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Improving the storage capacity of neocortical associative netwdis
by structural plasticity and hippocampal training

Andreas Knoblauch, Marc-Oliver Gewaltig, Rudiger Kuppérsula Korner, Edgar Korner

Abstract— In this work we analyze how structural processes In this work we analyze how structural processes and
and synaptic consolidation during hippocampal training can  synaptic consolidation [5] during hippocampal trainingnca
improve the performance of neocortical associative netwds by improve the performance of neocortical associative nekavor

emulating full (or increased) synaptic connectivity. In ou model b lating full - d i tivitvol
the hippocampus can store a set of activity patterns by one- y emulating full (or increased) synaptic connectivity olar

shot learning. Then the hippocampus trains the neocortex by Model the hippocampus can store a set of activity patterns
repeatedly replaying the patterns in a sequence. The synapsof by one-shot learning. Then the hippocampus trains the neo-

the neocortical network are consolidated depending on Hebien  cortex by repeatedly replaying the patterns in a sequence.
learning. In each time step a fraction of the unconsolidated The synapses of the neocortical network are consolidated

synapses are removed and replaced by the same number - . . . .
of new synapses at random locations thereby maintaining depending on Hebbian learning. In each time step a fraction

total connectivity. We show that this procedure can massivg  Of the unconsolidated synapses are removed and replf_;\ced
increase the synaptic capacity of a cortical macrocolumn gctor by the same number of new synapses at random locations

10-20 or even up to factor 200 for pattern capacity). In a seawd  thereby maintaining total connectivity. We show that this
step we analyze the model with respect to the time (or number procedure can massively increase the synaptic capacity of

of repetitions) necessary to increase effective connedtiy from tical | factor 10-20 to fact
base level to a desired level. The analysis shows that accable a cortical macrocolumn (factor 10-20 or even up to factor

training time requires a certain fraction of unconsolidated 200 for pattern capacity). In a second step we analyze the
synapses to keep the network plastic. model with respect to the time (or number of repetitions)

necessary to increase effective connectivity from basel lev
to a desired level. The analysis shows that acceptablértcain

_The hippocampal formation plays a crucial role in orgagme requires a certain fraction of unconsolidated synapse
nizing cortical long-term memory. It is believed that they, keep the network plastic.

hippocampus is able of fast (one-shot) learning of new
episodic information followed by extensive time periods |- HOW MUCH INFORMATION CAN A SYNAPSE STORP
where corresponding neocortical representations aneetlai A. Synaptic (state) plasticity

and “compressed” [1]. Here, compression usually refers yere we develop upper bounds on the amount of infor-
to processes such as chunking spatially and temporaliyation a single synapse can store. We can think of two
distributed activity patterns. We take the complementaryomponents that contribute to the total synaptic storage ca
approach and optimize the synaptic network by structurglacity. First, information can be stored in the state proger
plasticity, e.g., replacing unused synapses, thereby mgakiof 5 given synapse. The state of a synapse may include
full use of the potential connectivity [2]. - synaptic strength (i.e., the amplitude of the postsynaptic
‘We apply the frameworks of structural plasticity andyotential), synaptic delay (i.e., the time difference besw
h|ppocam_pu_s-|nduced learning to the_tramlng of neocortie presynaptic spike and the postsynaptic potential)alsot
cal associative networks [3]. Associative networks such afe postsynaptic composition of receptors. From infororati
the Hopfield or Willshaw model are at the heart of Manyheory [6], [7] we then know that the capacitfsace Of

cortex theories and have been analyzed for a long time synapse due to plasticity of its state cannot exceed the
with respect to information storage capacity and plausiblgy|iowing bound,

retrieval strategies [3], [4]. For example, it is well known )

that a completely connected network can store about 0.7 bits Cstate < logy(#synaptic states) . (1)

per synapse. However, for incompletely connected networkg,s suggests that we can potentially store unlimited infor
the capacity per synapse can be massively reduced or e¥gBtion per synapse, for example if the synaptic weight is

I. INTRODUCTION
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precision does not necessarily lead to an increase in panay lie in the whole sphere containing the neuron’s axonal
formance [9]. Another well-known fact is that associativeree, i.e., in a much larger range than 1farfihus, it seems
networks with binary synapses can store almost the samereasonable to assume that the location capacity is bounded
even more information per synapse@6 bits per synapse by perhaps 15-20bps.
[10], [11]) than comparable models with gradual synapses The surprising result is that the total synaptic capacity ma
(0.14 bps [12] or at mosD.72 bps [13]). In all these cases actually be dominated by structural plasticity with cagiasi
the bound of eq. 1 cannot be achieved because of algorithmwre than one order of magnitude larger than obtained for the
limitations of the network implementations. Thus, it seemsore commonly investigated synaptic plasticity. However,
reasonable to assume that the state capacity is bounded biiig conclusion assumes that the upper bound eq. 2 could
relatively small value (of perhaps 0.1-1bps) actually be reached by a neural network realization. This
B. Structural (location) plasticity assumption is not obviouslly true as shown by the negative.ex-
. , ample for the state capacity mentioned above: The Hopfield
Structural plasticity provides a complementary way tQnqqe| is actually algorithmically unable to exploit the hig
store information in a neural network. This includes pro'potential capacity of gradual-valued synapses. In contnas

cesses such as the generation of new synapses and i show here that even simpler associative networks with

elimination of unused (silent) synapses as well as dend”tbinary synapses are actually able to exploit the potenfial o

and axonal growth and remodeling which is now considerg;4tjon capacity,i.e., for a target populationofieurons we
a regular physiological feature of adult brains [14], [15]\.a1 indeed achieve ~ log, 1.

[16]. Structural plasticity appears to be the solution af th
brain for the impossibility to establish a fully connected
network as commonly employed by artifical neural networks.
Actually, the number or density of functional (i.e., nofest)
synapses seems to be the very bottleneck of the brain, bgth Neyral associative networks
for anatomical and metabolic reasons [17]. In particular,
the number of synapses per cortical volume is remarkably Here we fix our ideas about the storage capacity of
constant over different species [18]. structural plasticity to a concrete model of neural asso-
Think of a new synapse that is generated by a neurofiative memory. Neural associative memory networks and
The amount of storable (location) information is deterrdinecell assemblies play a prominent role in virtually any brain
by the number of potential target locations, i.e., by all théheory, in particular concerning neocortex and hippocanpu
target cell dendrites that the neuron’s axon can reach., Thu§.9., [10], [22], [23], [24], [12], [25], [18], [26], [27][28],
similarly as before, the capaciti,. of a synapse due to [29]). The main assumptions are that functionally relevant

structural plasticity plasticity cannot exceed the bound  entities (e.g., objects) are represented by distributéiligc
patterns, that these activity patterns can be stored irotted |

recurrent (auto-associative) connections by Hebbiamiegy

Again the precise location of a synapse on a dendrite mafereby constituting local cell assemblies (defined as the
be real-valued and thus our bound unlimited. However, fctive neurons of an activity pattern), and that cell assiesib
is usually assumed that the number of functionally relevas@ different cortical locations are linked by hetero-asstee
target locations on a dendritic tree is rather small. Fomexa Hebbian learned synaptic connections.
ple, one could divide a neuron into a relatively small number Formally speakingassociative memoriesre systems that
(10-1000) of iso-potential compartments [19], or even moreontain information about a finite set of associations betwe
conservatively, simply count the number of potential targepairs of address and content pattefis” — v#) : u =
cells [2], [3]. 1,...,M}. Atypically noisy address patteilncan be used to
Thus the decisive question is how many cells can beetrieve an associated content pattérwhich ideally equals
targeted by a typical cortical neuron? The typical view ighe content patters associated to the most similar address
that a cortical neuron is connected to about 10 percent patternu”. This is a variant of théBest Match Problenin
its neighbors within a cubic-millimeter of cortex contaigi [30], and efficient solutions of have widespread applicatjo
about 100000 potential target cells [20], [21]. This woulce.g. for cluster analysis, speech and object recognition, o
correspond to an upper bourdy,. < log, 100000 ~ 17bps. information retrieval in large databases [31], [32], [33}],
From the 100000 cells in 1m3rcortex only about 30 percent [35].
are potential targets fdaststructural processes (minute time In neural implementationof associative memory the
scale) such as dendritic spine growth and retraction [3], [3nformation about the associations is stored in the synapti
which corresponds to a bourd;.:. < log, 30000 ~ 15bps. connectivity of one or more neuron populations. From the
Clearly the final answer to our question depends on thechnical perspective, neural implementations can be ad-
considered time scale of structural plasticity. For examnpl vantageous over hash-tables or simple look-up-tableseif th
if we allow a larger time window of days or even monthsnumber of patterns is large, if parallel implementation is
the much slower structural processes involving dendritid a possible, or if fault-tolerance is required, i.e. if the eskb
axonal growth may become important. Then potential targefmtternsa# may differ in unpredictable ways from the

IIl. HOw MUCH INFORMATION CAN A SYNAPTIC
NETWORK STORE?

Cloc < logy(#potential locations) . (2)



original patternsu* used for storing the associations (buta zero-entry inv* will become a “false” one iny with the

see [36]). error probability
. Ak m—k
B. The Willshaw model o[ Ak l s _
. B mo= e (Mo-ta- Gy
An attractive model of neural associative memory both —0 s n (s)
for biological modeling and technical applications is tle s ~ pik (8)

called Willshaw or Steinbuch model with binary neurons and
synapses [10], [37], [11], [13] illustrated in Fig. 1. EachFor the exact formula see [3]. In the following we use the
address pattern” is a binary vector of lengtin containing binomial approximation eq. 8 which assumes independently
k one-entries andn — k zero-entries. Similarly, each targetgenerated one-entries in the memory matrix. Although this i
patternv/ is a binary vector of lengtln containing! one- Obviously not true, the approximation is very useful for our
entries andn — [ zero-entries. Typically, the patterns areanalysis and still sufficiently good for many parameters, fo
sparse, i.e.k < m andl < n. example sufficiently sparse patterns with= O(n?/logn)

The M pattern pairs are storeetero-associativeljn a  (see [38]).

i 1 nxXm
binary memory matrixA < {0, 1} » Where C. The storage capacity of the Willshaw model

) M - Obviously, if we store more and more patterns the memory
Aij = min |1, Z ui -vj | € 10,1} ®)  load approacheg; — 1 and the error probabilitypy;
p=l becomes unacceptable. In order to compute the maximal
The neural interpretationis that of two neuron populations, possible memory load,. and the maximal number of
an address population consisting ofm neurons and a storable patternd/. we bound the error probabilityy, by
target populationy consisting ofn neurons. The patterng*  poie,
and v# describe the activity states of the two populations el
at time », and 4;; is the strength of the Hebbian learned Po1 < Pore = ——, 9)
synaptic connection from neurarn to neuronv;. Note that o
for the auto-associative case= v (i.e., if address and target Where we calle > 0 the fidelity parameter For example,
populations are identical), the network can be interpraed € = 0.01 means that the add-errors in the retnevel .reﬁult
an undirected graph witm = n nodes and edge matrix IS &t most one percent of the content pattern activitQr
where patterns correspond to cliqueskof I nodes. equ_|valently, the expected Hamml_ng d_|stance betweand _
An important variable for estimating the performance o’ IS at mostel. With the approximation eq. 8 we obtain
the Willshaw model is the matrix or memory loag which the maximal memory loagd,. and the corresponding pattern

is the fraction of one-entries in the memory matdx, CcaPacityMe,

Obviously the memory loag; is an increasing function of o O\ <F d ell
the pattern numbek/ and can be computed as follows: The Die ~ ( ) ( ko~ —T— ) , (10)
probability that a given synapse et set by the association n—l Aldpe
of one pattern peir i — kl/mn, therefore after learning/ M, ~ —\(dpr)?In(1 — pk)ﬁ TZZ NGE)
pattern associations, [ (1d25)?
e \M _ Mbifmn If € is sufficiently small the totally stored information is
o= 1= (1 - %> ~l-e » ) MnI(l/n) ~ —MUd(I/n), where I(p) = —pld(p) —
In(1 - p1) mn (1- p)ld(l_— D) is_ the Shannon i_nf_ormation of a binary
M = (1 = K/ R In(1 — p1), (5) random variable with probability. Dividing by the number
of synapsesnn we obtain the normalized network storage
where the approximation is valid férl < mn. capacityC. in bits per synapse,

After learning, the stored information can be retrieved C o~ AdpnIn(1 12
applying an address pattefn Vector-matrix-multiplication e pren(l = pic)n (12)
yields the neural potentials = ui- A of the target population, wheren ~ (1 + —2¢-)~' — 1 for I/n — 0. Thus, for

In(l/n)

and imposing a threshol® gives the (one-step) retrieval ;. — (.5 and logarithmick ~ logn (eq. 10) we obtain the
resultv, well-known storage capacit¢’ = In2 ~ 0.69 bps of the
{ 1, o= (X0, @44;5) > O Willshaw model.
v, = ’ —i=1 T = . (6)
’ 0, otherwise D. Diluted Willshaw networks

Choosing® = Y"7" | @; will be referred to as th&Villshaw The analysis so far is valid for fully connected networks,
thresholdand ensures that the retrieval resifitincludes all i.e., where each pair of a address neuron and content neuron
active units of the original content pattestt, plus possibly is actually connected by a binary synapse. The analysis can
add-noise (i.e., false one-entries). More exactly, if thdrass be generalized to diluted networks with connectivity 1,
patterni contains a fractionk of the one-entries of*, then i.e., where only a fractiopmn of themn potential synapses



(1) Learning patterns (2) Retrieving patterns
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Fig. 1. Working principle of the binary Willshaw model (foetero-association).eft: During the learning phas&/ associations between address patterns
u# and content patterns# are stored in the binary memory matriX representing binary synaptic weights of the connectiomfamldress population

u to content populatiorv. Initially all synapses are inactive. During learning oftteen associations, the synapses are activated accordimtglbian
coincidence learning (eq. 3Right: For retrieval an address pattefinis propagated through the network. Vector-matrix-muiltggion yields the membrane
potentialsx = GA. To obtain the retrieval resut (here equal tov!) a threshold® is applied. For pattern part retrievdl, C u* we can simply choose
the Willshaw threshold® = |G| yielding a superset O v# of the original pattern (i.e., no missing one-entries).

is actually realized [3]. The resulting formulae for patter require additional mechanisms such as consolidation of the
capacity M. and network storage capacify. are useful synapses [5] and arbitrary repetition or replay of
1—pic. b mn the learning signal [1]. In section IV we will present a
M, ~ —=)*(1dpi)%In( )7 1d=)? (13)  simple model of structural plasticity, synaptic consdiica,
s p el and hippocampal training that is capable of emulating full
C =~ /\ldple In TW (14) connectivity in neocortical networks.
¢ P For the moment let us assume that emulation of full
wherepie > pimm = 1 — p is as in eq. 10. Proofs can connectivity is actually possible. Then we can est.imate
be found in [3]. We require the formulae just to discusdN€ consequences for the storage capacity of the Willshaw
the possible impact of structural plasticity and hippocamModel: If emulation of full connectivity in a diluted Willstw
pal learning by comparing the capacity of diluted to fullynetwork with connectivityp = p,. is possible then the re-

connected networks (see discussion). sulting network is equivalent to the fully connected Wilish
. _ o model where all the useless silent (0-)synapses have been
E. Willshaw model with structural plasticity eliminated. Thus, the network has only.mn synapses and

As discussed in section 1I-B, structural plasticity inaésd the capacity increases by a factbfp;.. Similarly, in an
the elimination and regeneration of synapses where the togguivalent inhibitory implementation of the Willshaw mdde
number of synapses may be kept approximately constad], [39] (with essentially inverted memory matrix), the
[19], [2], [14], [15], [16]. One potential function of strugral ~ capacity would increase by factoy (1 —pi.). This motivates
plasticity could thus be the “compression” of diluted néurathe definition of the synaptic capacity
networks by emulation of full connectivity, because, with C.
time, any possible potential synapse will actually be @eat ce o= (e T = o) (15)
For example, a diluted synaptic network with connectivity 1d pl;’ a _pk )
0 < p <1 endowed with structural plasticity could emulate ~ /\M
the fully connected Willshaw network if the numbgymn min(pe; 1 —pie)
of non-silentsynapses is not larger than the numbpetn  which gives an upper bound for the storage capacity per
of synapses that are realized at a time. However, this woutynapse in the Willshaw model with structural plasticity.

(16)



Figure 2 compares the asymptotic network capacityto IV. M ODEL OF STRUCTURAL PLASTICITY AND
the synaptic capacitg'®. While C is limited byIn 2 ~ 0.69 CORTICO-HIPPOCAMPAL INTERPLAY
bps the synaptic capacity® can become arbitrary large for

L ) Here we discuss more closely the possible interplay be-
sparse and dense connectivity with — 0 or p;. — 1.

tween a low-capacity one-shot memory system (e.g., the
hippocampus) and a high-capacity learning system requirin
extended training (e.g., the neocortex). We identify both
systems with simple associative memories as introduced
before. First we describe rather informally our ideas how
the hippocampus may implement one-shot learning and train
the high-capacity networks of neocortex. Then we propose
a simple model of structural plasticity which can easily be
analyzed. Finally we apply this model to the Willshaw asso-
ciative memory model and investigate the time requirements
for generating high capacity compressed memory networks.

[y
o

S .
C> = C/min(p,,1- . . .
(p,,1=p,) A. Cortico-hippocampal interplay

storage capacity [bits/synapse]
O P N W b O O N 0 ©

Fig. 3 illustrates our ideas how a hippocampal low ca-

B C=1d P, In(l—pl) pacity one-shot learning system (HC) may interact with a
neocortical high capacity associative learning systemiifA)

0O 01 02 03 04 05 06 07 08 09 1  order to boost the storage capacities of neural networks in
memory load p the brain. According to this scenario, neural activity inedl ¢
population U causes associated activity patterns in pdipula

Fig. 2. Asymptotic network capacity’ and synaptic capacity’s as V. This may happen through purely internal processes (i.e.,
functions of the the memory loag.. We haveC <In2 ~ 0.69 bits per  neural activity cascading through multiple processingesa

synapse forp;. = 0.5 (balanced potentiation) wher@® is minimal. I o< indicated by the lower pathway in Fig. 3) but also through
contrast,C'> can become arbitrary large for sparse potentiation ( 0) o . .
and dense potentiatiom{. — 1). external processes (e.g., activity in U may cause interasti

with the environment which can be sensed by V). Now the

How fast growsC® with the network size? Fosparse goal is to learn the causal relations between U and V in a

potentiation(p;. — 0) we obtain with eq. 10 direct way by modifying the synaptic weights and structure

of the high-capacity associative connectidrfrom U to V.

n—l1
CZ ~ —ldpi~ ld°g ~ (17) For exampleA could be identified with the memory matrix
Ak Ak of the Willshaw associative memory model (see eq. 3; see
Thus, forA\k = 1 it is actually possible to achieve the upperFig. 1).
bound eq. 2. The basic idea is that the-WV associations are stored
Similarly, for dense potentiatiofpic — 1) we obtain with  temporarily by one-shot learning in the connections fromh an
eq. 10 to HC and that HC is able to reactivate the activity patterns
n n=l of U and V in a sequence. This enables the high capacity

pre & (E—l)l/”“ =M a1 g .(18) synapses connecting U to V to slowly learn the associations
n—1I Ak o . .

oS (1 = pro) ~ 1dk . (19) by structural plasticity processes. _It is strmghtforw&yd&s—

€ € sume that one-shot Hebbian learning of the connections from
Thus, we can reach the upper bound eq. 2 also for dendad to HC is accomplished similarly to the diluted Willshaw
potentiation, for example fok = n? andd — 1. In model (see section IlI-D; see also [3]). However, we will
the regime of dense potentiation we must be more carefapt discuss here how HC stores and replays sequences of
about the convergence of the binomial approximation of thactivity patterns (e.g., see [1], [26], [41], [42] for sondeas).
error probability eq. 8: Previous analyses suggested it tOn the other hand, the slow structural plasticity processes
approximation becomes exact only for= O(logn) or k = in A could effectively implement the memory compression
O(k'/?) and would massively overestimate performance fos discussed in section llI-E by pruning and regenerating
largerk [11], [40]. However, a recent technical report showe@ynapses, thereby maintaining a constantly low connegtivi
that eq. 8 becomes exact at least for= O(n/log®n) [38] level (of perhaps 10 percent within 1mMn{20], [21]). This
which includesk = n¢ for anyd < 1. is possible since HC can repeat the activity patterns to be

In summary, the Willshaw model with structural plasticitystored and thereby providing a teacher signal for U and V.
can reach the boun@® < log, n (eq. 2) both for sparsely
and densely potentiated networks. The resulting capaciti
(in bits per synapse) for realistic network sizes are attleas Our model assumes simple binary synapses as in the
one order of magnitude larger than previously estimated féillshaw model. Since for diluted networks, a synapse can
networks having only synaptic plasticity (see discussion) be either realized or not realized, each synapse can have one

Q

B. Simple model of structural plasticity
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Fig. 3. Hypothesized interplay between a hippocampal lopacily one-shot learning system (HC) with a neocorticahtégpacity learning system (A).
Each arrow corresponds to a synaptic connection betweeméwmn populations. We assume that neural activity in @djmr U causes activity patterns
in V (through internal and/or external processes, illusttaby the lower pathway). These associations are storegoramly by one-shot learning in the
connections from and to HC. HC is able to reactivate the iagtpatterns of U and V in a sequence. By repeated reactivatfacorresponding U/V activity
patterns the information can be transferred into the hageacity “short-cut” connection A (which could be interget for example, as the memory matrix
of the Willshaw model, eq. 3). This is mainly achieved by slearning mechanisms such as ongoing structural plasticity

of three states. Potential synapses not yet realized deglcalour algorithm. During each loop the probability that the
p-synapses (cf., [2]), a real synapse with weight zero a @onsidered 1-synapse is realizedlis- (1 — 1/N)9, where
synapse, and a real consolidated synapse with weight one glis the number of newly generated synapses. & N,
synapse [5]. The basic learning algorithm of the hippocdmpthis probability can simply be approximated pyN. Since
learning system HC can be described as follows: in the first loopg = pN we have obviouslyp» = p. For
1) At the beginning, set all real synapses to 0-synapseg®) < N being the number of newly generated synapses in
2) Prune or erase a fractiop, of the remaining 0- loop s we can thus write
synapses.
3) Replace the pruned synapses by the same number of P = 1 H(l _ ) (20)
newly generated synapses located at random positions. N
4) Present all pattern associations to be learned in a
sequence. For each pair of activity patterns emplo\,()"ith
binary clipped Hebbian learning on the real synapses W _ N 21
(cf. eq. 3), i.e., a 0-synapse changes to a 1-synapse if g = b (21)
both presynaptic cell (in S) and postsynaptic cell (in 9 = pepo®!N for s> 1 (22)
R) are active.
5) GOTO step 2
Let us assume that there akepotential synapses (including
real synapses) where a fractipnof the potential synapses
is actually realized. We refer tp as the connectivity. For (s) ~ _ o (s=1) — () ooo(s—1)
example, for the Willshaw model there ake= mn potential PN PN —p N =(p=pip N (23)
synapses angimn real synapses, where: is the size of Note that this is only an approximation since we pgé")
population S and: is the size of population R. Obviously, and¢(®) as random variables while definipg®—") in eq. 20
our algorithm maintains a constant connectivity lew@nd a as a probability (i.e., eq. 23 is exact only for teepectation
constant number of real synapses for the synaptic conmectigalue E(p,*))). Nevertheless, we can insert eq. 23 in eq. 22
from S to R. The learning task is then to learn a specifiand eq. 20 and obtain finally
binary connection matrixA containing p;mn 1-synapses,
wherep; should be smaller thap. For example,A could o= p (24)
be identified with the memory matrix of the Willshaw model ) (s-1)
(eq. 3). The learning rule of step 2 in our algorithm should P ~ 1-(0-p) || =pe(p—pp ) (25)
provide the full information for constructing. For example,
for the Willshaw model all)M/ patterns to be stored should
be presented in the sequence of step 2.
An interesting question is how much time is necessary
for learning A? We will determine the probability(”)  The analysis becomes particularly simple if we asspmec
that a given 1l-synapse ol is realized afterT’ loops of p,i.e., if the 1-synapsesto be learned are only a small fracti

where po*) N is the number of real 0-synapses at the
beginning of loops which is the difference between all real
synapses and the real 1-synapses at the beginning ofsloop

g=F

!
-

= 1-1-p) [[-pelp—pp™)) . (26)
1

S



of all real synapses. Then we hawg®) ~ p, ¢ ~ p.pN
for s > 1, and therefore

() 1—(1=p)(1—pep)" "
1= (1—p)e PP,

%

(27)
(28)

p

%

where the approximation is valid for largg, i.e., many

replays of the pattern associations. We may be interested in

time T3 wherep'”s) = 3, with typically 3 ~ 1. Resolving
for T yields

1n%
Tg 1+ m (29)
14+ In(1—p) —In(—1np) ’ (30)

Pep

where the approximation is valid for — 1, since thefdn(1—
(1-8)~ —(1-0), and smallp. < 1, i.e., when structural

changes are slow compared to the repetition period of tr)€

learning system HC.

C. Application to the Willshaw model

need the generation dff 1-synapses if the cell assemblies
in population U have sizé: and the cell assemblies in
population V have sizé. Thus, we requires*’ = ~ or

B8 =~Y* . This is accomplished after time

1/kl

17
T, = 1.,.& (31)
’ In(1 = pep)
oy [y
~ 1 ) m( “) log(kl) . (32

if we again assumey; < p. For the approximation we
assume additionallp. <« 1 and~,3 =~ 1. Thus, there
appears to be only a weak dependence on assembly size
k. However, loading the memory matrix to the high-fidelity
limit p;. (see eq. 10) will cause difficulties for large
ThenT, increases not only due to increasikhgbut possibly

also due to increasing;.: for p;. — p, or equivalently

e 1d(el/n)/(Aldp), eq. 32 is no longer valid and we obtain

T, — oo (see Fig. 5). Thus, in order to keep the network
plastic we have to requine > p;.. A reasonable choice could

Figure 4 shows results from simulations and the analysEep
of the model for structural plasticity and cortico-hippogaal
interplay applied to the Willshaw associative memory model
Here the activity patterns in areas S and R are assumed to bd
binary vectors of sizes: andn each containing and! one-
entries, respectively. Then the synaptic connectidinom U
to V in Fig. 3 is realized by the binary memory matrix eq.
of the diluted Willshaw model (see section IlI-D; see alsp |
Thus, the connection realizes a fractipof the mn potential
synapses, and initially (i.e., before learning) all realayses
are 0-synapses. Now the learning goal is to makdentical
to the memory matrix of the completely connected Willshaw 1)
model (eq. 3) by a combination of Hebbian learning and
structural changes of the network.

After the first “learning-shot” theM/ pattern associations
are stored inA and in the connections between U,V, and
HC resulting in diluted memory matrices as described in
sections 1lI-B,11I-D. Then the hippocampal learning syste
HC sequentially replays th&/ pattern associations times
while the synapses id continue Hebbian learning. In each
replay epoch a fractiop. of the remaining 0-synapses are
replaced by the same number of randomly chosen potential
p-synapses, and Hebbian learning can change some of the
newly generated O-synapses to 1-synapses. If the number
pimn of 1-synapses necessary to realize the complete mem-2)
ory matrix eq. 3 is not larger than the total numbenn
of real synapses then the learning goal (constructing the
complete memory matrix) can be achieved in finite time. This
process is illustrated in Fig. 4. The simulations show that t
approximation eq. 26 is quite good for many parameter sets,
and that approximation eq. 28 becomes exact if the network
contains many more silent synapses than 1-synapses reéquire
for the memory matrix; /p — 0).

In the following we compute how much time is necessary
to have a fractiony of the M pattern association to be stored
to be completely connected. For one pattern association we

2p1.. This would decrease the synaptic capacity

y factor 2 and thus implyC(0.5) = C(0.5) = In2 for

incompressible” networks withy;. = 0.5.

n this section we have hypothesized how a hippocampal
learning system HC may train neocortical networks in order
to increase their storage capacities by several orders of

3magnitudes and, by means of structural plasticity, effebfi

3 implement a memory compression by emulating full con-

nectivity p = 1 (cf. section IlI-E). The two components that
contribute in increasing the storage capacity of inconabyet
connected networks are the following:

Structural plasticitycan serve to transform an incom-
pletely connected network into an effectively com-
pletely connected network. That means, in the incom-
pletely connected network without structural plastic-
ity the connectivity within a cell assemblies remains
incomplete (connectivity levep). In contrast, in the
model including structural plasticity and training by a
hippocampus-like structure as proposed in this section,
the cell assemblies become completely connected with
time (connectivity3 ~ 1 after time7). The effect of
this is, that a much larger number of pattern associa-
tions can be stored in a network with given size and
connections (replace < 1 by 8~ 1 in eq. 13).
Pruningor erasing functional irrelevant 0-synapses can
directly increase the storage capacity per connection
(Fig. 2). However, there is always a trade-off between
plasticity and storage capacity: In a network where
most silent synapses have been pruidédcan be very
large (see eq. 16), but learning additional patterns will
require much more time. It is reasonable to assume that
with increasing lifetime more and more 0-synapses are
pruned and therefore it becomes increasingly difficult
to learn new information. In principle, a smaller num-
ber of real 0-synapses could be compensated by faster
structural changes with largee.
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Fig. 4. Simulation of the structural plasticity model applito the Willshaw associative memory model (n=1000 neupmspopulation, assembly size
k = 10, connectivityp = 0.1, and erasing fractiop. = 0.1). a : The effective connectivity(?) (the fraction of realized 1-synapses) as a function of
number of replay epocHg for M = 2000 stored associations which corresponds to a memory load ef 0.18 in the fully connected Willshaw model.
The curves correspond to a simulation (solid) and to therthieal values according to eq. 26 (dashed) and eq. 28 (daiséd).p(T) — 1 is not possible
sincep; > p. Approximation eq. 28 is bac : Same as (a) but fol/ = 1000 and p1 = 0.095. For p; < p full effective connectivityp(™) — 1 is
possible, but the convergence is slow sipgex p. ¢ : Same as (a) but fal/ = 500 andp; = 0.049. d : Same as (a) but fok/ = 100 andp; = 0.010.
For p1 < p full effective connectivityp(T) — 1 is achieved quite fast and even approximation eq. 28 becgoes.

Fig. 5.
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The plot illustrates the dependenceTdf (black) on the cell assembly siZze T, is number of replay epochs that is necessary for having a
fraction y of the M stored associations completely learned. The plot sHbywss computed by eq. 26 and™s) =3 using g = 71/13 (solid) and the
approximation eq. 32 (dash-dotted) far= 10° neurons per population, high-fidelity parameter= 0.01, network connectivityp = 0.1, and structural
plasticity where in each replay epoch a fractign= 0.1 of the silent synapses are replackdft panel corresponds to fault tolerance with= 0.5, right
panel toA = 0.1. T’ is relatively small and eq. 32 approximates well for sniglbut 7', diverges forp; — p = 0.1. The gray curves are high-fidelity
matrix loadp.. (dashed), pattern capacify/ (solid medium), storage capacity. (solid thick), and compression capacifyt® (dash-dotted).



V. DISCUSSION store at mostM < 46040 patterns orC < 0.17 bits per

In this report we have investigated the information storagS crt}\?irt);e(l,f V:Vh?? 4r§ ;rri iaitg?:nz eseh(é:lsd ;lgvle‘l.asgélit:\;sb{s]r;lgh

capacity of structural plasticity [19], [2] in combination . . T
with synaptic consolidation [5] and hippocampal trainirfg 0In comparison, emulating complete connectivity by struaitu

cortical networks [1]. In section Il we have computed Simplgzi?ig;y |€ﬁrjg)p2;?,'n§of£0ttﬁg acllgplggf,th ileggggf)zs
upper bounds for the amou_nt of i.nformation (in bits pe ssociations orC® > 3.14 bits per synapsg where the
synapse) that can be stored in cortical networks by Synap@%tterns should be v_ery sparse (elg= 17 or evenk < 5:
plasticity and structural plasticity, respectively. Susmgly, ¥ o

the upper bounds suggest that the total synaptic storaﬁ%e table 3 in [3]). Thus, a neocortical network trained key th

capacity of cortical networks may actually be dominated b%lppocampus and capable of structural changes as suggested
- . . . : y our model could store about factor 200 more pattern
structural plasticity, which has gained only little attentso

far associations and still about factor 20 more information per

Then we showed in section Il that the upper boun
for structural plasticity (eq. 2) can actually be reached by
simple models of synaptic networks. In particular, we shebwe 0
for the Willshaw network model [10], [11] that in certain
parameter regimes the storage capa€ify ~ logn (in bits  [2]
per synapse) can grow logarithmic with the neuron number if
structural changes during learning are possible, for examp (3
the elimination of useless or silent synapses. In conttiast,
storage capacity of static networks is limited 6y < 0.72
bps [13].

Formally speaking, our analysis of the Willshaw model
implies two separate phases of operation. In the first phasé":;]
information is stored by Hebbian learning in a fully con- g
nected static network. Structural plasticity occurs thethie

(4

8hysically realized synapse.
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