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Improving the storage capacity of neocortical associative networks
by structural plasticity and hippocampal training

Andreas Knoblauch, Marc-Oliver Gewaltig, Rüdiger Kupper, Ursula Körner, Edgar Körner

Abstract— In this work we analyze how structural processes
and synaptic consolidation during hippocampal training can
improve the performance of neocortical associative networks by
emulating full (or increased) synaptic connectivity. In our model
the hippocampus can store a set of activity patterns by one-
shot learning. Then the hippocampus trains the neocortex by
repeatedly replaying the patterns in a sequence. The synapses of
the neocortical network are consolidated depending on Hebbian
learning. In each time step a fraction of the unconsolidated
synapses are removed and replaced by the same number
of new synapses at random locations thereby maintaining
total connectivity. We show that this procedure can massively
increase the synaptic capacity of a cortical macrocolumn (factor
10-20 or even up to factor 200 for pattern capacity). In a second
step we analyze the model with respect to the time (or number
of repetitions) necessary to increase effective connectivity from
base level to a desired level. The analysis shows that acceptable
training time requires a certain fraction of unconsolidated
synapses to keep the network plastic.

I. I NTRODUCTION

The hippocampal formation plays a crucial role in orga-
nizing cortical long-term memory. It is believed that the
hippocampus is able of fast (one-shot) learning of new
episodic information followed by extensive time periods
where corresponding neocortical representations are trained
and “compressed” [1]. Here, compression usually refers
to processes such as chunking spatially and temporally
distributed activity patterns. We take the complementary
approach and optimize the synaptic network by structural
plasticity, e.g., replacing unused synapses, thereby making
full use of the potential connectivity [2].

We apply the frameworks of structural plasticity and
hippocampus-induced learning to the training of neocorti-
cal associative networks [3]. Associative networks such as
the Hopfield or Willshaw model are at the heart of many
cortex theories and have been analyzed for a long time
with respect to information storage capacity and plausible
retrieval strategies [3], [4]. For example, it is well known
that a completely connected network can store about 0.7 bits
per synapse. However, for incompletely connected networks
the capacity per synapse can be massively reduced or even
vanish, depending on the retrieval algorithm [4].
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In this work we analyze how structural processes and
synaptic consolidation [5] during hippocampal training can
improve the performance of neocortical associative networks
by emulating full (or increased) synaptic connectivity. Inour
model the hippocampus can store a set of activity patterns
by one-shot learning. Then the hippocampus trains the neo-
cortex by repeatedly replaying the patterns in a sequence.
The synapses of the neocortical network are consolidated
depending on Hebbian learning. In each time step a fraction
of the unconsolidated synapses are removed and replaced
by the same number of new synapses at random locations
thereby maintaining total connectivity. We show that this
procedure can massively increase the synaptic capacity of
a cortical macrocolumn (factor 10-20 or even up to factor
200 for pattern capacity). In a second step we analyze the
model with respect to the time (or number of repetitions)
necessary to increase effective connectivity from base level
to a desired level. The analysis shows that acceptable training
time requires a certain fraction of unconsolidated synapses
to keep the network plastic.

II. H OW MUCH INFORMATION CAN A SYNAPSE STORE?

A. Synaptic (state) plasticity

Here we develop upper bounds on the amount of infor-
mation a single synapse can store. We can think of two
components that contribute to the total synaptic storage ca-
pacity. First, information can be stored in the state properties
of a given synapse. The state of a synapse may include
synaptic strength (i.e., the amplitude of the postsynaptic
potential), synaptic delay (i.e., the time difference between
the presynaptic spike and the postsynaptic potential), butalso
the postsynaptic composition of receptors. From information
theory [6], [7] we then know that the capacityCstate of
a synapse due to plasticity of its state cannot exceed the
following bound,

Cstate ≤ log2(#synaptic states) . (1)

This suggests that we can potentially store unlimited infor-
mation per synapse, for example if the synaptic weight is
real-valued. However, real synapses are subject to noise as
well as a number of adaptation mechanisms which suggest
that real synapses may have a rather small number of func-
tionally distinctive states (perhaps on the order of 10 or even
binary [8]). Similarly, technical implementations on digital
computers have typically only a limited numerical precision
for representing a synaptic state (e.g., 8 bits for weights
between 0 and 255). Furthermore, numerical experiments
for various network models show that increasing numerical



precision does not necessarily lead to an increase in per-
formance [9]. Another well-known fact is that associative
networks with binary synapses can store almost the same or
even more information per synapse (0.69 bits per synapse
[10], [11]) than comparable models with gradual synapses
(0.14 bps [12] or at most0.72 bps [13]). In all these cases
the bound of eq. 1 cannot be achieved because of algorithmic
limitations of the network implementations. Thus, it seems
reasonable to assume that the state capacity is bounded by a
relatively small value (of perhaps 0.1-1bps)

B. Structural (location) plasticity

Structural plasticity provides a complementary way to
store information in a neural network. This includes pro-
cesses such as the generation of new synapses and the
elimination of unused (silent) synapses as well as dendritic
and axonal growth and remodeling which is now considered
a regular physiological feature of adult brains [14], [15],
[16]. Structural plasticity appears to be the solution of the
brain for the impossibility to establish a fully connected
network as commonly employed by artifical neural networks.
Actually, the number or density of functional (i.e., non-silent)
synapses seems to be the very bottleneck of the brain, both
for anatomical and metabolic reasons [17]. In particular,
the number of synapses per cortical volume is remarkably
constant over different species [18].

Think of a new synapse that is generated by a neuron.
The amount of storable (location) information is determined
by the number of potential target locations, i.e., by all the
target cell dendrites that the neuron’s axon can reach. Thus,
similarly as before, the capacityCloc of a synapse due to
structural plasticity plasticity cannot exceed the bound

Cloc ≤ log2(#potential locations) . (2)

Again the precise location of a synapse on a dendrite may
be real-valued and thus our bound unlimited. However, it
is usually assumed that the number of functionally relevant
target locations on a dendritic tree is rather small. For exam-
ple, one could divide a neuron into a relatively small number
(10-1000) of iso-potential compartments [19], or even more
conservatively, simply count the number of potential target
cells [2], [3].

Thus the decisive question is how many cells can be
targeted by a typical cortical neuron? The typical view is
that a cortical neuron is connected to about 10 percent of
its neighbors within a cubic-millimeter of cortex containing
about 100000 potential target cells [20], [21]. This would
correspond to an upper boundCloc ≤ log2 100000 ≈ 17bps.
From the 100000 cells in 1mm3 cortex only about 30 percent
are potential targets forfaststructural processes (minute time
scale) such as dendritic spine growth and retraction [2], [3]
which corresponds to a boundCstate ≤ log2 30000 ≈ 15bps.
Clearly the final answer to our question depends on the
considered time scale of structural plasticity. For example,
if we allow a larger time window of days or even months
the much slower structural processes involving dendritic and
axonal growth may become important. Then potential targets

may lie in the whole sphere containing the neuron’s axonal
tree, i.e., in a much larger range than 1mm3. Thus, it seems
reasonable to assume that the location capacity is bounded
by perhaps 15-20bps.

The surprising result is that the total synaptic capacity may
actually be dominated by structural plasticity with capacities
more than one order of magnitude larger than obtained for the
more commonly investigated synaptic plasticity. However,
this conclusion assumes that the upper bound eq. 2 could
actually be reached by a neural network realization. This
assumption is not obviously true as shown by the negative ex-
ample for the state capacity mentioned above: The Hopfield
model is actually algorithmically unable to exploit the high
potential capacity of gradual-valued synapses. In contrast, we
will show here that even simpler associative networks with
binary synapses are actually able to exploit the potential of
location capacity,i.e., for a target population ofn neurons we
can indeed achieveC ≈ log2 n.

III. H OW MUCH INFORMATION CAN A SYNAPTIC

NETWORK STORE?

A. Neural associative networks

Here we fix our ideas about the storage capacity of
structural plasticity to a concrete model of neural asso-
ciative memory. Neural associative memory networks and
cell assemblies play a prominent role in virtually any brain
theory, in particular concerning neocortex and hippocampus
(e.g., [10], [22], [23], [24], [12], [25], [18], [26], [27],[28],
[29]). The main assumptions are that functionally relevant
entities (e.g., objects) are represented by distributed activity
patterns, that these activity patterns can be stored in the local
recurrent (auto-associative) connections by Hebbian learning,
thereby constituting local cell assemblies (defined as the
active neurons of an activity pattern), and that cell assemblies
at different cortical locations are linked by hetero-associative
Hebbian learned synaptic connections.

Formally speaking,associative memoriesare systems that
contain information about a finite set of associations between
pairs of address and content patterns{(uµ → v

µ) : µ =
1, ..., M}. A typically noisy address patterñu can be used to
retrieve an associated content patternv̂ which ideally equals
the content patternvµ associated to the most similar address
patternu

µ. This is a variant of theBest Match Problemin
[30], and efficient solutions of have widespread applications,
e.g. for cluster analysis, speech and object recognition, or
information retrieval in large databases [31], [32], [33],[34],
[35].

In neural implementationsof associative memory the
information about the associations is stored in the synaptic
connectivity of one or more neuron populations. From the
technical perspective, neural implementations can be ad-
vantageous over hash-tables or simple look-up-tables if the
number of patterns is large, if parallel implementation is
possible, or if fault-tolerance is required, i.e. if the address
patterns ũ

µ may differ in unpredictable ways from the



original patternsuµ used for storing the associations (but
see [36]).

B. The Willshaw model

An attractive model of neural associative memory both
for biological modeling and technical applications is the so-
called Willshaw or Steinbuch model with binary neurons and
synapses [10], [37], [11], [13] illustrated in Fig. 1. Each
address patternuµ is a binary vector of lengthm containing
k one-entries andm − k zero-entries. Similarly, each target
patternv

µ is a binary vector of lengthn containingl one-
entries andn − l zero-entries. Typically, the patterns are
sparse, i.e.,k ≪ m and l ≪ n.

The M pattern pairs are storedhetero-associativelyin a
binary memory matrixA ∈ {0, 1}n×m, where

Aij = min

(

1,

M
∑

µ=1

uµ
i · vµ

j

)

∈ {0, 1} . (3)

The neural interpretationis that of two neuron populations,
an address populationu consisting of m neurons and a
target populationv consisting ofn neurons. The patternsuµ

and v
µ describe the activity states of the two populations

at time µ, and Aij is the strength of the Hebbian learned
synaptic connection from neuronui to neuronvj . Note that
for the auto-associative caseu = v (i.e., if address and target
populations are identical), the network can be interpretedas
an undirected graph withm = n nodes and edge matrixA
where patterns correspond to cliques ofk = l nodes.

An important variable for estimating the performance of
the Willshaw model is the matrix or memory loadp1 which
is the fraction of one-entries in the memory matrixA.
Obviously the memory loadp1 is an increasing function of
the pattern numberM and can be computed as follows: The
probability that a given synapse isnot set by the association
of one pattern pair is1− kl/mn, therefore after learningM
pattern associations,

p1 = 1 −

(

1 −
kl

mn

)M

≈ 1 − e−Mkl/mn, (4)

M =
ln(1 − p1)

ln(1 − kl/mn)
≈ −

mn

kl
ln(1 − p1), (5)

where the approximation is valid forkl ≪ mn.
After learning, the stored information can be retrieved

applying an address patterñu. Vector-matrix-multiplication
yields the neural potentialsx = ũ·A of the target population,
and imposing a thresholdΘ gives the (one-step) retrieval
result v̂,

v̂j =

{

1 , xj = (
∑m

i=1 ũiAij) ≥ Θ
0 , otherwise

. (6)

ChoosingΘ =
∑m

i=1 ũi will be referred to as theWillshaw
thresholdand ensures that the retrieval resultv̂µ includes all
active units of the original content patternvµ, plus possibly
add-noise (i.e., false one-entries). More exactly, if the address
patternũ contains a fractionλk of the one-entries ofuµ, then

a zero-entry invµ will become a “false” one in̂v with the
error probability

p01 =

λk
∑

s=0

(−1)s

(

λk

s

)

(1 −
l

n
(1 −

(

m−k
s

)

(

m
s

) ))M−1 (7)

≈ p1
λk. (8)

For the exact formula see [3]. In the following we use the
binomial approximation eq. 8 which assumes independently
generated one-entries in the memory matrix. Although this is
obviously not true, the approximation is very useful for our
analysis and still sufficiently good for many parameters, for
example sufficiently sparse patterns withk = O(n2/ logn)
(see [38]).

C. The storage capacity of the Willshaw model

Obviously, if we store more and more patterns the memory
load approachesp1 → 1 and the error probabilityp01

becomes unacceptable. In order to compute the maximal
possible memory loadp1ǫ and the maximal number of
storable patternsMǫ we bound the error probabilityp01 by
p01ǫ,

p01 ≤ p01ǫ :=
ǫl

n − l
, (9)

where we callǫ > 0 the fidelity parameter. For example,
ǫ = 0.01 means that the add-errors in the retrieval resultv̂
is at most one percent of the content pattern activityl. Or
equivalently, the expected Hamming distance betweenv̂ and
vµ is at mostǫl. With the approximation eq. 8 we obtain
the maximal memory loadp1ǫ and the corresponding pattern
capacityMǫ,

p1ǫ ≈

(

ǫl

n − l

)
1

λ·k

(

⇔ k ≈
ld ǫl

n−l

λldp1ǫ

)

, (10)

Mǫ ≈ −λ2(ldp1ǫ)
2 ln(1 − p1ǫ)

k

l

mn

(ldn−l
ǫ·l )2

. (11)

If ǫ is sufficiently small the totally stored information is
MnI(l/n) ≈ −Mlld(l/n), where I(p) := −pld(p) −
(1 − p)ld(1 − p) is the Shannon information of a binary
random variable with probabilityp. Dividing by the number
of synapsesmn we obtain the normalized network storage
capacityCǫ in bits per synapse,

Cǫ ≈ λldp1ǫ ln(1 − p1ǫ)η (12)

where η ≈ (1 + ln ǫ
ln(l/n) )

−1 → 1 for l/n → 0. Thus, for
p1ǫ = 0.5 and logarithmick ∼ log n (eq. 10) we obtain the
well-known storage capacityC = ln 2 ≈ 0.69 bps of the
Willshaw model.

D. Diluted Willshaw networks

The analysis so far is valid for fully connected networks,
i.e., where each pair of a address neuron and content neuron
is actually connected by a binary synapse. The analysis can
be generalized to diluted networks with connectivityp < 1,
i.e., where only a fractionpmn of themn potential synapses
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Fig. 1. Working principle of the binary Willshaw model (for hetero-association).Left: During the learning phaseM associations between address patterns
u

µ and content patternsvµ are stored in the binary memory matrixA representing binary synaptic weights of the connection from address population
u to content populationv. Initially all synapses are inactive. During learning of pattern associations, the synapses are activated according to Hebbian
coincidence learning (eq. 3).Right: For retrieval an address patterñu is propagated through the network. Vector-matrix-multiplication yields the membrane
potentialsx = ũA. To obtain the retrieval result̂v (here equal tov1) a thresholdΘ is applied. For pattern part retrieval,̃u ⊆ u

µ we can simply choose
the Willshaw thresholdΘ = |ũ| yielding a superset̂v ⊇ vµ of the original pattern (i.e., no missing one-entries).

is actually realized [3]. The resulting formulae for pattern
capacityMǫ and network storage capacityCǫ are

Mǫ ≈ −λ2(ldp1ǫ)
2 ln(

1 − p1ǫ

p
)
k

l

mn

(ld n
ǫ·l )

2
(13)

Cǫ ≈ λ
ldp1ǫ ln 1−p1ǫ

p

p
η (14)

where p1ǫ ≥ p1,min := 1 − p is as in eq. 10. Proofs can
be found in [3]. We require the formulae just to discuss
the possible impact of structural plasticity and hippocam-
pal learning by comparing the capacity of diluted to fully
connected networks (see discussion).

E. Willshaw model with structural plasticity

As discussed in section II-B, structural plasticity includes
the elimination and regeneration of synapses where the total
number of synapses may be kept approximately constant
[19], [2], [14], [15], [16]. One potential function of structural
plasticity could thus be the “compression” of diluted neural
networks by emulation of full connectivity, because, with
time, any possible potential synapse will actually be created.
For example, a diluted synaptic network with connectivity
0 < p ≤ 1 endowed with structural plasticity could emulate
the fully connected Willshaw network if the numberp1mn
of non-silentsynapses is not larger than the numberpmn
of synapses that are realized at a time. However, this would

require additional mechanisms such as consolidation of the
useful synapses [5] and arbitrary repetition or replay of
the learning signal [1]. In section IV we will present a
simple model of structural plasticity, synaptic consolidation,
and hippocampal training that is capable of emulating full
connectivity in neocortical networks.

For the moment let us assume that emulation of full
connectivity is actually possible. Then we can estimate
the consequences for the storage capacity of the Willshaw
model: If emulation of full connectivity in a diluted Willshaw
network with connectivityp = p1ǫ is possible then the re-
sulting network is equivalent to the fully connected Willshaw
model where all the useless silent (0-)synapses have been
eliminated. Thus, the network has onlyp1ǫmn synapses and
the capacity increases by a factor1/p1ǫ. Similarly, in an
equivalent inhibitory implementation of the Willshaw model
[3], [39] (with essentially inverted memory matrix), the
capacity would increase by factor1/(1−p1ǫ). This motivates
the definition of the synaptic capacity

CS
ǫ :=

Cǫ

min(p1ǫ, 1 − p1ǫ)
(15)

≈ λ
ldp1ǫ ln(1 − p1ǫ)

min(p1ǫ, 1 − p1ǫ)
η (16)

which gives an upper bound for the storage capacity per
synapse in the Willshaw model with structural plasticity.



Figure 2 compares the asymptotic network capacityC to
the synaptic capacityCS . While C is limited by ln 2 ≈ 0.69
bps the synaptic capacityCS can become arbitrary large for
sparse and dense connectivity withp1ǫ → 0 or p1ǫ → 1.
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Fig. 2. Asymptotic network capacityC and synaptic capacityCS as
functions of the the memory loadp1ǫ. We haveC ≤ ln 2 ≈ 0.69 bits per
synapse forp1ǫ = 0.5 (balanced potentiation) whereCS is minimal. In
contrast,CS can become arbitrary large for sparse potentiation (p1ǫ → 0)
and dense potentiation (p1ǫ → 1).

How fast growsCS with the network size? Forsparse
potentiation(p1ǫ → 0) we obtain with eq. 10

CS
ǫ ≈ −ldp1ǫ ≈

ldn−l
ǫl

λk
≈

ldn

λk
(17)

Thus, forλk = 1 it is actually possible to achieve the upper
bound eq. 2.

Similarly, for dense potentiation(p1ǫ → 1) we obtain with
eq. 10

p1ǫ ≈ (
ǫl

n − l
)1/λk = e

ln(ǫl/(n−l))
λk ≈ 1 −

ln n−l
ǫl

λk
, (18)

CS
ǫ ≈ −ld(1 − p1ǫ) ≈ ldk . (19)

Thus, we can reach the upper bound eq. 2 also for dense
potentiation, for example fork = nd and d → 1. In
the regime of dense potentiation we must be more careful
about the convergence of the binomial approximation of the
error probability eq. 8: Previous analyses suggested that this
approximation becomes exact only fork = O(log n) or k =
O(k1/3) and would massively overestimate performance for
largerk [11], [40]. However, a recent technical report showed
that eq. 8 becomes exact at least fork = O(n/ log3 n) [38]
which includesk = nd for any d < 1.

In summary, the Willshaw model with structural plasticity
can reach the boundCS ≤ log2 n (eq. 2) both for sparsely
and densely potentiated networks. The resulting capacities
(in bits per synapse) for realistic network sizes are at least
one order of magnitude larger than previously estimated for
networks having only synaptic plasticity (see discussion).

IV. M ODEL OF STRUCTURAL PLASTICITY AND

CORTICO-HIPPOCAMPAL INTERPLAY

Here we discuss more closely the possible interplay be-
tween a low-capacity one-shot memory system (e.g., the
hippocampus) and a high-capacity learning system requiring
extended training (e.g., the neocortex). We identify both
systems with simple associative memories as introduced
before. First we describe rather informally our ideas how
the hippocampus may implement one-shot learning and train
the high-capacity networks of neocortex. Then we propose
a simple model of structural plasticity which can easily be
analyzed. Finally we apply this model to the Willshaw asso-
ciative memory model and investigate the time requirements
for generating high capacity compressed memory networks.

A. Cortico-hippocampal interplay

Fig. 3 illustrates our ideas how a hippocampal low ca-
pacity one-shot learning system (HC) may interact with a
neocortical high capacity associative learning system (A)in
order to boost the storage capacities of neural networks in
the brain. According to this scenario, neural activity in a cell
population U causes associated activity patterns in population
V. This may happen through purely internal processes (i.e.,
neural activity cascading through multiple processing stages
as indicated by the lower pathway in Fig. 3) but also through
external processes (e.g., activity in U may cause interactions
with the environment which can be sensed by V). Now the
goal is to learn the causal relations between U and V in a
direct way by modifying the synaptic weights and structure
of the high-capacity associative connectionA from U to V.
For example,A could be identified with the memory matrix
of the Willshaw associative memory model (see eq. 3; see
Fig. 1).

The basic idea is that the U→V associations are stored
temporarily by one-shot learning in the connections from and
to HC and that HC is able to reactivate the activity patterns
of U and V in a sequence. This enables the high capacity
synapses connecting U to V to slowly learn the associations
by structural plasticity processes. It is straightforwardto as-
sume that one-shot Hebbian learning of the connections from
and to HC is accomplished similarly to the diluted Willshaw
model (see section III-D; see also [3]). However, we will
not discuss here how HC stores and replays sequences of
activity patterns (e.g., see [1], [26], [41], [42] for some ideas).
On the other hand, the slow structural plasticity processes
in A could effectively implement the memory compression
as discussed in section III-E by pruning and regenerating
synapses, thereby maintaining a constantly low connectivity
level (of perhaps 10 percent within 1mm3, [20], [21]). This
is possible since HC can repeat the activity patterns to be
stored and thereby providing a teacher signal for U and V.

B. Simple model of structural plasticity

Our model assumes simple binary synapses as in the
Willshaw model. Since for diluted networks, a synapse can
be either realized or not realized, each synapse can have one
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Fig. 3. Hypothesized interplay between a hippocampal low capacity one-shot learning system (HC) with a neocortical high capacity learning system (A).
Each arrow corresponds to a synaptic connection between twoneuron populations. We assume that neural activity in population U causes activity patterns
in V (through internal and/or external processes, illustrated by the lower pathway). These associations are stored temporarily by one-shot learning in the
connections from and to HC. HC is able to reactivate the activity patterns of U and V in a sequence. By repeated reactivation of corresponding U/V activity
patterns the information can be transferred into the high-capacity “short-cut” connection A (which could be interpreted, for example, as the memory matrix
of the Willshaw model, eq. 3). This is mainly achieved by slowlearning mechanisms such as ongoing structural plasticity.

of three states. Potential synapses not yet realized are called
p-synapses (cf., [2]), a real synapse with weight zero a 0-
synapse, and a real consolidated synapse with weight one a 1-
synapse [5]. The basic learning algorithm of the hippocampal
learning system HC can be described as follows:

1) At the beginning, set all real synapses to 0-synapses.
2) Prune or erase a fractionpe of the remaining 0-

synapses.
3) Replace the pruned synapses by the same number of

newly generated synapses located at random positions.
4) Present all pattern associations to be learned in a

sequence. For each pair of activity patterns employ
binary clipped Hebbian learning on the real synapses
(cf. eq. 3), i.e., a 0-synapse changes to a 1-synapse if
both presynaptic cell (in S) and postsynaptic cell (in
R) are active.

5) GOTO step 2
Let us assume that there areN potential synapses (including
real synapses) where a fractionp of the potential synapses
is actually realized. We refer top as the connectivity. For
example, for the Willshaw model there areN = mn potential
synapses andpmn real synapses, wherem is the size of
population S andn is the size of population R. Obviously,
our algorithm maintains a constant connectivity levelp and a
constant number of real synapses for the synaptic connection
from S to R. The learning task is then to learn a specific
binary connection matrixA containingp1mn 1-synapses,
wherep1 should be smaller thanp. For example,A could
be identified with the memory matrix of the Willshaw model
(eq. 3). The learning rule of step 2 in our algorithm should
provide the full information for constructingA. For example,
for the Willshaw model allM patterns to be stored should
be presented in the sequence of step 2.

An interesting question is how much time is necessary
for learning A? We will determine the probabilityp(T )

that a given 1-synapse ofA is realized afterT loops of

our algorithm. During each loop the probability that the
considered 1-synapse is realized is1 − (1 − 1/N)g, where
g is the number of newly generated synapses. Forg ≪ N ,
this probability can simply be approximated byg/N . Since
in the first loopg = pN we have obviouslyp(1) = p. For
g(s) ≪ N being the number of newly generated synapses in
loop s we can thus write

p(T ) = 1 −
T
∏

s=1

(1 −
g(s)

N
) (20)

with

g(1) = pN (21)

g(s) = pep0
(s)N for s > 1 (22)

where p0
(s)N is the number of real 0-synapses at the

beginning of loops which is the difference between all real
synapses and the real 1-synapses at the beginning of loops,

p0
(s)N ≈ pN − p(s−1)p1N = (p − p1p

(s−1))N .(23)

Note that this is only an approximation since we usep0
(s)

andg(s) as random variables while definingp(s−1) in eq. 20
as a probability (i.e., eq. 23 is exact only for theexpectation
valueE(p0

(s))). Nevertheless, we can insert eq. 23 in eq. 22
and eq. 20 and obtain finally

p(1) = p (24)

p(T ) ≈ 1 − (1 − p)
T
∏

s=2

(1 − pe(p − p1p
(s−1))) (25)

= 1 − (1 − p)
T−1
∏

s=1

(1 − pe(p − p1p
(s))) . (26)

The analysis becomes particularly simple if we assumep1 ≪
p, i.e., if the 1-synapses to be learned are only a small fraction



of all real synapses. Then we havep0
(s) ≈ p, g(s) ≈ pepN

for s > 1, and therefore

p(T ) ≈ 1 − (1 − p)(1 − pep)T−1 (27)

≈ 1 − (1 − p)e−pep(T−1) , (28)

where the approximation is valid for largeT , i.e., many
replays of the pattern associations. We may be interested in
time Tβ wherep(Tβ) = β, with typically β ≈ 1. Resolving
for Tβ yields

Tβ = 1 +
ln 1−β

1−p

ln(1 − pep)
(29)

≈ 1 +
ln(1 − p) − ln(− lnβ)

pep
, (30)

where the approximation is valid forβ → 1, since thenln(1−
(1− β) ≈ −(1− β), and smallpe ≪ 1, i.e., when structural
changes are slow compared to the repetition period of the
learning system HC.

C. Application to the Willshaw model

Figure 4 shows results from simulations and the analysis
of the model for structural plasticity and cortico-hippocampal
interplay applied to the Willshaw associative memory model.
Here the activity patterns in areas S and R are assumed to be
binary vectors of sizesm andn each containingk andl one-
entries, respectively. Then the synaptic connectionA from U
to V in Fig. 3 is realized by the binary memory matrix eq. 3
of the diluted Willshaw model (see section III-D; see also [3])
Thus, the connection realizes a fractionp of themn potential
synapses, and initially (i.e., before learning) all real synapses
are 0-synapses. Now the learning goal is to makeA identical
to the memory matrix of the completely connected Willshaw
model (eq. 3) by a combination of Hebbian learning and
structural changes of the network.

After the first “learning-shot” theM pattern associations
are stored inA and in the connections between U,V, and
HC resulting in diluted memory matrices as described in
sections III-B,III-D. Then the hippocampal learning system
HC sequentially replays theM pattern associationsT times
while the synapses inA continue Hebbian learning. In each
replay epoch a fractionpe of the remaining 0-synapses are
replaced by the same number of randomly chosen potential
p-synapses, and Hebbian learning can change some of the
newly generated 0-synapses to 1-synapses. If the number
p1mn of 1-synapses necessary to realize the complete mem-
ory matrix eq. 3 is not larger than the total numberpmn
of real synapses then the learning goal (constructing the
complete memory matrix) can be achieved in finite time. This
process is illustrated in Fig. 4. The simulations show that the
approximation eq. 26 is quite good for many parameter sets,
and that approximation eq. 28 becomes exact if the network
contains many more silent synapses than 1-synapses required
for the memory matrix (p1/p → 0).

In the following we compute how much time is necessary
to have a fractionγ of theM pattern association to be stored
to be completely connected. For one pattern association we

need the generation ofkl 1-synapses if the cell assemblies
in population U have sizek and the cell assemblies in
population V have sizel. Thus, we requireβkl = γ or
β = γ1/kl. This is accomplished after time

Tγ = 1 +
ln 1−γ1/kl

1−p

ln(1 − pep)
(31)

≈ 1 +
ln(1 − p) − ln

(

− ln γ
kl

)

pep
∼ log(kl) , (32)

if we again assumep1 ≪ p. For the approximation we
assume additionallype ≪ 1 and γ, β ≈ 1. Thus, there
appears to be only a weak dependence on assembly size
k. However, loading the memory matrix to the high-fidelity
limit p1ǫ (see eq. 10) will cause difficulties for largek.
ThenTγ increases not only due to increasingk, but possibly
also due to increasingp1ǫ: for p1ǫ → p, or equivalently
k → ld(ǫl/n)/(λldp), eq. 32 is no longer valid and we obtain
Tγ → ∞ (see Fig. 5). Thus, in order to keep the network
plastic we have to requirep > p1ǫ. A reasonable choice could
be p = 2p1ǫ. This would decrease the synaptic capacityCS

by factor 2 and thus implyC(0.5) = CS(0.5) = ln 2 for
“incompressible” networks withp1ǫ = 0.5.

In this section we have hypothesized how a hippocampal
learning system HC may train neocortical networks in order
to increase their storage capacities by several orders of
magnitudes and, by means of structural plasticity, effectively
implement a memory compression by emulating full con-
nectivity p = 1 (cf. section III-E). The two components that
contribute in increasing the storage capacity of incompletely
connected networks are the following:

1) Structural plasticitycan serve to transform an incom-
pletely connected network into an effectively com-
pletely connected network. That means, in the incom-
pletely connected network without structural plastic-
ity the connectivity within a cell assemblies remains
incomplete (connectivity levelp). In contrast, in the
model including structural plasticity and training by a
hippocampus-like structure as proposed in this section,
the cell assemblies become completely connected with
time (connectivityβ ≈ 1 after timeTβ). The effect of
this is, that a much larger number of pattern associa-
tions can be stored in a network with given size and
connections (replacep ≪ 1 by β ≈ 1 in eq. 13).

2) Pruningor erasing functional irrelevant 0-synapses can
directly increase the storage capacity per connection
(Fig. 2). However, there is always a trade-off between
plasticity and storage capacity: In a network where
most silent synapses have been pruned,CS can be very
large (see eq. 16), but learning additional patterns will
require much more time. It is reasonable to assume that
with increasing lifetime more and more 0-synapses are
pruned and therefore it becomes increasingly difficult
to learn new information. In principle, a smaller num-
ber of real 0-synapses could be compensated by faster
structural changes with largerpe.
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Fig. 4. Simulation of the structural plasticity model applied to the Willshaw associative memory model (n=1000 neuronsper population, assembly size
k = 10, connectivityp = 0.1, and erasing fractionpe = 0.1). a : The effective connectivityp(T ) (the fraction of realized 1-synapses) as a function of
number of replay epochsT for M = 2000 stored associations which corresponds to a memory load ofp1 = 0.18 in the fully connected Willshaw model.
The curves correspond to a simulation (solid) and to the theoretical values according to eq. 26 (dashed) and eq. 28 (dash-dotted).p(T ) → 1 is not possible
sincep1 > p. Approximation eq. 28 is bad.b : Same as (a) but forM = 1000 and p1 = 0.095. For p1 ≤ p full effective connectivityp(T ) → 1 is
possible, but the convergence is slow sincep1 ≈ p. c : Same as (a) but forM = 500 andp1 = 0.049. d : Same as (a) but forM = 100 andp1 = 0.010.
For p1 ≪ p full effective connectivityp(T ) → 1 is achieved quite fast and even approximation eq. 28 becomesgood.
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V. D ISCUSSION

In this report we have investigated the information storage
capacity of structural plasticity [19], [2] in combination
with synaptic consolidation [5] and hippocampal training of
cortical networks [1]. In section II we have computed simple
upper bounds for the amount of information (in bits per
synapse) that can be stored in cortical networks by synaptic
plasticity and structural plasticity, respectively. Surprisingly,
the upper bounds suggest that the total synaptic storage
capacity of cortical networks may actually be dominated by
structural plasticity, which has gained only little attention so
far.

Then we showed in section III that the upper bound
for structural plasticity (eq. 2) can actually be reached by
simple models of synaptic networks. In particular, we showed
for the Willshaw network model [10], [11] that in certain
parameter regimes the storage capacityCS ∼ log n (in bits
per synapse) can grow logarithmic with the neuron number if
structural changes during learning are possible, for example
the elimination of useless or silent synapses. In contrast,the
storage capacity of static networks is limited byC ≤ 0.72
bps [13].

Formally speaking, our analysis of the Willshaw model
implies two separate phases of operation. In the first phase,
information is stored by Hebbian learning in a fully con-
nected static network. Structural plasticity occurs then in the
second phase where the useless synapses are eliminated and
thus the synaptic network gets compressed (see also [43],
[36], [3]). In particular the assumption of fully connected
networks during learning is unrealistic, both for biology
and for VLSI implementations. Therefore, we developed in
section IV a more realistic model of cortico-hippocampal
interactions where Hebbian learning and structural plasticity
occur simultaneously thereby maintaining a constant low
level p of connectivity. In this model, the hippocampal
learning system is capable of one-shot learning in diluted
networks, but has only a relatively low storage capacity.
By sequentially replaying the pattern information acquired
by one-shot learning, the hippocampal system can train
neocortical networks thereby boosting the storage capacity of
neocortex. The hippocampal replay would be accompanied
by ongoing structural changes such as pruning and regener-
ation of silent synapses. This procedure enables the limited
number of synapses to “find their right places” where they
can contribute most effectively to information storage. This
way, even sparsely connected cortical networks can develop
with time the same functional connectivity as fully connected
networks.

Thus, our results imply the hypothesis that one function of
structural plasticity may be to compensate for an incomplete
network connectivity (cf. [19], [2]). This emulation of com-
plete connectivity can massively increase the storage capacity
of a typical cortical macrocolumn (corresponding to about
1mm3 cortex containing aboutn = 100000 neurons each
having about10000 synapses [20], [21]). By learning in the
incomplete static network (p = 0.1) the macrocolumn can

store at mostM ≤ 46040 patterns orC ≤ 0.17 bits per
synapse, where the patterns should have a relatively high
activity (k = 340 or k = 493, see eqs. 13,14; see also [3]).
In comparison, emulating complete connectivity by structural
plasticity and pruning functionally irrelevant silent synapses
(section III-E) can boost the capacity toM ≥ 8958305
associations orCS ≥ 3.14 bits per synapse, where the
patterns should be very sparse (e.g.,k = 17 or evenk ≤ 5;
see table 3 in [3]). Thus, a neocortical network trained by the
hippocampus and capable of structural changes as suggested
by our model could store about factor 200 more pattern
associations and still about factor 20 more information per
physically realized synapse.
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