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We present a biologically motivated architecture for object recognition that is capable of online learning
of several objects based on interaction with a human teacher. The system combines biological principles
such as appearance-based representation in topographical feature detection hierarchies and context-
driven transfer between different levels of object memory. Training can be performed in an unconstrained
environment by presenting objects in front of a stereo camera system and labeling them by speech input.
The learning is fully online and thus avoids an artificial separation of the interaction into training and
test phases. We demonstrate the performance on a challenging ensemble of 50 objects.
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1. Introduction

The human visual system shows an outstanding
capacity for learning and robust recognition of
numerous objects, at a level far superior to all cur-
rently existing technical recognition approaches. A
particular feature of human object perception is
the capability of quickly analyzing and remember-
ing completely unknown new objects. We refer to
this ability in this contribution as online learning,
which is of high relevance for cognitive robotics and
computer vision. A typical application domain is
to increase the knowledge of an assistive robot in
a changing and unpredictable environment.1,2 The
capability of learning online constitutes a fundamen-
tal difference to offline learning, since it enables an
interactive process between teacher and learner. The
immediate feedback about the current learning state
can induce an instantaneous and active learning pro-
cess that reduces the amount of necessary training
data and allows an iterative error correction based
on user feedback.

In order to achieve online learning of many
complex-shaped objects, we present a system com-
bining a flexible neural object recognition architec-
ture with a biologically motivated attention system
for gaze control, and a speech understanding and
synthesis system for intuitive interaction. The target
is to obtain a flexible object representation sys-
tem that is capable of high-performance appearance-
based object recognition of complex objects together
with a particularly rapid online learning scheme that
can be carried out by cooperative training with
a human teacher. A high level of interactivity is
achieved by avoiding an artificial separation into
training and testing phase, which is still the state-of-
the-art for most current trainable object recognition
architectures. We do this by using an incremental
learning approach that consists of a two-stage mem-
ory architecture comprising a context-dependent sen-
sory memory and a persistent object memory that
can also be trained online.
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Previous approaches to fast interactive object
learning often had to resort to simple histogram-
based object representations,3 or strong assump-
tions on the environment for figure-background
separation.4 We relax many of these constraints and
do not impose any preconditions on the environment,
except that objects are presented to the system by
showing them by hand. To allow online learning in
this difficult scenario, we use a dynamic segmen-
tation approach that performs a fast figure-ground
separation based on an initial stereo-based coarse
object hypothesis. The object recognition architec-
ture is motivated from the ventral pathway of the
human visual cortex and can be applied to arbitrary
complex-shaped objects. Fast online learning can
be achieved with this architecture, because object-
specific learning occurs only on the highest levels of
the hierarchical feature detection stages. The lower
stages of the model correspond to earlier and inter-
mediate feature detection stages in the visual cor-
tex and are trained by sparse coding learning rules.5

This results in a particularly robust appearance-
based representation of objects using a consistent
library of typical local shape elements. As was shown
recently by Serre et al.7 for a related, but more bio-
logically detailed model, such visual representation
architectures achieve a highly competitive recogni-
tion and detection performance on current computer
vision benchmarks for offline learning.

In the following we review related work in Sec. 2
and give an overview over our system in Sec. 3. In
Sec. 4 we describe the components of the visual mem-
ory in more detail and show results on the perfor-
mance and learning behavior in Sec. 5. We give a
discussion in Sec. 6 and conclude with Sec. 7.

2. Related Work

Although offline training of model-free object recog-
nition architectures has become an established tech-
nique in pattern recognition and applications, only
few work has been done until now on online learn-
ing for complex-shaped objects. The main problems
are poor generalization due to the inherent high
dimensionality of visual stimuli, and the difficulty
to achieve incremental online learning with standard
classifier architectures like multi-layer perceptrons or
support vector machines.

To make online learning feasible, the complex-
ity of the sensorial input has been reduced to sim-
ple blob-like stimuli,8 for which only positions are
tracked. Based on the positions, interactive and
online learning of behavior patterns can be per-
formed. A slightly more complex representation was
used by Garcia et al.,9 who have applied the cou-
pling of an attention system using features like color,
motion, and disparity with a fast learning of visual
structure for simple colored geometrical shapes like
balls, pyramids, and cubes.

Histogram-based methods are another common
approach to tackle the problem of high dimension-
ality of visual object representations. Steels and
Kaplan3 have studied the dynamics of learning
shared object concepts based on color histograms in
an interaction scenario with a dog robot. Another
model of word acquisition that is based on multidi-
mensional receptive field histograms for shape rep-
resentation and color histograms was proposed by
Roy and Pentland.10 The learning proceeds online
by using a short-term memory for identifying reoc-
curring pairs of acoustic and visual sensory data,
that are then passed to a long-term representation
of extracted audiovisual objects.

Arsenio11 has investigated a developmental learn-
ing approach for humanoid robots based on an inter-
active object segmentation model that can use both
external movements of objects by a human and inter-
nally generated movements of objects by a robot
manipulator. Using a combination of tracking and
segmentation algorithms the system is capable of
online learning of a few objects by storing them in a
geometric hashing representation.

Bekel et al.12 proposed an approach to supervised
online learning for object recognition, consisting of
three stages of vector quantization, local PCA, and
a local linear map classifier. The image acquisition
of new object views is triggered by pointing gestures
on a table, and is followed by a short training phase,
which takes some minutes. The main drawback is
the lack of an incremental learning mechanism to
avoid the complete retraining of the architecture.
The approach has been integrated in a larger archi-
tecture for cognitive vision.13

Li et al. have presented a system for interactive
object learning on a mobile robot that features an
elaborated multi-modal dialogue system to enable
context-dependent attention selection using speech
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references made by the user.2 Pointing gestures can
be used in combination with speech to perform a
color-based segmentation of objects to be learned.
The integration of a classifier for actually performing
object learning was, however, not yet accomplished.

Roth et al. developed an online learning system
for the task of person detection on surveillance cam-
era images.14 The system employs a reconstructive
model using incremental principal component analy-
sis for autonomously selecting positive examples for
an online AdaBoost classifier. The same incremental
online AdaBoost was also combined with an adap-
tive tracking model for the incremental learning of
hand-held objects with limited pose variation.15 In
both settings a static background was assumed and
used for object segmentation.

Kirstein et al.4 have presented an online learn-
ing architecture that is operated in a more con-
strained scenario with defined black background to
ease the figure-ground segmentation. Their focus was
the transfer from a short-term to more condensed
long-term memory representation using incremental
vector quantization methods.

3. System Overview

We first describe an overview of the system (see
Fig. 2) and its key components, before we give more
details in Sec. 4.

We use a stereo camera head mounted on a pan-
tilt unit, which delivers left and right image pairs
as the visual input. The gaze control of the head
is driven by an independent circuit that combines
the cues of motion, color, and depth for attention-
driven selection of the gaze direction. The concept
of peripersonal space16 is used to establish shared
attention on a presented object during learning.
This means that the system will focus its attention
on an object that is presented within a particular
short-distance range interval that roughly corre-
sponds to the biological concept of the manipula-
tion space around the body (see Fig. 1). If nothing
is present within this space, the cues of motion and
color/intensity determine the gaze selection of the
system. All cues are based on retinotopic activation
maps, and we induce a higher priority for motion
detection with a higher weight of the correspond-
ing map. (see Ref. 16 for more details). A typical
sequence of interaction thus consists of first catch-
ing the system attention by waving, which centers

Fig. 1. Typical training situation. An object is pre-
sented within the peripersonal space and can be trained
or recognized.

the gaze direction towards the interacting person. In
the second step an object can be brought sufficiently
close to the camera to induce learning or recognition
of the attended object in the peripersonal space.

The online learning system is working with the
camera output that is generated according to the
gaze selection of the independent attention system.
Based on the current stereo view pair, a depth map is
computed that is aligned with the left camera image.
The left camera image and the depth map are passed
to the peripersonal blob detection stage that gen-
erates a square region of interest (ROI), based on
the estimated distance of the current object hypoth-
esis. Using the distance, the apparent size of objects
within the ROI can be normalized with remain-
ing uncertainties due to the limited precision of the
depth computation. The square ROI with distance-
dependent size in the original image is scaled to a size
of 144 × 144 pixels. The gaze selection and size nor-
malization remove largely the translation and scale
variance inherent to the unconstrained recognition
task.

The normalized ROI around the object hypothe-
sis together with the corresponding part of the depth
map is passed to the figure-ground segmentation
stage of processing, the adaptive scene-dependent fil-
ters (ASDF).17 The ASDF method makes no strong
assumptions on the objects like e.g. being single-
colored. Based on the depth map, a relevance map is
obtained that covers the object only coarsely with
considerable overlap to the background. For each
pixel location in the ROI, a local feature vector is
computed based on RGB color channels, depth, and
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Fig. 2. Overview of the visual online learning architecture. Based on the depth estimation, an object is selected and
segmented. The segment is passed through the visual feature hierarchy and subsequent views of the current context are
stored in the sensory memory. Transfer to the object memory is guided by speech-based feedback.

pixel position. Using a dynamic vector quantization
model, first an unsupervised segmentation is com-
puted using the local feature vectors in the ROI as
input ensemble. Then the input image is segmented
according to the mapping to the Voronoi cells of the
found vector quantization centers. Due to a sufficient
number of centers, we obtain an oversegmentation
and can then select object segments as those that
are sufficiently contained within the relevance map
(see Ref. 17 for more details). The method obtains
an intrinsic stability by continuously iterating the
vector quantization based on state of the previous
frame. We additionally use skin color detection18 to
remove parts of the hand that hold the object. The
output of the ASDF stage is a mask describing the
current figure-ground hypothesis on the ROI.

The selected ROI and the segmentation mask
from the ASDF stage are fed into the model of the
ventral visual pathway of Wersing and Körner5 to
obtain a complex feature map representation that is
based on 50 shape and 3 color feature maps. The
color channels are downsampled images in the three
RGB channels. The output is a high-dimensional
view-based representation of the input object which
is passed to the higher object memory representation
stages for learning and recognition.

To allow a particularly interactive online learn-
ing, we use a memory concept that is sepa-
rated into a sensory memory carrying the currently

attended object and a persistent memory that car-
ries consolidated and consistently labeled object view
representations. As long as an object is presented
within the peripersonal space and has not been
labeled or confirmed, the obtained feature map rep-
resentations of views are stored incrementally within
the sensory memory. At the same time, all newly
appearing views are being classified using the persis-
tent object memory. If the human teacher remains
silent, then the system will either generate a class
hypothesis or reject the presented object as unknown
and verbalize this using the speech output mod-
ule. The human teacher can confirm the hypothe-
sis or make a new suggestion on the correct object
label. As soon as feedback by the teacher is avail-
able, the learning architecture starts the concur-
rent transfer from the sensory memory buffer into
the consolidated object memory. This extends over
the whole history of collected views during the pre-
sentation phase and also proceeds with all future
views, as long as the object is still present in the
peripersonal space. The labeling of the current object
can be done by the teacher at any time during
the dialogue and is not restricted to being a reac-
tion on a class hypothesis of the recognition system.
The concept of a context-dependent memory buffer
avoids a separation into training and testing phases.
The transfer from the sensory to the object mem-
ory is sufficiently fast to remain unnoticed to the
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human trainer and the learning success can be imme-
diately tested, allowing for a real online learning
interaction.

The speech input and output is very important
for the intuitive training interaction with the system.
We use a system19 with a headset, which is the cur-
rent state-of-the-art for speaker-independent recog-
nition. The vocabulary of object classes is specified
beforehand. To be able to label arbitrary objects we
also use wildcard labels such as “object one”, “object
two” etc.

4. Object Memory Representation

In the following we describe in more detail the main
components of the object memory and recognition
system. For a more detailed description of the atten-
tion, gaze selection and stereo processing system we
refer the reader to.16

4.1. Hierarchical feature processing

The output of the ASDF figure-ground segmentation
stage is a binary mask signal mseg that is combined
with the candidate ROI image I (of size 144×144 pix-
els) and fed into the hierarchical model of the ventral

visual pathway developed by Wersing and Körner.5

To obtain invariance against rotations in the image
plane, which is normally a problem for appearance-
based recognition, we determine the principal axes
of the figure-ground mask and rotate the ROI and
mask aligned with the horizontal direction. This nor-
malization introduces much better robustness for the
recognition of elongated objects like e.g. bottles.

The rotation-normalized ROI is processed using a
hierarchy of feature detection and pooling stages that
achieves a robust appearance-based representation of
an object view as a collection of several sparsely acti-
vated feature map representations (see Fig. 3). Start-
ing from an RGB input color image Ii = (IR

i , IG
i , IB

i ),
we compute an intensity image I′i = 1/3 IR

i +1/3 IG
i +

1/3 IB
i . The first feature-matching stage S1 con-

sists of four orientation-sensitive odd Gabor filters, a
Winner-Takes-Most competition between features at
the same position and a final threshold function. We
adopt the notation that vector indices run over the
set of neurons within a particular feature plane of
a particular layer. To compute the response ql

1(x, y)
of a simple cell in the first layer S1, responsive to
Gabor type l at position (x, y), first the image vec-
tor I′ is multiplied with a Gabor filter wl

1(x, y), and
pointwise multiplied with the binary segmentation

S1

C1

S2
C2

Input

R

G

B

High–dimensional C2 Feature Space
Object Memory

Fig. 3. Hierarchical object representation and object memory. Based on a ROI with additional segmentation mask, the
input is processed in a sequence of topographically organized feature detection (S1, S2) and pooling stages (C1,C2). The
object memory provides an exemplar-based representation of views embedded in the high-dimensional C2-feature space.
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mask mseg(x, y) ∈ {0, 1}:
ql
1(x, y) = |wl

1(x, y) ∗ I′| · mseg(x, y). (1)

The inner product is denoted by ∗, i.e. for a 144×144
pixel image I and wl

1(x, y) are 20736-dimensional

vectors. We apply the masking after the edge detec-
tion, to avoid the occurrence of spurious edges at
wrong segmentation borders. In a second step, a
soft Winner-Takes-Most (WTM) mechanism is per-
formed with

rl
1(x, y) =




0 if
ql
1(x, y)
M

< γ1 or M = 0,

ql
1(x, y) − Mγ1

1 − γ1
else,

(2)

where M = maxk qk
1 (x, y) and rl

1(x, y) is the response
after the WTM mechanism which suppresses sub-
maximal responses. The parameter 0 < γ1 < 1 con-
trols the strength of the competition. The activity
is then passed through a simple threshold function
with a common threshold θ1 for all cells in layer S1:

hl
1(x, y) = H

(
rl
1(x, y) − θ1

)
, (3)

where H(x) = 1 if x ≥ 0 and H(x) = 0 else and
hl

1(x, y) is the final activity of the neuron sensitive
to feature l at position (x, y) in the S1 layer. The
activities of the first layer of pooling C1-cells are
given by

cl
1(x, y) = tanh

(
g1(x, y) ∗ sl

1

)
, (4)

where g1(x, y) is a normalized Gaussian pooling ker-
nel with width σ1, identical for all features l, and
tanh is the hyperbolic tangent function. From S1 to
C1 we perform a four-fold resolution reduction in x
and y directions.

The features in the intermediate layer S2 are sen-
sitive to local combinations of the features in the
planes of the previous layer, and are thus called
combination cells in the following. We use 50 fea-
tures that were trained using a sparse coding unsu-
pervised learning approach (see Ref. 5), and which
provide an efficient representation of the combined
local edge feature responses. We introduce the layer
activation vectors as c̄1 = (c1

1, . . . , c
K
1 ), w̄l

2 =
(wl1

2 , . . . ,wlK
2 ) with K = 4. Here wlk

2 (x, y) is the
receptive field vector of the S2 cell of feature l at
position (x, y), describing connections to the plane
k of the previous C1 cells. The combined linear
summation over previous planes is then given by
ql
2(x, y) = w̄l

2(x, y) ∗ c̄1. After the same WTM pro-
cedure with strength γ2 as in (2), the activity in
the S2 layer is given by hl

2(x, y) = H(rl
2(x, y) − θ2)

after thresholding with a common threshold θ2. The
step from S2 to C2 is analogous to (4) and given by

cl
2(x, y) = tanh(g2(x, y) ∗ sl

2), with Gaussian spatial
pooling kernel g2(x, y) with range σ2 and two-fold
reduction in x and y dimension. The final resolution
is 18 × 18 for each C2 feature map. As was shown
before, the output of the feature representation of
the C2 feature layer can be used for robust object
recognition that is competitive with other state-of-
the-art models, when offline training is being used.5

The free parameters are chosen as γ1 = 0.9, θ1 = 0.3,
σ1 = 4, γ2 = 0.9, θ2 = 0.75, σ2 = 2, according to the
optimized choice evaluated in Ref. 5.

The efficiency of the representation is achieved
by sparse coding ensuring that object views are rep-
resented using only sparse activation in the high-
dimensional feature space. To represent also coarse
color information, the 3 RGB channels are used as a
downsampled ROI Îi = (ÎR

i , ÎG
i , ÎB

i ) at the same res-
olution of 18 × 18 as the shape features. We denote
the combined color and shape feature map output as
xi(Ii) = (c1

2, . . . , c
50
2 , ÎR

i , ÎG
i , ÎB

i ). Although the com-
plete dimensionality of a single view representation
xi is thus (50 + 3) × 18 × 18 = 17172, the effective
dimensionality is much smaller, due to the sparsity
of the representation vector and the confinement of
activation to the figure-ground mask. Nevertheless it
is a key feature of our biologically motivated visual
processing model that robustness, generalization and
speed of learning is not achieved by a dimension
reduction as in most other current online learning
models.8,9,3,10–12,14 The key element is a transfor-
mation of the input into a sparse robust feature map
representation that captures relevant locally invari-
ant structures of the objects.

4.2. Sensory and object memory

The object representation system for online learning
and recognition is separated into two subsystems: A
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sensory memory for temporarily remembering the
currently attend object within focus and a persistent
object memory that integrates all object knowledge
incrementally over time.

The high-dimensional output vectors of the fea-
ture hierarchy are continuously stored within the sen-
sory memory. The task of this memory is to capture
all current views of an object to be able to use them
for transfer to the object memory when a speech
label has been given. This means that also those
views can be used for training that were recorded
before a labeling of the object was obtained from
the human trainer, relaxing the constraints on the
training dialogue. The sensory memory is realized as
an incremental vector quantization model S, which
consists of K representative vectors sk ∈ S, k =
1, . . . , K. A new representative sK+1 = xi is added
if the feature map output xi(Ii) of the current input
image is sufficiently dissimilar to all current entries
in the sensory memory: ‖xi − sk‖ > TS for all
k, where TS is a similarity threshold. The similar-
ity is measured based on Euclidean distance in the
feature map vector space. Due to the sparsity of
the feature map vectors the distance computation
can be very efficiently implemented.4 If the focus
of attention is lost, because the object is retracted
from the peripersonal space, the sensory memory
is cleared.

When a labeling signal arrives, because the
human teacher has named an object or has confirmed
a hypothesis generated from the object memory, the
information accumulated in the sensory memory is
transferred to the object memory in real time. Here
we use the same incremental vector quantization
model. We denote the object memory as a collection
of individual object representations On for object n

with Mn representatives on
l ∈ On, l = 1, . . . , Mn. If

there are already some views available in the object
memory, the comparison is performed against the
already existing representation (see Fig. 3). If the
current object is labeled as object m, then for all
the vectors in the sensory memory sk ∈ S, a new
object representative om

Mn+1 = sk is added when
the sensory memory representative sk is sufficiently
dissimilar to all current entries in the object mem-
ory: ‖sk − om

l ‖ > TO for all l = 1, . . . , Mm, where
TO is the object similarity threshold. If the training
continues after the labeling signal was received, and
the object remains within the focus of attention, all

following feature map inputs xi are directly passed
to the object memory according to the same dissim-
ilarity criterion with threshold TO.

The main advantage of the template-based rep-
resentation is that training is fully incremental and
non-destructive with regard to previous information.
This representation can be later condensed and con-
solidated using additional learning mechanisms that
operate on a slower time scale.4

Every arriving view is being classified based
on the information in the object memory using
a nearest-neighbor classifier (NNC) based on the
labeled representatives. The corresponding NNC
class hypothesis mi of view xi is given by mi =
arg minn(minl ‖xi − on

l ‖). Since the system is run-
ning at a sufficient frame rate, we can use a tem-
poral integration over different views to improve the
classification results considerably. Our results have
shown that a majority voting scheme is particularly
efficient in combination with the nearest-neighbor
classification approach in the object memory, since
it allows to use more ensemble information of the
exemplar-based representation stored in memory. In
our experiments we use a history of 10 classifica-
tions and assign the output class that received most
single classification votes. An object is rejected as
unknown if this majority vote is less than 50% or if
the mean similarity to the majority representatives,
measured in the Euclidean feature space, is below a
fixed threshold.

5. Results

The complete system has been realized on a clus-
ter of one dual processor PC for gaze control and
image capture, one desktop PC running the speech
recognition and synthesis system, and one dual
processor PC performing all visual processing and
online learning after the gaze selection. The recogni-
tion system is running at a frame rate of roughly
6Hz, which enables interaction and online learn-
ing with direct feedback on the learning result. A
generic training scenario is shown in Fig. 1. We
have selected a large object set containing 50 objects
for our experiments, shown in Fig. 4 with typi-
cal ROI views that are delivered from the atten-
tion system. During all experiments the objects were
freely rotated by hand to obtain a strong appearance
variation.
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Fig. 4. Overview over the set of 50 objects used for training and testing. The objects were freely rotated, a changing
background is obtained due to the gaze control fixating the objects.

5.1. Interactive training

We visualize the actual time course of the differ-
ent memory types during a training session of 18
objects in Fig. 5. The plot displays the number of
used representatives in the sensory and object memo-
ries together with the training dialogue (abbreviated,
the actual dialogue is a little more elaborate). Start-
ing from a completely empty object memory, we first
perform a training of 10 objects. In this first phase
the system first consistently matches the cola can to
the previously trained “sun cream” object, and thus
classifies the cola can initially as “sun cream”, which
is then corrected by the teacher. Due to the simi-
lar red-white color and shape composition the “mini
car” is also first confused with the cola can, and is
corrected. Due to the shape similarity the green bot-
tle is first labeled as blue bottle, which is a reasonable
error, as long as no correction signal is given. After
the feedback by the teacher, the system has learned
to discriminate the first 10 objects after 5 minutes of
training from many different viewing angles, which
is evaluated directly afterwards. In the second train-
ing phase 8 objects are added. The initial confusion
occurs quite reasonably between cola can and a yel-
low can, another red car and the mini car, a new
blue mug and the first blue patterned mug, and a new
blue rubber duck and the initial yellow one. After the

initial training in the second phase, the garlic press
and police car object have to be additionally refined.
After that second retraining phase, all 18 objects are
classified from any reasonable viewing angle without
further errors.

An important property of the system is that
learning occurs most of the time and is not separated
into artificial training and testing phases. This can
be seen from the time course in Fig. 5, where during
the first evaluation of the first 10 objects between
320s and 420s the object memory is still expanding,
due to the confirmation signals of the human teacher
on the system classifications. The same applies to the
second evaluation and error correction phase between
640s and 850s. The complete duration of the session
until no further recognition errors are encountered is
about 12 minutes. This highlights the gain in learn-
ing speed that can be achieved due to the active
error correction process during learning. When the
object memory is enlarged over time, we encounter
a slight slowing down of the system frame rate from
6Hz to approximately 4Hz, since the comparison to
the memory takes longer.

5.2. Recognition performance

In Fig. 6 we show plots of the recognition perfor-
mance versus training time during online learning.
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Fig. 5. Temporal learning dynamics during a training session for 18 objects. The plot shows the number of representa-
tives for the sensory memory (“sawtooth” at bottom of plot) and representatives for each object in the object memory
over time. The corresponding training dialogue is stated synchronously at the top. The top row states the given labels by
the human trainer, while the bottom row gives the classification results of the system, before a human labeling is given.
Errors of the system are printed in bold italics. From 0 to 310s the first 10 objects are trained, the recognition of these
10 objects is evaluated from 320s to 420s without any errors. From 420s to 730s another 8 objects are added, and all 18
objects are checked after 730s without errors.

For this evaluation we train 49 objects from our
training set of 50 objects that was generated by stor-
ing 300 views per object from a typical training ses-
sion. Then the 50th object is trained in steps of 10
images (1.67 sec in Fig. 6) and a testing step is per-
formed. The test is done by classifying a completely
disjoint test set of 100 views per object that was col-
lected using a different person. Test performance is
measured over all 100 test images of the currently
trained object giving the classification rate as per-
centage of correctly recognized objects at this point
of online learning. Then training proceeds until all
300 training images are used. The plots in Fig. 6
show the resulting classification rate, averaged over

an ensemble of experiments, where each of the 50
objects was one time the final object.

We compare in Fig. 6 the conditions of either
using ASDF segmentation, ASDF segmentation with
subsequent rotation normalization, and no segmen-
tation. Each of the three settings is plotted with and
without temporal integration with voting over a past
history of 10 classifications. The results demonstrate
that due to the cluttered background, training with
the ASDF speeds up learning considerably and gives
a significantly higher recognition rate. Performing
the rotation normalization gives a further small gain
in performance. The contribution of the temporal
integration is much more substantial, and reduces the
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Fig. 6. Recognition performance versus training time.
The plot shows the average test performance for train-
ing the 50th object after 49 objects were already trained.
We compare segmentation, rotation normalization, and
unsegmented performance with and without temporal
integration.

error rate to about one half for training times larger
than 30 seconds for both segmented and rotation-
normalized cases.

To investigate the scaling of the architecture with
the number of objects, we show in Fig. 7 a plot of the
final performance after training for 80 seconds (cor-
responds to 300 training views), when we vary the
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Fig. 7. Recognition performance depending on the num-
ber of objects. The plot gives the recognition performance
after 80 seconds of training for the test error of the nth
object after n − 1 objects have already been trained.
We again compare segmentation, rotation normalization,
and unsegmented performance with and without tempo-
ral integration.

number of objects from 5 to 50. Again we compare
all the settings that were already described for the
plot in Fig. 6 and the qualitatively observable gains
of segmentation and temporal integration are simi-
lar. For the best setup we obtain a slow decrease of
classification rate from 100% for 5 objects till about
90% for 20 objects. From 20 to 50 objects the per-
formance stays roughly at about 90% correct, with
small fluctuations induced by the different difficulty
levels of the objects. This shows that the representa-
tional capacity is large enough to capture 50 objects
with their natural appearance variations.

6. Discussion

We have performed an extensive investigation of our
online learning architecture using a large ensemble
of 50 objects of various different shapes, colors and
textures. Compared to previous approaches to online
learning11,12,15 which were only applied to smaller
and limited object ensembles, we could demonstrate
that the capacity of our object representation is
sufficiently high to accommodate larger numbers
of objects. This is caused by the high-dimensional
embedding space of our object representation, con-
trary to other approaches using dimension reduction
for generalization.

An interesting question is the degree of gener-
alization over different environment and light con-
ditions that is achieved by our model. We do not
impose particular constraints where objects are pre-
sented apart from being within the peripersonal
space around the camera head. This has the con-
sequence that the overall illumination strength and
the direction of light sources is varying in the object
view data. From the observed performance we con-
clude that our principle of hierarchical feature rep-
resentation like in the human ventral pathway of
visual processing can deal with these modest vari-
ations in a robust way. We also observed that
the online learning system can naturally cope with
changes of environment that are sufficiently sim-
ilar for training and testing, because the learned
representation is collected consistently according to
the present conditions. For the cases of strongly
differing light situations between training and test
we observed a graceful degradation of results, with
strongly cast shadows posing the greatest problems
for the appearance-based approach we are using.
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The final representation for classification is
exemplar-based and its complexity increases lin-
early with the number of training views seen by
the architecture. Due to the sparsity of the repre-
sentation the amount of memory necessary can be
strongly reduced by representing only nonzero fea-
ture responses. Nevertheless, if we extend the num-
ber of classes by another order of magnitude, such
an exhaustive storage becomes infeasible and reaches
the limits of current standard computer memory sys-
tems. There is evidence that exemplar-based repre-
sentations play an important role in visual object
memory (see Refs. 20, 21 for reviews). This poses
the question how an appropriate generalization can
be obtained based on the available exemplars. Poggio
and Bizzi21 suggest a radial basis function-like tun-
ing as a key mechanism of generalization. Kirstein
et al.4 have proposed an extended memory architec-
ture, that implements a condensation of the represen-
tation into long-term memory by shifting the view
representatives in the embedding space in order to
minimize the classification error. This architecture
was, however, not yet implemented for a real-time
application.

The ability to perform online learning in direct
interaction makes it possible to utilize human feed-
back during training for higher-level control of
behavior. Goerick et al.22 have integrated the object
learning architecture described in this contribution
in a system that autonomously learns new visual
behaviors in interaction. The learning is governed by
an internal needs dynamics that explores new param-
eterizations of the basic visual interaction loop. The
needs dynamics is fed by an unspecific interaction
reward and by the specific reward of acquiring new
views for the object memory. This is an example of
coordinated online learning processes that operate
on different time-scales.

7. Conclusion

We have presented an architecture for online learn-
ing of arbitrary objects that uses aspects of biologi-
cally motivated visual processing in an efficient and
robust way. To our knowledge it is the first system
that focuses on real online learning of several objects
of arbitrary color and shape and their later robust
recognition in an unconstrained scenario. The repre-
sentation is based on a neural model of the ventral
pathway and combines a large storage capacity with

robustness in difficult real-world environments. Due
to the integration of speech dialogue with a context-
dependent memory architecture we achieve a high
level of interactivity that makes the training proce-
dure simple and intuitive. We consider this as an
important step towards cognitive vision systems for
robotics and man-machine interfaces that gain con-
siderable flexibility by learning.
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