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Abstract— The Pareto optimal set of a continuous multi-
objective optimization problem is a piecewise continuous mani-
fold under some mild conditions. We have recently developed sev-
eral multi-objective evolutionary algorithms based on this prop-
erty. However, the modelling methods used in these algorithms
are rather costly. In this paper, a cheap and effective modelling
strategy is proposed for building the probabilistic models of
promising solutions. A new criterion is proposed for measuring
the convergence of the algorithm. The locality degree of each
local model is adjusted according to the proposed convergence
criterion. Experimental results show that the algorithm with the
proposed strategy is very promising.

I. INTRODUCTION

In this paper, we consider continuous multi-objective op-
timization problems (MOPs). Mathematically, a continuous
MOP can be defined as follows:

7fm(m))T ey

minimize F(z) = (fi(z),...

subject to rzeX

where X C R™ is the decision space and = = (x1,...,7,)T €
R™ is the decision variable vector. F : X — R™ consists
of m real-valued continuous objective functions f;(x) (i =
1,...,m). R™ is the objective space.

Under certain mild conditions, the Pareto set of a continuous
MOP is an (m — 1)-dimensional manifold [13]. However,
such regularity has rarely been exploited in multi-objective
evolutionary algorithms [7]. Very recently, we have proposed
several methods based on this regularity property for dealing
with continuous MOPs with variable linkages [8], [15], [16].
Local principal component analysis (LPCA) [9] and generative
topographic mapping (GTM) [1] are utilized in our methods
for modelling the distribution of promising search areas in the
decision space. Experimental studies have shown that these
methods are able to deal with MOPs with variable linkages.
However, LPCA and GTM are rather expensive, particularly,
when the MOP has many decision variables. To overcome
this shortcoming, a simple yet effective modelling strategy is
introduced in this paper. It builds a number of local models in
the search space. The locality of each local model is adjusted
during the search according to a new proposed convergence
criterion, which measures the progress of the algorithm. This
strategy provides a natural way for balancing exploitation and
exploration.
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The remainder of the paper is organized as follows. Section
IT gives the algorithm framework and the adaptive modelling
strategy. Section III presents the test instances and perfor-
mance indicator used in the experiments. In Section IV, we
empirically study the different ways for adjusting the locality
parameter. Comparison with RM-MEDA [15] and GDE3 [11]
has also been carried out in this section. Conclusion is pre-
sented in Section V.

II. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION
WITH ADAPTIVE MODELLING

A. Algorithm Framework

Notations
P,:  population at generation ¢.
Q::  offspring set at generation ¢.
N:  population size.
NP: number of points used for building a model.
NE. number of reference points, which is set to be N R—
2N/N¥ in our implementation.
NE:  locality parameter at generation t.
T: maximal number of generations.

AM-MEDA

/* Initialization */
Step 0 Set t := 0. Generate and evaluate an initial
population F.

/* Stopping condition */
Step 1 If stopping condition is met, stop and return
the nondominated solutions in F;.

/* Model Building */
Step 2 Select N® reference points zft, - -
from P;.
Step 3 Adjust the locality parameter, N/}.
Step 4 For each reference point a:,f‘, do

R
y UNR

Step 4.1 Uniformly randomly select N/
candidate points from P;.
Step 4.2 Build a probability model based
statistical information extracted from the
NPT closest points to 2% in the above se-
lected points.
/* Sampling */
Step 5 Generate offspring set (); from the models
built in Step 4 and evaluate Q.
/* Selection */
Step 6 Select N individuals from Q. |J P; to create
P, t4+1-



Step 7 Set ¢t :=t¢+ 1 and go to Step 1.
The details of the framework are given in the following.

B. Initialization

The individual points in the initial population Py are uni-
formly randomly sampled from the search space.

C. Stopping Condition

The algorithm stops after T' generations.

D. Selection in Steps 2 and 6

The MaxiMin sorting scheme [14] is used in Steps 2 and 6.
This scheme is a modified version of the nondominated sorting
scheme used in NSGA-II [3]. The major reason that we choose
the MaxiMin is that its selected solutions are more uniformly
distributed than those generated by the original nondominated
sorting scheme.

E. Update of the Locality Parameter Based on Convergence
Degree in Step 3

N[L, the locality parameter, plays a crucial rule in AM-
MEDA. The smaller N/ is, the lower the locality degree of
each model built in Step 4 is. In this paper, N/ is an integer
from [Npin, Nimaz] where Ny = NP and Nyep = N.
If NtL = Npin, the statistical information extracted in Step
4.2 is from NT points uniformly randomly selected from
P,, and then the model built in Step 4.2 characterizes the
distribution of the whole population. On the other hand, if
N} = Nyuaz, the statistical information in Step 4.2 are from
NP closest points in P(t) to the reference point, then the
model characterizes the distribution of promising solutions in
the neighborhood of the reference point. Our basic idea is that
the global aspect of the current population is more important
than its local aspect when the search is far from convergence,
and vice versa when the search is close to convergence.
Therefore, N} should be adjusted based on convergence of
the population.

In this algorithm, the following convergence degree is used:
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where
D(Py,, P.,) min [|F(z) — F
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measures the distance from population P;, to population P;,
with interval At = t; — to, and At = 10 in this paper. The
smaller C'(F;) is, the more likely that the population is close
to convergence.

Four strategies for updating N/ are studied in this paper.

1) Strategy 1 (S1)

This strategy works as follows:
b) Fort=1,2,...,T,
o If O(P,) >¢e, NF = NE .

locality parameter
locality parameter

>
generation ¢
S1 S2

-
-
generation ¢

locality parameter
locality parameter

- -
> -
generation ¢ generation ¢

S3 S4

Fig. 1. Tllustration of four strategy for updating NtL.

e Else if C(P;) <eand C(Pi—1) > ¢

1 3t
L __ _ nL I -
N =A=N;2, and o = 4+4T
o Otherwise,
N, —A
NE=A+| mar ]

1+ exp[—15(t/T + )]

In this strategy, if C(P;) < e, NtL increases, otherwise,
it has no change. The update rule ensures that N}
always takes its value from [Nyin, Nmaz]. A is a
temporary value and the other constants are empirical
values.
2) Strategy 2 (S2)
In this strategy, NtL can only takes two values, N,,in,
Nmin C(Pt) > e

or Npaz.
L __
Nt a { Nma:c C(Pt) S £ (3)

If C(P;) < e, each model built in the algorithm is for
the local area around its reference point. Otherwise, each
model is for the whole population.

3) Strategy 3(S3)

where 0 < ¢t < T'. In this strategy, each model is always
for the whole population.
4) Strategy 4 (S4)

NtL = Nma:c (5)

where 0 < ¢t < T'. In this strategy, each model is always
for the local area around its reference point.
Figure 1 illustrates these four strategies.

F. Model Building

Let S* contain the N closest points to ka” in Step 4.2.
The mean of S* is



The covariance matrix of S* is
1
k_ —k N
Cov™ = op— > y—a)y-aH)T.
yeSk

The ith principal component ¥ is a unity eigenvector associ-
ated with the ith largest eigenvalue \¥ of the matrix Cov*.

——Pareto Set O Individual point ---- model

Fig. 2. Tllustration of model building.

The following linear model with Gaussian noise, which is
called A*, is used for modelling the distribution of the points
in S*:

m—1
r=z"+ E sil/f—l—ek (6)
i=1
where s; is a random variable uniformly distributed in
k,min _k,mazx
[s; » 55 I
sPmIn — min (z — 28)Tuk
zeSk
and
kmax __ —k\T  k
s; = max(z —z")" v}

zESk

e¥ ~ N(0,6%I), I is an identity matrix and

1 n
I S k
5_n_m+1Z;&.

G. Model Sampling

When sampling new trial solutions, the probability that A*
is selected is:

evenness(S¥)

P(A*) =
Zf\g evenness(Sk)

@)

where evenness(S*) denotes the evenness of the points in S*
and it is calculated as the average density of solutions in S¥,

evenness(S*¥) = % Z density(x)
z€Sk
where density(z) denotes the density of a solution z and it is
set as the distance in objective space between = and its second
closest point in P; in our implementation.
In Step 5, offspring are generated as follows:

Reproduction by Sampling

Step 0Set Q; = ¢.
Step 1Randomly select a model A* according to (7).

k,min
)

Step 2Uniformly randomly generate s; € [s

0.25(simas . ghminy ghmaz 4 g 95(shmer

s =1, m — 1.

Step 3Generate a noise vector e¥ ~ N (0, 6%7).

Step 4Generate a new trial solution = by (6) and let Q)
CQtLJ{x}.

Step 5Go to Step 1 if |Q;] < N.

III. TEST INSTANCES AND PERFORMANCE INDICATORS

A. Test Instances

TABLE 1
TEST INSTANCES

Var. Ob;j.
FL[ =22 | fu(@) =1 —exp(= 27 (zi — =)7)
fi(@) = 1 - exp(- T (i + 40)?)
F2 | [0,1]" | fi(z) =2
fa(2) = g(@)[1 = v/w1/9(x)]
glz) =1+ 9(22(3?? —1)?)/(n = 1)
F3 | [0,1" | fi(z) =21
f2(z) = g(@)1 = (f1 (x)/9(2))?]
glz) =1+ 9(;2(%2 —1)?)/(n = 1)
Fa | [0,1]" | fi(z) =2
fa(x) = g(@)[1 = /a1 /g(x) — 4ty sin(10m21)]
glz) =1+ 9(;2@? —1)?)/(n = 1)
F5 | [0,1]™ fi(x) =1 — exp(—4x1)sinb (6mz1)
fa(z) = g(=)[1 = (f1 (x)/9(=))?]
g(z) =1+ 9[22(112 — z1)2/9]0-25
F6 | [0,1]™ f1(z) = cos(Gx1)cos(Gz2)(1 + g(=))
fa(z) = cos(Z1)sin(E2)(1 + g(c)
fs(@) = sin(321)(1 + g(x))
@) = 3 (@7 =)’

The test instances in Table I are used to test the proposed
algorithm. Among the instances, F'1 (FON [2]) has linear
linkages among decision variables. F'2 — F'6 are modified
versions [12] of ZDT1, ZDT?2, ZDT3, ZDT6 [3], and
DT LZ?2 [5] respectively, which have nonlinear variable link-
ages and may cause difficulties for some algorithms [15].

B. Performance Indicator

The inverted general distance is used in assessing the
performance of the algorithms.

Let P* be a set of uniformly distributed points in the objec-
tive space along the Pareto front. Let P be an approximation
to the Pareto front, The general distance from P* to P is

defined as:
Z’UEP* d('U7 P)

D(P*,P) = S



where d(v, P) is the minimum Euclidean distance between
v and the points in P. If |P*| is large enough to represent
the Pareto front very well, D(P*, P) could measure both the
diversity and convergence of P in a sense. To have a low value
of D(P*, P), P must be very close to the Pareto front and
cannot miss any part of the whole Pareto front.

In our experiments, we select 500 evenly distributed points
on Pareto front and let these points to be P* for each test
instance with 2 objectives, and 1,000 points for each test
instance with 3 objectives.

Another indicator called difference of hypervolume
({z) [10] is also tried. Since the results are very consistent
with those of the D-metric, only the results with D-metric are
reported in this paper.

1V. EXPERIMENTAL RESULTS
A. Experimental Settings

In this section, the proposed method, AM-MEDA is com-
pared on F'1 — F'6 with RM-MEDA [15] and GDE3 [11],
which is empirically proved to be better than some other
algorithms on the given test instances [15]. The parameters
are as follows.

o The dimension of decision variables: It is set to be 30
for all test problems.

o The population size (number of new trial solution in each
generation): 100 for 2-objective problems and 200 for 3-
objective problems.

e T:100 for F'1,F2, F3 and F'4, 500 for F'5 and 200 for
Fé6.

o The number of runs: Each algorithm repeats 20 times on
each test instance.

o Parameter setting in AM-MEDA: N is set to be 10 for
2-objective problems, and 20 for 3-objective problems.
The threshold of convergence test is 0.001.

o Parameter setting in RM-MEDA: In LPCA algorithm, K,
the number of clusters, is set to be 5.

o Parameter setting in GDE3: Both CR and F in the DE
operator is set to be 1, which was the best setting for
most test instances in the simulation studies in [4].

B. Comparison of Updating Strategies for Locality Parameter

AM-MEDA with four updating strategies for locality pa-
rameter is tested on F'1 — F'4 and the evolution of the
average D-metric of the nondominated solutions in the current
populations among 20 independent runs is shown in Fig. 3.

Fig. 3 shows that for the three problems, F'2 — F'4 with
nonlinear variable linkages, the performance decreases with
order of S1, S2, S3 and S4, while for F'1 with linear
linkage among variables, there is no difference among the
performances of S1, S2 and 53, but they are superior to the
performance of S4. For F'1, since its Pareto set is a segment
line, any points near/in the Pareto set will be proper to build
model (6). Thus S1, S2 and S3 have similar performance
while for S4, it might mislead the search at the beginning and
its performance is worse than the others.
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Fig. 3. The evolution of the average D-metric of the nondominated

solutions in the current populations among 20 independent runs in four matting
strategies. The solid line is with S1, dash line with S2, dot line with S3 and
dash-dot line with S4.

From these results, it can be concluded that the strategy S1
can capture the dynamics of evolution better than the others.
And it will be used as the default strategy in the following
sections.

C. Comparison with RM-MEDA and GDE3

D-metric
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Number of generations
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Fig. 4. The evolution of the average D-metric of the nondominated solutions
in the current populations among 20 independent runs in three algorithms.The
solid line is with AM-MEDA, dash line with RM-MEDA, and dot line with
GDE3.

In this section, the proposed AM-MEDA is compared with
RM-MEDA and GDES3 on the seven test problems shown in
Table I. The average values of D-metric at each generation
on F'1 — F6 are shown in Fig. 4. The Pareto fronts of the
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Fig. 5. The final nondominated fronts found by each algorithm on F1. The
left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found
by each algorithm.
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Fig. 6. The final nondominated fronts found by each algorithm on F2. The
left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found
by each algorithm.
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Fig. 7. The final nondominated fronts found by each algorithm on F3. The
left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found
by each algorithm.
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Fig. 8. The final nondominated fronts found by each algorithm on F4. The
left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found
by each algorithm.
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Fig. 9. The final nondominated fronts found by each algorithm on F5. The
left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found
by each algorithm.

obtained nondominated points at the last generation are also
drawn in Fig. 5-10 respectively.

F1 AM-MEDA is comparable with RM-MEDA on F'1. The
D-metric curves are very close to each other from the
very beginning. Since the Pareto set of F'1 is a line, it
is very strange that GDE3 can not tackle this problem.
The reason may be that the Pareto set only covers a very
small part of the search space.

F2 F2 has convex Pareto front and there is nonlinear
variable linkages. AM-MEDA performs slightly better
than RM-MEDA from Fig. 4(b) and they both can
approximate the Pareto Front very well. From Fig. 6,
it can be seen that GDE3 can cover the whole Pareto
front but with big variance.

F3 F3 has concave Pareto front and there is nonlinear vari-
able linkages. AM-MEDA performs slightly better than
RM-MEDA both from Fig. 4(c) and Fig. 7. Fig. 7 shows
that the Pareto fronts obtained by RM-MEDA have a
little variance near the bottom right end of the Pareto
front. For GDE3, both the diversity and convergence of
the obtained Pareto fronts are not good.

F4 F4 has disconnected Pareto front and there is nonlinear
linkages between variables. Although AM-MEDA shows
slightly better results on D-metric in Fig. 4(d), there is
not much difference between the obtained Pareto fronts
in Fig. 8. The reason might be that AM-MEDA has
higher probability to cover the whole Pareto front in

LM-MEDA

LM-MEDA

RM-MEDA RM-MEDA

Fig. 10. The final nondominated fronts found by each algorithm on F6. The
left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found
by each algorithm.

a single run.

F5 F5 has nonuniformly distributed Pareto front and this
might be the reason why GDE3 can not converge to the
Pareto front. The Pareto fronts obtained by AM-MEDA
are more close to Pareto front than those of RM-MEDA.

F6 F6 has three objectives and there is nonlinear variable
linkages. RM-MEDA is slightly better than AM-MEDA
on this problem. Fig. 10 shows that none of the three
algorithms can approximate the Pareto front ideally.
AM-MEDA and RM-MEDA cover the whole Pareto
front, but GDE3 can only cover part. Although AM-
MEDA can cover the whole Pareto front, some points
are still far away from Pareto front.

Overall, AM-MEDA and RM-MEDA outperform GDE3
on these test problems because they take into account the
population distribution and thus use more information in
generating new trial solutions. AM-MEDA is slightly bet-
ter than RM-MEDA on 2-objective problems with nonlinear
linkages among decision variables and RM-MEDA is slightly
better than AM-MEDA on 3-objective problems with nonlinear
variable linkages. For problems with linear linkages, RM-
MEDA and AM-MEDA have similar performance.

D. CPU-Time Cost

We also record the average CPU time! used by AM-MEDA,
RM-MEDA and GDE3 for these test problems. The statistical
results are given in Table II.

I'The machine used is Pentium(R) 4 3.00GHz, 1.00GB RAM.



TABLE 1I
CPU TIME (IN SECONDS) USED BY AM-MEDA, RM-MEDA AND GDE3

Methods

Problem AM-MEDA RM-MEDA GDE3

mean std. mean std. mean std.
F1 2.925 | 0.044 8.296 | 0.292 2.649 | 0.037
F2 2.564 | 0.049 7.140 | 0.295 0.333 | 0.025
F3 2.501 | 0.029 7.282 | 0.340 0.378 | 0.030
F4 2.599 | 0.040 7.298 | 0.290 0.302 | 0.025
F5 12.838 | 0.249 | 24.189 | 2.871 1.628 | 0.066
F6 10.376 | 0.211 | 43.141 | 2.035 | 10.919 | 1.636

Table II indicates that although AM-MEDA needs much
more time than GDE3, AM-MEDA can significantly reduce
the CPU time comparing to RM-MEDA because for AM-
MEDA, there does not exist an inner optimization process as
in RM-MEDA.

V. CONCLUSIONS

In this paper, we have proposed a multi-objective estimation
of distribution algorithm in which an adaptive modelling
technique is used for modelling the distribution of promising
solutions. Unlike the adaptive tuning of variance used in [6],
in this paper, the locality of models is dynamically adjusted
based on a convergence degree which measures how well a
population converges. Our basic idea is that the search should
focus more on local statistical information if it is close to
converge and vice versa. The experimental results have shown
that our proposed method performs similarly to RM-MEDA
but the its CPU time is much less than that of RM-MEDA.
In the future, we plan to refine this method for dealing with
complicated MOPs.
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