
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Emergence of Feedback in Artificial Gene
Regulatory Networks

Till Steiner, Lisa Schramm, Yaochu Jin, Bernhard
Sendhoff

2007

Preprint:

This is an accepted article published in IEEE Congress on Evolutionary
Computation, CEC. The final authenticated version is available online at:
https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Emergence of Feedback in Artificial Gene Regulatory Networks

T. Steiner1, L. Schramm2, Y. Jin1, B. Sendhoff1

1Honda Research Institute Europe
Carl-Legien-Str. 30, 63073 Offenbach/Main, Germany

{till.steiner, yaochu.jin, bs}@honda-ri.de

2Technische Universität Darmstadt
Karolinenplatz 5, 64289 Darmstadt, Germany

Abstract— In this paper, we present a model for simulating
the evolution of development together with a method for the
analysis of emergence of negative feedback inside the regulatory
network. In order to record the development of feedback during
evolution, we analyze both the static as well as the dynamic
interactions between the transcription factors in the regulatory
network. When perturbing the gene regulatory network using
random mutations, we find that the evolved negative feedback
is the main mechanism for robustness against such mutations.
We argue that this robustness is the reason for the sustained
emergence of negative feedback during evolution.

I. INTRODUCTION

Simulated evolutionary development combines evolution-
ary computation with simplified models of developmental
biology. In this approach, an artificial genotype encodes the
developmental process through Gene Regulatory Networks
(GRNs) resulting in an indirect representation that is differ-
ent from traditional evolutionary algorithms (EAs). Indirect
representations are expected to be required for the evolution
of complex systems. Apart from their scalability property,
indirect representations (or encoding schemes) can help to
understand and to exploit important principles of biological
evolution, such as modularity [16], [18], robustness against
mutations and environmental changes [11], and self-repair
[2] to name but a few.

Several models have been proposed for simulating devel-
opmental processes, see [4] for a comprehensive overview.
The majority of research focuses on the phenotypic features
that the simulated developmental process results in. These
features include the ability to grow two dimensional patterns
like flags [13], [8], [9] and tesselating tiles [1], the ability
to self-repair [3], or in general the ability to grow complex
shapes and structures with varying notions of complexity [5],
[10]. However, the mechanisms that cause these features,
as well as the path that evolution follows to discover the
representation that develops them, are not thoroughly inves-
tigated. This knowledge is required for achieving both a more
fundamental understanding of biological systems and an
improvement of the performance of evolutionary algorithms
with indirect representations. Furthermore, in order to be able
to construct artificial gene regulatory networks for simulated
developmental processes dependent on the problem domain
one wants to investigate, a deeper understanding of the
complete system is required.

When modeling the developmental process on a computer,
we have to carefully choose the appropriate abstraction level
of the biological system. It is clear that the level of abstrac-
tion influences the behaviour and the result of the simulation
and therefore, both its plausibility in a biological context
as well as its applicability in a technical context. Although
abstraction might limit the direct explanatory power of the
results for biological observations, it helps us to focus on
the most fundamental principles of the process because our
view is not longer obstructed by the countless details of
biology and biochemistry. Furthermore, in a computational
framework, experiments can be re-run with exactly the same
course of events, and virtually all processes can be altered
by the experimenter without problems, limited only by the
available computing power. This allows us for example to
observe the dynamics of GRNs closely and investigate their
evolution more thoroughly.

The dynamics of GRNs determine the developmental
process and in turn strongly influence the characteristics of
the phenotype including its shape, structure and behaviour.
If a mutational change of the genotype affects the individual
at all, it will cause a change in the dynamics of the GRN
possibly without changing the static representation of the
GRN, e.g. a heterochronic mutation may change the timing
of regulatory events only.

In this paper, we investigate the evolution of simulated
GRNs with a particular emphasis on their dynamics. We
analyze the emergence of inhibitory feedback during evo-
lution, which is, among others, believed to be responsible
for robustness against mutation in biological systems [21].
A negative feedback loop in GRNs occurs when a gene
directly or indirectly inhibits its own expression. Com-
putational models of simple organisms have successfully
identified feedback mechanisms that are used in heat shock
response [6] and chemotaxis [22] of E. Coli. Here, we trace
the emergence and persistency of such feedback mechanisms
in evolving individuals and analyse the effect of evolved
negative feedback on robustness against mutation. We argue
that this kind of analysis can only reasonably be performed
by investigating the dynamics on GRNs rather than the static
regulatory interactions.

The paper is structured as follows. In Section II, we present
the developmental model that we use for our simulations.

Fig. 1. An illustrative vDNA with three genes, each consisting of one or
more structural subunits (SUs) and regulatory subunits (RUs). Two different
kinds of RUs exist: inhibitor (RU−) and activator (RU+). A SU coding
for the production of a transcription factor (TF) is denoted by SUTF, a SU
coding for a division by SUdiv and a Cadherin producing SU by SUcad.

Section III briefly describes the evolutionary algorithm used
in this study. Methods for analyzing the resulting GRNs
and the experimental results are given in Section IV and
Section V, respectively. We conclude with a discussion of
the results and an outlook in Section VI.

II. MODELING DEVELOPMENT

The model used in this work is based on the one we
proposed earlier [19] with two major extensions: the imple-
mentation of physical interactions between cells and modi-
fications to the genetic representation, so that the model is
biologically more plausible. Firstly, we describe the genetics
of our model, followed by a description of the cellular
representation we use. Thereafter, we shortly illustrate the
sequence of events during a simulation.

A. Genetics

In our model, cellular growth is controlled by a genome
stored inside a virtual DNA (vDNA), of which an identical
copy is available for translation to all cells in an individual.
This genome consists of regulatory subunits (RUs) and
structural subunits (SUs), which are initially lined up in a
random order. A functional unit of this DNA, called a gene,
is composed of a group of SUs and the preceding RUs.
The SUs encode actions that a cell should perform, while
the RUs determine whether a gene is active or not. The
actions encoded in the gene will be performed only if it is
active. Both RUs and SUs are represented by a set of double
precision values. An illustrative example of a genome with
three genes is given in Fig. 1. Note that the RUs behind the
last SU and the SUs in front of the first RU are not taken
into account for the developmental process.
• Structural subunits: A SU encodes the action to be

performed, and contains the parameters that specify the
action. Possible actions include cell division, produc-
tion of a diffusing chemical, the transcription factor
(TF) for cell-cell signaling, and production of Cadherin

molecules on the cell surface, which determine cell-cell
adhesion forces.
Formally, a SU consists of a vector x with five compo-
nents xi ∈ [0..1], i = 1, . . . , 5. x1 is used to determine
the type t of action encoded by the SU:

t =

 1 ∀ x : 0 ≤ x1 < 1
3

2 ∀ x : 1
3 ≤ x1 < 2

3
3 ∀ x : 2

3 ≤ x1 < 1

If t = 1, cell division is encoded and x2 is used to
determine the division angle, while the values x3 to x5

are ignored. If t = 2, the production of a TF is encoded
and x2 represents an affinity value assigned to the TF
(affTF), x3 defines the amount of TF to be released, x4

is a diffusion constant, and x5 the decay rate.
In the case of t = 3, the production of Cadherin
molecules is encoded by the gene and the type of
Cadherin is determined by x2. In our model, cells
containing the same type of Cadherin will adhere to
each other. Note that for t 6= 2, not all xi are used,
but they are still kept as a part of the SU. Therefore,
mutation affects them without being subject to selection
pressure. If a mutation results in t = 3, all five values
are required again as parameters for the production of
a TF. So far we have not studied the effect of this
intermediate random-walk of the redundant parameters
on the evolution process.

• Regulatory subunits: Two types of RUs are used in
our model, which either increase (activate) or decrease
(inhibit) the expression of a gene. RUs can sense the
presence of certain types of TFs in the vicinity of the
cell. If the label of a TF is affine to a label associated
with the RU, and if the concentration of the TF lies
above a threshold, an activity value is determined for
each RU. All activating (= positive sign) and inhibiting
(= negative sign) activity values belonging to the same
gene are summed up to determine the overall activity
of the gene.
More formally, a RU consists of a vector y with three
components yi ∈ [0..1], i = 1, . . . , 3. y1 codes for
an affinity parameter, which is used to determine the
affinity between that RU and the surrounding TFs. If
the affinity decision variable γ, calculated by

γ = 0.2− |affTF − y1|

is greater than 0, the TF and the RU are affine to each
other.
Let M be the number of RUs belonging to a certain
gene. Let Lj be the number of TFs that are affine to
RUj , the jth RU of the gene, and yj

i the ith entry of
the vector y of RUj . We first determine the indices kj ,
which denote the TFs that have a concentration c that
is greater than yj

2:

kj = {k ∈ {1, .., Lj} : ck > yj
2}.

Here, yj
2 can be seen as a threshold of RUj . The partial

activity aRUj for the RU is given by

aRUj =
∑
kj

ckj
− yj

2

A sum over all partial activities, scaled by y3 yields

α =
M∑

j=1

aRUj · (2 · yj
3 − 1).

yj
3 can be interpreted as the sign of RUj , because the

term in brackets is negative for y3 < 0.5. The overall
activity A of the gene is finally determined by

A =
2

1 + exp(−20 · f · α)
− 1,

where f denotes the slope of the nonlinear function and
is encoded in the vDNA for every gene. If A is greater
than zero, the gene is active.

B. Cells and their interaction

The simulation area for cellular growth is defined by an
equally spaced 26 by 26 grid with step size 0.5 on which the
concentrations of the TFs are calculated. Cells are modelled
as spheres with a radius of one. They interact with each
other by reading and releasing TFs and by cellular motion
through rigid body interactions coupled with adhesion forces,
which are implemented in a similar way as described in [14].
We slightly modified the nonlinear force function and do
not include deformations of the spheres. Instead, we allow
for a small overlap between neighbouring cells. Note that
cell positions are not fixed to the grid. Therefore, cells read
the concentrations of TFs from the four nearest nodes of
the diffusion grid and interpolate their actual value. The
release of a TF by a cell is simulated by an increase of
the concentration in the four nearest nodes on the diffusion
grid. Each TF is simulated separately using the forward Euler
method to discretize and solve the diffusion equation:

du

dt
= Df∇2u− Dcu + s(t),

where u is the concentration of the TF, Df is the diffusion
constant, Dc the decay constant and s(t) is a source term,
which contains the increase in concentration caused by the
cells.

Since the evolutionary target of this study does not de-
pend on cell sorting and only weakly on the shape of the
individuals, the implemented mechanism for cell adhesion is
fairly simple. If two cells contain the same type of Cadherins
(which means that they express the same gene), they will
adhere to each other.

There are several alternative models available for the sim-
ulation of cellular growth and their interaction. Frequently,
cells are modelled as pixels on a fixed grid [20]. A spring-
mass-damper system has been used in [15] to simulate the
shape and physical behaviour of plant cells. As mentioned
above, different cell models require the evolution of different

control mechanisms, resulting in different gene regulatory
systems with varying properties. We have chosen our model
mainly for two reasons. Firstly, it is easy to implement yet
sufficiently biologically plausible. Secondly, in our model, a
cell can always perform the actions that its genome activates.
In contrast, it may happen in the pixel model that a division
does not take place because the space for the new cell is
already occupied by another cell. Therefore, the control of
activation for such a gene would no longer evolve, since its
function is automatically disabled.

C. Time scales and sequence of events

In the beginning of development, a single cell containing
the vDNA is placed at the center of the simulation area. To
start the growth process, an initial TF (maternal TF) is re-
leased, which maintains a constant concentration in the whole
area over the entire developmental time. Contrary to most
existing models, e.g., [3], [7], the initial TF concentration
in our model does not provide any positional information.
Rather, it fulfills the minimal requirement for starting a
developmental process.

In each developmental step, the following events take
place: Firstly, the translation of the DNA is initialised for all
existing cells. Secondly, if the TFs in the vicinity of the cell
activate a gene, the action that the gene encodes is executed.
Finally, the position of all cells is updated and the diffusion
of the released chemicals is simulated.

III. THE EVOLUTIONARY ALGORITHM

An evolutionary strategy (µ,λ)-ES with individual strategy
parameter adaptation [17] is adopted in this work. The main
variation operator in the ES is the mutation operator that adds
a normally distributed zero-mean random number to each
object parameter. Each design variable has its own variance,
which self-adapts to the fitness landscape during evolution.
Mutation and self-adaptation are shown in equation (1),
where the xi denote the design variables in our model as
described in the last section, the σi the standard deviations
of the normal distribution, and the index g is the generation
counter.

σg+1
i = σg

i eτ0w eτwi , w, wi ∼ N(0, 1) (1)

xg+1
i = xg

i + zi, zi ∼ N(0, (σg+1
i)2) (2)

τ0 =
1√
2N

, τ =
1√

2
√

N
.

We do not employ a recombination operator in this paper.
Different from conventional ESs, both gene transposition

and gene duplication are implemented. During transposition
two randomly chosen units (both SUs and RUs are possible)
are marked and all units between these two marked units
are cut out and pasted at another randomly chosen position.
Gene duplication works similarly with the difference that the
units are not cut out but copied to another randomly chosen
location.

The probabilities for gene transposition and gene dupli-
cation are given by pt = pm · p1 for transposition and
pd = pm · (1− p1) for duplication, respectively.

In this paper, the goal of evolution is to find GRNs that
result in a stable developmental process before the maximum
number of developmental time steps has been reached.

By stable development, we mean that the development
must reach a state where cells do not move or divide
anymore, i.e., the concentration of the TFs must either have
decayed to a value below all activation thresholds, or reached
a stable value, which indicates that no further change in gene
activity will occur. Finally, the finite number of cells that
make up the individual should be located inside a predefined
diamond shape centered on the grid.

The evolution of finite growth is formulated as a mini-
mization problem. The fitness f is given by the following
equation:

ηi =
{

−1 ∀ ‖pi‖1 ≤ 5
1 ∀ ‖pi‖1 > 5 ,

f =
N∑

i=1

ηi,

where pi is a two-element vector containing the position
(xi, yi) of the i-th cell of the individual in the last timestep,
N is the total number of cells, and ‖ · ‖1 denotes the 1-
norm. In other words, the fitness is expressed by the number
of cells outside a diamond shape around the center of the
calculation area, minus the number of the cells inside the
diamond shape. If the constraints are violated, i.e., if the
cells touch the border of the simulation area, or if the growth
process does not reach a stable state within a maximum of
TD developmental time steps, a penalty term of +700 is
added to the fitness function.

IV. THE ANALYSIS OF NETWORK DYNAMICS

In this section, we present the methods that we employ
for the analysis of the computer experiments outlined in the
next section. Firstly, a traditional, static representation of an
evolved GRN is described. After demonstrating its weakness
for the analysis of feedback, a description of the dynamic
GRN and its usefulness follows.

A. Static GRN

Fig. 2 depicts the static interactions of the GRN belonging
to an individual which results from generation 43 of an evolu-
tionary run described in Secion III. We used the Cytoscape-
software1 for this visualization. The static interactions can
be directly derived from the vDNA of an individual in the
following way: An arrow from a SU to a RU denotes that
the RU takes part in the activation calculation for that SU.
This is determined by the position of the RUs relative to the
SUs inside the vDNA. An arrow from a TF-coding SU to
a RU denotes that the label of the respective TF is affine
to the label associated with the RU. Therefore, if that TF is
produced, it will act on the RU if its concentration exceeds
its threshold. If a gene consists of more than one SU, SUs are

1Cytoscape is a software for the visualization of biologic datasets, such
as molecular interaction networks. http://www.cytoscape.org

grouped together (directly adjacent, or with an arrow directly
between them).

This kind of representation can be useful for an overview
over possible interactions, although the generally high num-
ber of interactions makes it hard to analyse them in detail.

However, the major drawback of this visualization method
is that it does not become clear which interactions really
become activated during development. The reason is that the
interaction between a TF-coding gene and a RU depends on
thresholds and the concentration of the TF. The concentration
depends on the position of the cell which the gene belongs
to, the expression rate of the TF and the actual developmental
time step. In Fig. 2, we highlighted such a negative feedback
loop, which is only one among many (in fact, the close-
up reveals a direct negative feedback where the gene acts
on its own inhibitory RU). However, the dynamic GRN
analysis described in the next section reveals that none of
these negative feedbacks are used during the development of
the respective individual.

Therefore, to get an insight into the real interactions, the
missing information – TF-concentrations and time steps –
needs to be included.

B. Dynamic GRN

In Fig. 3, we depict a time series of network interactions
as they take place in the first cell of an individual. Genes
are represented by points and arranged in a circle. Since
information about TF concentrations in the vicinity of the cell
can be obtained for every timestep, the real interactions be-
tween genes can be shown. In each time step, the interactions
are updated according to the changing TF concentrations.
The top solid point in Fig. 3i) denotes the pre-diffused TF
and therefore, exhibits initial interactions. From there, gene
activation and inhibition can be tracked in each successive
time step, from Fig. 3i) to Fig. 3vi).

Note that this dynamic representation of the GRN can
differ from cell to cell. For our experiments, we checked that
all cells of one individual reach the point where the GRN
converged to the same stable state. Therefore, our analysis
is performed only for the first cell of an individual.

We use the information provided by the dynamic GRN for
negative feedback analysis. In every developmental timestep,
we search for closed loops in the GRN and count the number
of negative interactions which are part of the loop. This
is achieved by transforming the network into a tree-graph
and looking for the occurrence of already visited nodes by
stepping along the tree. The method yields the number of
negative feedback loops for all developmental time steps
in one individual. By comparison, we can eliminate the
occurrence of the same loop in successive time steps and
thus find the number of unique inhibitory feedbacks used
throughout the developmental process.

V. THE EMERGENCE OF FEEDBACK

A. The Experimental Setup

In the experiment, the parent and offspring population
sizes are set to 400, and 2000 respectively. Evolution has

Fig. 2. The static interaction network of an individual from generation 43. The pre-diffused TF is placed in the center of the network. A close-up on one
gene is depicted in the upper left corner: the gene consists of an inhibitory RU (black ellipses), an excitatory RU (white ellipses) and two TF-coding SUs
(blue rectangles). Two interacting genes and the pre-diffused TF are emphasized by bold circles. A positive interaction (solid arrow) from the pre-diffused
TF to the lower gene denotes an excitatory connection, which could be the starting point of a negative feedback loop between the two marked genes (the
dashed arrow denotes a negative interaction). Note however, that the analysis of the dynamic GRN reveals that this feedback is not used, because the
concentrations of the TFs do not exceed the threshold values.

converged after approximately 110 generations. The proba-
bility of the variation operations are given by pm = 0.1 and
p1 = 0.5, and the maximum number of developmental time
steps is set to TD = 100.

B. Results
The result of a typical evolutionary run is presented in Fig.

4, where the fitness of the best individual, the average fitness
and the fitness of the best individuals’ ancestors are plotted.
It can be seen from the figure that the population stagnates
from time to time, before an innovation is found, which leads
to a significant fitness increase. A much wider plateau has
also been observed in some of the runs. Note that the goal
of this paper is not to show how well the target shape can be
realized. Instead, our model serves to analyse the emergence
of feedback during evolution. Successful individuals exhibit
the non-trivial behavior to grow towards a stable state during
their development. This means that their shape and final state
of the GRN remain constant after a certain developmental
time step. Thus, the fitness of an individual is not coupled
to a certain ’evaluation time step’ as it is usually the case in
simulated evolutionary development, but rather to the stable
individual that is reached after the developmental process has
converged.

The curve in Fig. 5 shows the emergence of feedback
during the evolutionary run. Since the analysis is compu-
tationally expensive, we chose to test the 11 best individuals
of each tenth generation for feedback. The curve shows
clearly, that negative feedback starts to prevail between the
40th and 60th generation. After generation 60, all 11 best

individuals contain feedback loops. We are able to track the
first occurrence of feedback back to the best individual of
generation 44, whose dynamic GRN is depicted in Fig. 3.
The negative feedback is visible in Fig. 3iii): an excitatory
connection from the highlighted gene on the left side to
the highlighted gene on the right side, and an inhibitory
connection in the opposite direction.

We assume that the negative feedback stabilizes the devel-
opment of individuals against mutation. With a negative feed-
back loop a TF is possibly self limiting. If the concentration
increases beyond a defined threshold, the TF can decrease
its own production. If the concentration decreases, the level
of self influence is reduced resulting in a stable state. In
comparison, a positive feedback loop could only cause a TF
to increase its own production continuously without reaching
a stable state. In general, a negative feedback loop in control
engineering is a comparison between reference values and
output values. Based on the difference the controller designed
for this problem can minimize the deviation between refer-
ence and output values. Therefore, the system is stabilized
towards that target value. In our case, the stabilizing effect
is similar except that we do not pre-define a reference
value. Instead such a value is system inherent. Therefore, a
mutation may cause reference values to change, but as long
as the negative feedback loop is not destroyed, a system can
maintain its ability to stabilize. One possible effect is that
offsprings of individuals with negative feedback will be less
sensitive to mutations, i.e., fewer lethal mutations will occur.
Here ”lethal” means that individuals will not grow at all or

i) ii)

iii) iv)

v) vi)

Fig. 3. A time series of interactions inside the dynamic GRN. Each gene
is depicted as a small circle. The red point denotes the pre-diffused TF.
Active genes are marked as filled circles. The interactions between the genes
are either inhibitory (red, dashed arrows) or excitatory (blue, solid arrows).
In iii) we highlighted two genes that form a negative feedback loop with
an excitatory interaction from left to right and an inhibitory interaction in
the opposite direction. Each figure represents the state of the GRN in one
timestep. Note that the static condition for this individual is not yet reached
after timestep vi).

Fig. 4. The best (dashed line) and average (solid line) fitness of a typical
evolutionary run. The shape of the best individual after convergence to a
stable state is shown for three different generations. The average fitness is
computed from those individuals only, that do not violate constraints.

Fig. 5. The triangles mark the share of the 11 best individuals which
possess one or more negative feedback-loops. The analysis is performed at
every 10th generation.

Fig. 6. The results of the mutation experiment: four individuals are mutated
50 times for each strategy parameter σ. The plot shows the percentage of
individuals that survived mutation.

will not reach a stable state after the maximum number of
allowed developmental time steps. In both cases, individuals
are penalized, and not taken into account for further selection.
Thus, the number of feasible offsprings from an ancestor
containing negative feedback loops is higher than the number
of feasible offsprings from an ancestor without negative
feedback. If the fitness of individuals containing feedback
is not worse than the fitness of those without feedback, the
probability that a genome with feedback is passed on during
evolution increases.

To verify this hypothesis, we perform a simple mutation
experiment with four different individuals: The best indi-
vidual from generation 44 which uses feedback, its direct
ancestor from generation 43 which has no feedback (see the
static GRN in Fig. 2), the best individual at the end of the
evolutionary run and a modified version of the best individual
from generation 44. The modification consists of removing
the gene from the vDNA that causes the negative feedback
(marked in Fig. 3iii), right circle). Note that these individuals
still exhibit a stable, finite growth process, thus none of them
violate the constraints. The four individuals are mutated 50
times each, for every sample point. Mutation is carried out
by adding a random number generated from a zero-mean
normal distribution with given standard deviation σ to each

value of the vDNA. Thereafter, we count the number of
individuals that still produce stable growth without violating
the constraints and denote them as successful. Note that
feasible individuals with lower fitness than the unmodified
ones, are also among them. Fig. 6 shows the results of this
experiment.

It is clearly visible that mutations with σ smaller than 10−5

affect individuals without feedback much more severely than
individuals containing feedback: 100% and 96% respectively
of the individuals containing feedback survive, while only
62% and 50% respectively survive without feedback. At σ =
10−4, feedback is still an advantage, although the percentage
of successful individuals has been reduced significantly to
70%. The percentage of lethal mutations with a σ larger
than 10−3 is similar for all individuals. This might be the
result of mutation destroying the negative feedback loop,
thus destroying the whole control mechanism that mainly set
the different individuals apart. Note that during evolution, σ
was in the range between 10−6 to 10−5 from generation 43
onwards and therefore, in a region where feedback seems to
be a clearly advantageous.

VI. CONCLUSION

Using a simple model for the evolution of the developmen-
tal process of a multi-cellular individual with gene regulatory
networks, we analysed the dynamics of the emerging net-
works with a particular emphasis on the occurence and role
of feedback in the GRN. In our model, the developmental
process is not stopped after a pre-defined number of time
steps, instead it must converge before a maximum number
of time steps has been reached. This is rather uncommon
compared to most approaches published so far, however, we
believe it is an important step if we want to devise models
that are useful for both the support of biological research and
the structure optimization of engineering systems.

The results of our analysis indicate that negative feedback
seems to prevail during evolution by having a stabilization
effect against mutation. Individuals with negative feedback
show a greater robustness in our mutation experiment than
those without feedback. Thus, evolutionary success is a
combination of fitness and robustness against mutations.

Furthermore, we have seen that static GRNs in computa-
tional models may contain interactions that are never used.
Even in biology, when analysing GRNs, there are significant
structural differences between static network interactions and
dynamic interactions, see e.g. [12].

The emergence of negative feedback and its persistence
during evolution supports the assumption by Wagner [21],
that this kind of robustness is an evolved response to stabi-
lizing selection.

Gathering knowledge about the relation between the evo-
lution of feedback and robustness is also important for
evolutionary design, because it could tell us something about
the evolvability of the system. Indeed feedback might prove
to be an important tool for stabilizing certain useful pro-
cesses during evolution, while deliberately avoiding feedback

mechanisms might enable the evolutionary process to change
features easily.

In general, computational models enable us to choose the
level of abstraction for analysis that seems most suitable. In
our case, for the analysis of feedback, this level is ideally
chosen in between the analysis of the static GRN and the
analysis of single gene activity functions. Thus, the appro-
priate level seems to be the analsis of the dynamics on GRNs.
Compared to biologic research, this level is easy to achieve
with a computational model, since all necessary parameters
are accessible and all interactions can be evaluated at every
time step.

We think that it is important to realize, how much in-
formation is accessible and unused in present models of
evolutionary development. More analysis tools and means
of visualization are necessary to acquire a more thorough
understanding of processes in order to devise simulation
systems that prove truly useful for both biological research
and structure optimization.

REFERENCES

[1] P. Bentley and S. Kumar. Three ways to grow designs: A comparison
of embryogenies for an evolutionary design problem. In Wolfgang
Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant
Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings
of the Genetic and Evolutionary Computation Conference, volume 1,
pages 35–43, Orlando, Florida, USA, 1999. Morgan Kaufmann.

[2] C. P. Bowers. Simulating evolution with a computational model
of embryogeny: Obtaining robustness from evolved individuals. In
Proceedings of the 8th European Conference on Artificial Life, pages
149–158, 2005.

[3] C.P. Bowers. Formation of modules in a computational model of
embryogeny. In Proceedings of the 2005 Congress on Evolutionary
Computation, 2005.

[4] H. de Jong. Modeling and simulation of genetic regulatory systems:
a literature review. J. Comp. Biol., 9(1):67–103, 2002.

[5] P. Eggenberger. Evolving morphologies of simulated 3d organisms
based on differential gene expression. In Proceedings of the 4th
European Conference on Artificial Life, 1997.

[6] H. El-Samad, H. Kurata, J.C. Doyle, C. A. Gross, and M. Khammash.
Surviving heat shock: Control strategies for robustness and perfor-
mance. PNAS, 102(8):2736–2741, February 2005.

[7] D. Federici. Increasing evolvability for developmental programs. In
J. Miller, editor, GECCO Workshop on Regeneration and Learning in
Developmental Systems, 2004.

[8] D. Federici. Using embryonic stages to increase the evolvability
of development. In J. Miller, editor, proceeding of the Workshop
on Regeneration and Learning in Developmental Systems, WORLDS
2004, 2004.

[9] D. Federici and T. Ziemke. Why are developing organisms also
fault-tolerant. In Proceedings of the 9th International Conference on
Simulation of Adaptive Behavior, pages 449–459, 2006.

[10] N. Geard and J. Wiles. Investigating ontogenetic space with devel-
opmental cell lineages. In Proceedings of the Tenth International
Conference on the Simulation and Synthesis of Living Systems, pages
56–62, 2006.

[11] H. Kitano. Biological robustness. Nature Reviews Genetics, 5:826–
837, 2004.

[12] N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann,
and M. Gerstein. Genomic analysis of regulatory network dynamics
reveals large topological changes. Nature, 431(7006):308–312, 2004.

[13] J. Miller. Evolving developmental programs for adaptation, morpho-
genesis and self-repair. In Proceedings of the European Congress of
Artificial Life, ECAL, pages 256–265, 2003.

[14] E. Palsson and H. G. Othmer. A model for individual and collective
cell movement in dictyostelium discoideum. PNAS, 97(19):10448–
10453, 2000.

[15] T. Rudge and N. Geard. Evolving gene regulatory networks for cellular
morphogenesis. Recent Advances in Artificial Life, pages 239–252,
2005.

[16] G. Schlosser and G. P. Wagner, editors. Modularity in Development
and Evolution. The University of Chicago Press, 2004.

[17] H.-P. Schwefel. Evolution and Optimum Search. John Wiley, 1994.
[18] B. Sendhoff and M. Kreutz. Variable encoding of modular neural

networks for time series prediction. In V.W. Porto, editor, Congress
on Evolutionary Computation CEC, pages 259–266. IEEE Press, 1999.

[19] T. Steiner, M. Olhofer, and B. Sendhoff. Towards shape and structure
optimization with evolutionary development. In Proceedings of the
Tenth International Conference on the Simulation and Synthesis of
Living Systems, pages 70–76, 2006.

[20] G. Tufte. Gene regulation mechanisms introduced in the evaluation
criteria for a hardware cellular development system. In Proceedings of
the First NASA/ESA Conference on Adaptive Hardware and Systems,
2006.

[21] A. Wagner. Robustness against mutations in genetic networks of yeast.
Nature Genetics, 24:355–361, 2000.

[22] T. M. Yi, Y. Huang, M. I. Simon, and J. Doyle. Robust perfect
adaptation in bacterial chemotaxis through integral feedback control.
PNAS, 97(9):4649–4653, April 2000.

