited for applicationsin
complex robotic systems, where frequent recalibration is not
feasible. The adaptation can work while the robot is used for
some other task, allowing a more efficient use of a generally
very limited hardware resource (on-the-fly operation). Under
ideal conditions adaptation can be done within 5-10 minutes
and even under real-world conditions, the audio-motor maps
can be learned in less than 2 hours. With some tuning
even lower values will probably be possible. The number

of required updating steps is relatively low, however it
takes some time to robustly collect enough auditory cue
measurements for an efficient training. The performance of
the system could be extended in a number of ways, by e.g.
using other auditory cues to verify that the sound source
before the move is the same as the one after the move.
This could be based for example on pitch tracking. It would
also be possible to use an additional visual feedback signal
for higher precision and increased robustness, by integrating
the two position estimations and updating the map based on
the combined results. Another possible option is to replace
the linear model with a sinusoidal or sigmoidal function.
This would provide a better fit to the observed ITD curve
especially for more lateral positions, but would require to
estimate more parameters.
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