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Target Shape Design Optimization by Evolving Splines

Pan Zhang, Xin Yao, Fellow, IEEE, Lei Jia, B. Sendhoff, Senior Member, IEEE, and T. Schnier

Abstract— Target shape design optimization problem (TS-
DOP) is a miniature model for real world design optimization
problems. It is proposed as a test bed to design and analyze opti-
mization approaches for design optimization with tremendously
reducing the running period of optimization process, while,
the merit can be only achieved by correctly approximating the
real design situation and satisfying the causality of design and
evaluation.

The Representation of the designed object is mostly de-
scribed by parameterization techniques. To realize the design
optimization, is to vary the parameterized object by means
of operating the relevant parameters. The solution of design
optimization often involved the choice of suitable description
for the designed object, which can be obtained by expanding
the design freedom. When changing the description length, the
original parameters of the designed object will then varied.
This bring about the requirements for optimization algorithms
to self-adapt their strategy parameters and related variables to
perform consistently searching.

We first put forwards a revised fitness evaluation mechanism
for the TSDOP in order to more reasonably check the designed
shape and direct optimization procedures. Based on the revised
TSDOP framework, we further discuss the parameter setting
problem for algorithms, especially evolution strategies, to adapt
and initial their search strategy parameters. A solution method
is proposed with solving a linear equations by a recursive way
with linear time complexity. All discussions are limited with the
B-spline parameterization framework, but may generally suit
other parameterization techniques. Experiments are used to
verify the causality of the revised fitness evaluation mechanism
and to study the significance of the proposed method for
suitable parameter settings of optimization algorithms during
the adaptation of the description length for design optimization.

I. INTRODUCTION

Optimization is the process of maximizing a desired quan-
tity or minimizing an undesired one. By term of an optimal
design, we mean the best of all feasible designs. Design
optimization in structural engineering is generally classified
into three major categories [1] [2]: (1) size optimization, (2)
shape optimization, and (3) topology optimization.

Structural optimization procedures usually start from a
given design topology, which determines a fundamental
frame and provide a starting point, and then vary proportions
(size) or boundary shapes of the design to achieve optimality
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of an objective under a range of constraints, which may
effectively improve structural performance.

In recent years, a lot of studies have been conducted to
utilize evolutionary algorithms for structural design optimiza-
tion [2], especially in the field of aerodynamics, e.g.[3]. For
the real world applications, especially in the arena of aero-
dynamic design optimization, evaluation of a given design
solution is always at the huge expense of high computational
efforts such as the evaluation with Computational Fluid
Dynamics (CFD) tools. On the other hand, the models of
evolutionary computation such as Evolution Strategies (ESs),
Genetic algorithms (GAs) and so on are working in the way
of generate and test which inevitably leads to a great amount
of evaluations for all testing points. These would be a disaster
for the extensive test of searching an optimal design or even
an acceptable one. Therefore, miniature models for design
optimization are frequently constructed which manage to
resemble to original optimization problem as closely as pos-
sible while extremely alleviating the computation cost. Here
the miniature model is called the target shape. Given the
target shape, the target shape design optimization problem
(TSDOP) is defined as minimizing the distance measured
between the target shape and the designed shape. For shapes
are represented by a set of coordinate points, the target shape
design optimization can be regarded as minimizing the two
sets of points sampled from the target shape and designed
shape with respect to an appropriate distant. The TSDOP is
employed as a test bed to check algorithmic performance for
the general shape design. The introduction of target shape
design optimization problem aims at checking how well a
given optimization method can conduct the shape design
searching under a range of specific geometric representation.
The performances are threefold: effectiveness, the ability to
search complete design space, i.e. visit all feasible solutions;
flexibility, the representation suitability to sufficiently fit
the optimization design; efficiency, the ability to track the
appropriate directions to conduct search as fast as it can be.

The TSDOP problem was first introduced in [4] and then
obtained further studies in [5] and [6]. In [4], the adaptive
encoding approach was proposed by means of an growing
representation for spline coded structures. The design process
was started with a representation with a minimal description
length; and then the number of description length was
adapted by structural mutations. In this way, the merit of
“minimal description length for sufficient degree of freedom
for the optimization” is expected to be achieved. Meanwhile,
the fitness function for the evaluation of the two curves of the
designed and the target, was presented and several ESs were
employed to perform the optimization task. In [5], the TS-
DOP was further explicit and intensive experimental results



were provided for this optimization problem. Additionally,
the applicability of polygon shape morphing methods as
recombination operators was studied in the standard ESs for
the design optimization, where the target shape design was
employed as a benchmark problem.

In this paper we will present an improved evaluation
scheme for the TSDOP problem in order to fit this kind
of design optimization benchmarks to more reasonable ex-
pression for real world design situations. Furthermore, we
will propose an particular mechanism for evolutionary op-
timization algorithms, in particular the ESs, to perform the
adaptive searching smoothly. For convenience and without
loss of generality, all discussions are within the framework
of the representation with B-spline designed boundary curves
and optimization by means of ESs. In the following section,
we will outline the original TSDOP problem including the
dynamical representation, the fitness evaluation and solu-
tion techniques. In sections III, we will analyze the way
to evaluation of the two shapes and present a improved
evaluation function. In section IV the variation operations
will be analyzed and drawbacks will be presented. Several
invariance principles will be used to derive the approach to
update algorithmic parameters for adaptation to varying the
design length. The comparative experiments are conducted
to study the significance of the modified TSDOP problem
and the proposed algorithm in section V. Finally, section VI
concludes with a brief summary and comments on the results.

II. TARGET SHAPE DESIGNED OPTIMIZATION PROBLEM

The solution of the target shape design optimization
problem is to operate the designed shape to fit the given
target shape. Naturally, the TSDOP involves three basic
components: how to represent the designed shape, how to
gauge the distance between the two shapes, and how to
operate the designed shape.

A. Representation

Representing the designed shape is critical for optimization
algorithms and further the realization of design optimization.
An suitable representation is always required possessing the
characteristics such as [3]:� Completeness the representation should guarantee a

maximal degree of freedom for the generated geometries
and at leat can represent the optimal shape.� Causality This requires that small steps on the genotype
space lead to small steps in the phenotype space [7] and
vice versa.� Compactness an adequate representation should be
realized with the minimum encoding dimensionality
which correspondingly reduces the size of the search
space and in turn the calculation time.

One of the suitable ways is to utilize the parameterized
curve or surface to encode the designed shapes. There
are several shape parametrization techniques for the shape
representation and manipulating. For convince and without
loss of generality, we here only focus on the problem with

the two
�
-dimensional boundary curves as the target and

corresponding designed curve which is defined by the B-
splines. Let ������	��
����������������� ����������� be

�! 
-dimensional

control points and also let the vector " ��#%$'&�����������$'(*),+*-
be

the knot vector where .0/ $'&�� /21�1�13/�4 , a B-spline curve
can be formulated as [8]:�5 #6$7-	� 8 (:97;�=<>&@? �%A +B#6$7- ���� .C/ $ /D4 � (1)

where, the E -degree B-spline basis functions ? �%A +F#6$7- can be
formulated as the Cox-de Boor recursion formula:? �%A &G#%$'-	�IH �

if
$ � / $ / $ �=)�;J

otherwise (2)

? �%A + #6$7-K� $CLM$ �$'�=)'+�LN$,� ? �%A +O97; #%$'-P $ �Q),+�)�; LN$$'�=)'+�)�;RLM$'�Q)�; ? �=)�;SA +O97; #6$7- (3)

By using the B-spline family of curves, we have the
following merits for optimization algorithms to manipulate
the designed curve to fit the target:� The B-spline curves have a local behavior, i.e., a point

on the curve is only affected by several neighbored
control points.� The low-degree B-spline form can represent complex
curves efficiently and most accurately.� The sensitivity derivatives of geometry

5 #%$'-
with re-

spect to
� �

is the B-spline basis function ? �%A + , which
stay fixed when providing a fixed knot vector.

Therefore, each designed curve can be encoded by the
coordinates of the control points and its knot vector. Fur-
thermore, for evolutionary algorithms to operate the de-
signed curves, e.g. Evolution Strategies, an individual can
be represented basically by the components of the relevant
curve: control points, knots; and by the strategy parameters
for those control points. For the adaptive representation,
which has the growing number of control points and related
additional knots, the structural element is also encoded into
the individual representation [4].

B. Fitness function

The way to measure the distance between the designed
curve and target curve is based on a modified hausdorff
distance which calculates the value of two sets of points
sampled from the two curves. Formally it calculates the
distance based on a kind of averaged symmetric Hausdorff
distance, e.g. [4]:T*U � �WV � �� #OX Y[Z�X\ �=<�;3] 
W�^� . � LN_`� a�bc_d�!e aP X Y�f�X\g <�;,] 
W�^� 4 g LNh�� aGbchi��e ; -� �� #%j P ? - (4)



where
e ;

is the point set sampling from the target curve
and

e a is that from designed curve.
� e ; �

and
� e a � are the

cardinalities of the sets. The first term
j

is to collect the
distance values for the points in the target curve to their
nearest points in the designed curve; the second term ? is
that from the points in the designed curve to the nearest
points in the target curve.

In practice, to avoid the self-loops in the designed curve,
a penalty value for each loop is often applied to the curve’s
fitness value.

III. EVALUATION

The TSDOP mimics the real world design optimization
problem such as aerodynamic design problems where the de-
signed process is interactive with outside evaluations such as
decisions by engineers or CFD simulations. These evaluation
phrases are blind to the optimization algorithms. That is, the
employed optimization algorithms is dealing with an almost
black-box problem and the generate-and-test process can
hardly use other information except for the feedbacks of the
evaluation results. Therefore, this black-box characteristics
need to be incorporated in to the evaluation function of the
TSDOP.

On the other hand, in the real design, a good designed
shape should be assigned the corresponding good evaluation
value, otherwise a failure shape should be recognized and set
low performance. This is another casuality requirement for
the evaluation function of the TSDOP.

While, for the previous evaluation function, i.e. the aver-
aged symmetric Hausdorff distance in (4), the latter require-
ment for providing the evaluation function is less satisfied.
In this averaged symmetric Hausdorff distance, there exist
two cases where the evaluation approach in (4) tends to fail.

For the first case (see Fig.1), let us count the distance for
the four line segments within the interval of

j ? , since other
parts are obviously independent of the four lines. Given thatk';ilmk a l ;aon lIkqp

,
k a P kBp � n and the numbers of

sampling points for the four segment r � , r � in the designed
curve and s � , s � in the target curve are

� r �o� , � r � � , � s �o� ,
and

� s � � respectively. From the (4), we have that,j � X t Z X\ �Q<�; k,; P X t�f�X\g <�; kBp� � s ; � 1 k'; P � s a � 1 kqp (5)

? � X u	ZvX\ �Q<�; k'; P X u f X\g <�; kqp� � r ; � 1 k,; P � r a � 1 k a � (6)

For the value
k ;

could be too tiny to be ignored, the valueT U � �WV in (4) hasT*U � �WV # j ? -	� �� #%j P ? -^� �� #c� s a � 1 kqp P � r a � 1 k a -
When the difference between

� s a � and
� r a � is not significant,

which is common to have sampling points at regular inter-
vals, the value of

T�U � �WV is determined by
k a and

kqp
. While

k a P kqp � n is satisfied, when moving the line of r � in the
direction close to s a and without overpass of the central line,
i.e.

k a / ;aGn , the
T U � �WV is almost unchanged. In all, for the

obvious bad designed curve, when an optimization algorithm
try to improve it such as by the mutation operation, the
feedback information is nearly unchanged, since the amount
first term reduces is equal to that the second term adds. So
although the designed shape improved, but the evaluation
value fails to reflect it. This cause the intractability for the
mutation-based algorithms to solve this TSDOP. While it is
important to note that this is not the fact in the real world
situation, the only mistake occurs in the fitness evaluation
function.

Fig. 1. Case I for evaluation

For the second case, we provide a bizarre shape but this
is not uncommon for fitting the target curve by means of
adaptation representation, in which control points and knots
are gradually growing with the design requirement. Given
the two curves in the Fig. 2, we focus on the two segments
in the interval of

j ? , where the segment of the target
curve has w sample points and the segment of the designed
curve has x points. The 2(a) in Fig. 2 provides the distances�oykB� / k �G
	�m��� � �czB� w � for each sample point in the target
curve and the 2(b) presents those in the designed curve, i.e.� k ;O� k a ��������� kB{ � . Note that, although we sampled the two
curves with the same number of points and in equal distances,
the zigzag segment extended the designed curve and as a
result there exists more sample points in the

j ? interval.
From the averaged symmetric Hausdorff distance (4), we

have that, j � |\ �=<�; ykq� (7)

? � {\g <�; k g (8)

where since the
j

value is much smaller than the ? value, the
value of

T U � �WV is dominated by the ? value. This is reasonable
to denote that the shape has low performance, but due the
existence of the term ? , the significance for designating
the unexpected shape will be cutting down by means of the
averaged value. This result will directly cause the algorithm
to assent this kind of shape just because it is “not too bad”.
The fact is that this kind of zigzag shapes has relatively less
effects on the shapes’ performance evaluations for the way to



(a) Term } in ~c�[���W��� }���� (b) Term � in ~c�[���W��� }��^�
Fig. 2. Case II for evaluation

evaluation is by comparison of distance between the sample
points and the average values will then further lessen the
feedbacks of poor shapes. Therefore, for the second case,
the fitness function also shows weak to reflect the causality
in the real design,

Instead, we here provide a modification for the TSDOP
that choose the worse evaluation value between the term

j
and ? as the fitness evaluation rather than the averaged one.
It is formally presented as below:T*U � �WV � ���O�7#OX Y[ZvX\ �Q<�; ] 
W�^� . � LM_�� aGb�_��ie a �X Y f X\g <�;q] 
W�^� 4 g L�h3� a*bch!�!e ; -� ���O�7#%j�� ? - (9)

This modified fitness evaluation not merely holds the basic
causality that well fitted designed curve receives good evalu-
ation value, but also can improve the evaluation mechanism
for both of the two preceding cases. For the first one, the
fitness for the four segment is determined by the term

j
without any disturbance of the term ? , which will then direct
the designed moving to the right direction with respect to a
reasonable optimization method. On the other hand, for the
second case, the fitness for the zigzag part will then decided
by the term derived form the designed curve to the referenced
target and the other disturbing term will be ignored.

IV. VARIATION AND STRATEGY PARAMETERS

Evolution strategies have been widely applied into the field
of the design optimization. Also this class of algorithms have
been studied (e.g. [4] [5] [6]) in the solution of the TSDOP
by controlling the parameterized curves, such as B-splines
and NURBS. The default way, for ESs to solve the TSDOP,
adopts the following form:� An individual consists of two parts: strategy param-

eters and control points, in which each dimensional
component of a control point takes a position in the

chromosome, e.g. for
�
-dimensional curve with

�
con-

trol points we have the individual representation as#%��� Z �c��� Z �c��� f �c��� f ���������[�����,�[���S�F- .� The strategy parameters determine the strength of the
variations for the relevant components. It can be all
components share a common strategy parameter for
the isomorphic mutation; each component has its own
strategy parameter for the independent mutation or even
more strategy parameters for the correlated mutation.� The variation of the designed curve is realized by means
of moving the control points. Together with the bases
of the relevant splines, the exact variation step for each
point in the designed curve can be calculated.

Obviously, the design optimization process is conducted
with operating the control points. Thus the strategy parameter
is the critical for its corresponding control point to perform
the variation operation. While much attention has been payed
to the adaptation of the strategy parameters, a side effect on
the adaptation of strategy parameters, brought out by the
consecutive variation mechanism, has been neglected.

Given a designed B-spline curve
5 #6$7-

defined as (1) with�
control points �� � and the basis functions ? �6A + #6$7- . For

convenience and without loss of generality, let each control
point has a strategy parameter vector �� � . Therefore, the
representation of an individual is the set of pairs

# �� � � �� � -
where usually �� � are standard deviations of the normal
distributions. The adaptation process of �� � is shown in Fig.
3

Fig. 3. Adaptation for strategy parameters

On one hand, the adaptation of �� � is to adjust its value to
vary the designed curve ���5 #6$7- to realize gradual improve-
ment for the design task; on the other hand, the operation



of �� � on the designed curve is indirect, but only to trail
by means of affecting its related control point �� � and then
combined with the basis functions ? �%A +B#6$7- to determine the
amount to change the designed curve. As a result, the goal
of adaptation of strategy parameters lies in the current state
of the designed curve, rather than the coordinates of control
points.

Generally, ESs are working in the following manner for
design optimization: �� � adaptation (10)����� � �� � P �� � 1[� # J ����-��

(11)�5 �W#6$7-K� (:9>;\ �Q<7& ? �6A + #%$'-�# ����� -� (:9>;\ �Q<7& ? �6A + #%$'-�# �� � -P (:9>;\ �Q<7& ? �6A + #%$'-�# �� � 1�� # J ����-�-
(12)

where � # J ����-
is a normally distributed random number.

We always expect that with a sophisticated adaptation
mechanism for strategy parameters �� � , the designed curve�5 #6$7- can gradually move close to the target curve by
means of the variation of the control points ���� . This may
be achieved when the basis functions � ? �%A + #%$'-���
��J �����������v��#6��L���-v�

are static, i.e. the knot vector " �#6$ & �c$ ; ���������c$ (*)'+ -
is fixed and the relationship between

these control points and the designed curve is linear, since for
given

$
, ? �%A + #%$'- are constants with respect to



. Therefore,

the goal of following the variation of the designed curve is
almost equivalent to moving the control points expect for
the combination of variations of the control points. Unfortu-
nately, when the bases are constantly changing, which occurs
in the context of the adaptive encoding (see [4]), this rela-
tionship shift to an undecidable mapping. Specifically when
inserting a control point, the knot vector will then change
with adding a knot or be completely rebuilt and the basis
functions will accordingly change. Such a variation of bases
serves as nonlinear disturbance for the whole adaptation of
strategy parameters.

In practice, for expanding the description length of the
designed curve we usually utilize the knot insertion method
rather than completely rebuild knot vectors (for details, see
[8]). By means of the knot insertion method, we can adding
a new knot into the knot vector without changing the curve’s
shape. While a knot is inserted, the basis functions are
then locally distorted, e.g., that shown in Fig. 4; and the
neighbored control points have to been rearranged in order
to keep the original shape of the curve. This brings about
two matters for ESs to conduct consecutive searching:� related control points are rearranged but the correspond-

ing strategy parameters remain previous values;� the settings of strategy parameters for the newly adding
control point need to be determined reasonably.

Fig. 4. Illustration of basis functions with inserting a knot

Both of the problems are related to the settings of the
strategy parameters when extending the description length
for design optimization. The principle for suitable settings
is that: while holding the curve unchanged with the knot
insertion, we need a further invariance that the strength of
random variation keeps for each point in the curve.

Given the original curve �5 #%$'- and the modified curve�5¡  #6$7- obtained after the knot insertion operation. By the
standard knot insertion method, we have the basic invariance,
i.e., �5 #6$7-¢� �5¡  #%$'- . Further, let �5 � #6$7- and �5¡  � #%$'- be the
one step modification obtained from mutations of �5 #6$7- and�5¡  #6$7- , both of which are performed by their respective
strategy parameters. The further principle for the invariance
of strength of random variation requires that £@¤ �5 � #%$'-¦¥§�£@¤��5¡  � #%$'-¦¥ and ¨�.o©ª¤��5 � #6$7-W¥N� ¨«.G©ª¤��5¡  � #%$'-¦¥ are satisfied,
where £@¤=1 ¥ is the expectation of ¤�1 ¥ and ¨«.o©:¤=1 ¥ is the variance
of ¤�1 ¥ . Moreover, the first term is referred to as the first-order
invariance and the second term is denoted as the second-
order invariance.

According to the scheme of (10), let the variation of an
arbitrary curve be,�5�¬ #%$'-	� (:97;\ �=<7& ? ¬�%A + #6$7-�# �� ¬� - P (:97;\ �=<7& ? ¬�%A + #6$7- �� ¬� 1� # J ����-�-

(13)

and the expectation and variance be(:9>;\ �Q<7& ? ¬�6A + #6$7-�# �� ¬� - (14)

and (:97;\ �=<7& # ? ¬�%A + #%$'-c- a # �� ¬� - a � (15)

Then given the original curve �5 #6$7- and the modified
curve �5¡  � #6$7- with a knot insertion, we have the first-order
and second-order invariance for this modification, that is,£@¤��5 � #6$7-W¥'� £@¤��5¡  � #6$7-W¥ and ¨�.o©:¤G�5 � #%$'-¦¥'� ¨�.G©ª¤��5¡  � #%$'-¦¥ .

Therefore, The following conditions,(ª97;\ �Q<7& ? �%A +ª#%$'-�# ����-^� (:97;\ �=<>& ? ��%A + #6$7-�# �� �� - (16)



(:9>;\ �=<>& # ? �%A + #%$'-c-�ao# �� � -�a®� (ª97;\ �Q<7& # ? ��6A + #6$7-�-�a�# �� �� -�a (17)

are obtained. Note that the first-order condition (16) is
equivalent to the basic invariance for knot insertion and
the second-order condition provide a channel to reasonable
settings of strategy parameters for ESs to conduct further
optimization.

Given an original curve of a degree E consisting of a
control point vector � �� & � �� ; ��������� �� (ª97; � and a knot vector� $ & �c$ ; ����������$ (*),+ � . Suppose the knot ¯ to be inserted lies in
the span ¤ $7°o��$7° )�; - , according to the convex hull property,
the knot insertion computation is restricted on control points�� ° � �� ° 97;*��������� �� ° 9F+ . The way to modify the control points
is illustrated in Fig. 5 and formally stated as below:�± � ��#��²LN³ � - �� �%97; P ³ � �� � (18)

where ³ � � ¯ LN$ �$,�Q),+�LN$'� for ´ L E P � / 
 /µ´ �
With (18), the whole control point vector can be recon-
structed.

Furthermore, to rebuild the individual representation for
ESs, we also need to finding the values for the strategy
parameters of the related control points. Due to the local
behavior in a B-spline curve, calculation can be restricted
on part basis functions rather than that for the whole curve.
The strategy parameters are determined by the second-order
invariance and calculated as follows. Let choose

� E P �
knots as � $7° 9 a +�)�; ��$7° 9 a +�) a ���������c$'°:� ¯ � , where ¯ is the new
knot and E is the degree of relevant. According to these
parameters,

� E P �
points can be calculated for each of

Fig. 5. Illustration of knot insertion

both original and modified curves. From the second-order
invariance presented in (17), we have the linear equations in
(19) with respect to the given

� E P � knots. Note that the
matrix ¶ is a lower triangular matrix, therefore, the settings� for strategy parameters can be recursively computed.

V. EXPERIMENTAL RESULTS

A. Setup of the experiments

Experiments have been conduct to verify the causality of
the revised fitness evaluation function and to demonstrate
the effectiveness for individuals to update their parameters
including the reconstructed control points and their strategy
parameters during the process of variation of the description,
i.e. the sequence of knot insertion operations.

All experiments used a common
�
-dimensional blade-like

target curve, shown in Fig. 7 and comparisons were carried
out with

�*J�J
samples from both of the target curve and

designed curve. The designed curve is a B-spline curve

·¸¸¸¸¸¸¸¸¸¸¹
8 (:97;�=<7& # ? �6A +B#6$ ° 9 a +�)�;�-�- a # �� �W- a8 (:97;�=<7& # ? �6A +B#6$ ° 9 a +�) a -�- a # �� �W- a

...8 (:97;�=<>& # ? �%A + #%$'°*-c- a # �� � - a8 (:9>;�Q<7& # ? �%A + #%$ V -c- a # �� � - a

º�»»»»»»»»»»¼
� � 1�¶ �¾½ # �� �° 9 a +�)�; - a # �� �° 9 a +�) a - a �����¿# �� �° - a �� �° )�; - aMÀ 1

·¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¸¹

? �° 9 a +�)�;vA + #6$ ° 9 a +�)�;�-
... ? �° 9 a +�) a A + #6$ ° 9 a +�) a -? �° 9B+�)�;SA + #6$ ° 9 a +�)�;�- ...? �° 9B+�) a A + #6$ ° 9 a +�) a -

. . .

... ? �° 9F+OA + #6$7° 9F+ -

. . .
...

. . .? �° A + #%$'° 9F+ - ����� ? �° A + #6$7°O-? �° )�;vA + #%$'°O- ? �° )�;SA + # ¯ -

º�»»»»»»»»»»»»»»»»»»¼
(19)



with degree
�

and initialized by sampling the three sampled
control points along a given circle with equal knot span.
Based on the sampled control points, an initial designed
curve can be obtained (see 7). The whole testing curves have
been randomly generated by this approach and this common
testing curves were used in all experiments.
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Fig. 6. Illustration of testing set

Two optimization algorithms were involved of optimizing
the target curve: the individual mutative evolution strategy
(iES) [9] and the covariance matrix adaptation evolution
strategy (CMA) [10]. The framework proposed in [4], for
adaptive encoding the designed curve which gradually ex-
panding the control points, was utilized to conduct structural
mutation.

For each structural mutation, the strategy parameters for
each sequence of modified controls are obtained according
to our proposed methods. More specific, for the individual
mutative ES, the strategy parameters (step sizes) related to
the modified control points are calculated by the equations in
(19) and for the CMA, the corresponding diagnose elements
in the covariance matrix of strategy parameter are setting
with the values derived from the equations in (19), while, the
elements of covariance are setting default

J
and the historical

step size information are ignored.

B. Results

In this part, all Results were obtained by
z J

independent
runs. the individual mutative evolution strategy was incor-
porated into the adaptive encoding framework, where the
interval for try structural mutation was set one and strategy
parameter update for structural mutation was obtained from
the equations (19). Fig. 7 depicts two kinds of relations:
the first relation depicts the running results derived from
proposed modified evaluation mechanism and the other com-
pares two running results derived from the original evaluation
way and the modified mechanism.
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Fig. 7. Illustration of testing set

In the first relation, the mean best individual during the
evolution process was presented by giving its modified evalu-
ation and its corresponding original fitness. In Fig. 7 the point
A in the modified evaluation curve and the point B in the
original fitness curve reflect the common individual, while,
the point A shows inferior performance. Although this indi-
vidual seems to represent a good designed curve in view of
the original fitness evaluation, but from the modified fitness
evaluation, it is not; and even the descendent individuals had
a bit worse performance evaluated by the original way, while
it did still make progress in the optimization process eval-
uated by the modified evaluation mechanism. This conflict
relation shows a clue for the foregoing discussion on the two
exemplified cases for the original evaluation drawbacks that
there exists some circumstances for the original evaluation
to fail to reflect the real states of the designed curves.
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Fig. 8. Illustration of a designed curve

The second curve relation provides a comparison for the
effectiveness of the two evaluation mechanism. The com-
mon algorithm, which individual mutative ES with adaptive



TABLE I
PERFORMANCE COMPARISON OF IES WITH Á GENERATIONS FOR EACH

STRUCTURAL MUTATION. M MEANS TO UPDATE STRATEGY

PARAMETERS BY THE PROPOSED METHOD

Method Á^ÂMÃ Á�ÂMÃ -M Á^ÂMÃ�Ä Á^ÂMÃ�Ä -M
Min 415.8 202.8 409.2 247.6
Mean 1864.3 812.9 1323.1 659.0
STD 2342.4 590.1 1524.3 552.9

representation and the proposed strategy parameter settings,
was employed and two evaluation mechanisms were used.
Both of the curves depict in Fig. 7: the curve with modified
evaluation and that with original evaluation. The causality,
that good curve shows good evaluation, and effectiveness for
the modified evaluation can be obtained by means of parallel
comparison with the curve with original evaluation, in Fig.
7 and the result od a designed curve in Fig. 8.

Further experiments have been done to check the correct-
ness and effectiveness for the proposed strategy parameter
setting approach. The optimization framework of adaptive
encoding, in which every Å generations a structural mutation
was tried (see [4]), were selected. The individual mutative
ES (iES) and the CMA-ES were employed as optimization
algorithms. The statistical results about minimum value,
mean value and standard deviation are presented in TABLE
I for individual mutative ES and the in TABLE I for CMA-
ES, in which the interval for structural mutation was

�
and� J

. The notion of Å �¿�
-M and Å �¿� J

-M denote those
using the proposed strategy parameter setting method and
others without M are those using the default initial strategy
parameter values for new control points.

The results showed that the structural mutation badly
disturbed the optimization process. When ignoring the suit-
able settings to update the strategy parameters, the standard
deviations were complete large and some of the designed
results were completely unacceptable, which can be seen
from the STDs of Å ���

and Å ��� J
in TABLE I and TABLE

II. Although when extending the length of the generation
interval Å , the standard deviations reduced, it contrarily gave
an example that reducing the frequency of structural muta-
tion, the disturbance to the optimization process will then
get weak. In comparison, the proposed method for setting
strategy parameters have made significant improvement for
evolution strategies to steadily and effectively obtain the
good solutions. The standard deviations were reduced greatly
and the solution quality have been improved. These results
demonstrate that solution performance for designed curve can
been steadily improved by our proposed method and the side
effect on algorithmic parameters from structural mutation
have been effectively controlled and further the good design
can be relatively steadily achieved.

VI. CONCLUSIONS

The target shape design optimization problem have been
further discussed and an improved fitness evaluation function

TABLE II
PERFORMANCE COMPARISON OF CMA-ES

Method Á�Â0Ã Á^ÂMÃ -M ÁRÂÆÃ�Ä ÁRÂÆÃ�Ä -M
Min 1461.9 390.1 486.3 214.5
Mean 7014.1 969.0 6043.8 739.2
STD 7932.5 1021.7 7161.9 721.0

has been proposed to form a reasonable test bed to facilitate
optimization algorithms conducting design optimization. The
causality of the modified evaluation mechanism for the
designed object has also been illustrated with the experiment.

Based on the revised framework, we further discussed
the parameter setting problem which is derived in the con-
text of the variable length of description for representing
a parameterized object. With the variation of description
length, the parameters have to be reconstructed and so is
the parameters of optimization algorithms. We proposed
a reconstruction method for the parameters of algorithms,
based on the proposed first-order invariance and second-order
invariance. These requirements of invariance provides a basis
for establish the relationship between the two consecutive
solving steps. Taking the evolution strategies as an example,
the general equations were proposed to directly obtain the
needed values of strategy parameters. In the experiments,
the corresponding statistics were provided. The proposed
parameter setting method provided a reliable approach to
tune the adaptation setting and realize steady solution.

REFERENCES

[1] G. E. Dieter, Engineering Design: A Materials and Processing Ap-
proach, 3rd edition. McGraw-Hill, 2000.

[2] R. Kicinger, T. Arciszewski, and K. A. De Jong, “Evolutionary
computation and structural design: A survey of the state of the art,”
Computers & Structures, vol. 83, no. 23-24, pp. 1943–1978, 2005.

[3] M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff, “Optimisation of
a stator blade used in a transonic compressor cascade with evolu-
tion strategies,” in Adaptive Computing in Design and Manufacture
(ACDM), I. Parmee, Ed. Springer Verlag, 2000, pp. 45–54.

[4] M. Olhofer, Y. Jin, and B. Sendhoff, “Adaptive encoding for aerody-
namic shape optimization using evolution strategies,” in Congress on
Evolutionary Computation, vol. 2. Seoul, Korea: IEEE Press, May
2001, pp. 576–583.

[5] W.-W. Chang, C.-J. Chung, and B. Sendhoff, “Target shape design
optimization with evolutionary computation,” in Proceedings of the
2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds,
H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, Eds.,
2003, pp. 1864–1870.

[6] M. Nashvili, M. Olhofer, and B. Sendhoff, “Morphing methods in
evolutionary design optimization,” in Genetic and Evolutionary Com-
putation Conference, GECCO 2005, Proceedings, Washington DC,
USA, June 25-29, 2005, H.-G. Beyer and U.-M. O’Reilly, Eds. ACM,
2005, pp. 897–904.

[7] B. Sendhoff, M. Kreutz, and W. von Seelen, “A condition for
the genotype-phenotype mapping: Causality,” in Proceedings of the
Seventh International Conference on Genetic Algorithms (ICGA97),
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