
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Efficient hierarchical parallel genetic algorithms
using grid computing

Dudy Lim, Yew-Soon Ong, Yaochu Jin, Bernhard
Sendhoff, Bu-Sung Lee

2007

Preprint:

This is an accepted article published in Future Generation Computer Systems –
The International Journal of Grid Computing: Theory, Methods and Applications.
The final authenticated version is available online at: https://doi.org/[DOI not
available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Efficient Hierarchical Parallel Genetic

Algorithms Using Grid Computing

Dudy Lim a Yew-Soon Ong a,∗ Yaochu Jin b Bernhard Sendhoff b

Bu-Sung Lee a

aSchool of Computer Engineering, Nanyang Technological University
Nanyang Avenue, Singapore 639798

bHonda Research Institute Europe GmbH
Carl-Legien Strasse 30, 63073 Offenbach

Abstract

In this paper, we present an efficient Hierarchical Parallel Genetic Algorithm frame-
work using Grid computing (GE-HPGA). The framework is developed using stan-
dard Grid technologies and has two distinctive features, 1) an extended GridRPC
API to conceal the high complexity of Grid environment, and 2) a metascheduler for
seamless resource discovery and selection. To assess the practicality of the frame-
work, theoretical analysis on the possible speed-up offered is presented. Empirical
study on GE-HPGA using a benchmark problem and a realistic aerodynamic airfoil
shape optimization problem for diverse Grid environments having different com-
munication protocols, cluster sizes, processing nodes, at geographically disparate
locations also indicates that the proposed GE-HPGA using Grid computing offers
a credible framework for providing significant speed-up to evolutionary design op-
timization in science and engineering.

Key words: Grid computing, parallel Genetic Algorithms
PACS: 01.30.−y

∗ Corresponding author.
Email addresses: dlim@ntu.edu.sg (Dudy Lim), asysong@ntu.edu.sg

(Yew-Soon Ong), yaochu.jin@honda-ri.de (Yaochu Jin),
bernhard.sendhoff@honda-ri.de (Bernhard Sendhoff), ebslee@ntu.edu.sg
(Bu-Sung Lee).

Preprint submitted to Elsevier 3 October 2006

1 Introduction

Evolutionary Algorithms (EA) as a family of computational models inspired
by the natural process of evolution, have been applied with a great degree
of success to complex design optimization problems [1][2][3][4][5]. In Genetic
Algorithms (GA) [6], a subclass of EA, potential solutions are encoded into
a simple chromosome-like data structure, and recombination and mutation
operators are repeatedly applied to a population of such potential solutions
until a certain termination condition is reached. Their popularity lies in their
ease of implementation and the ability to locate designs close to the global
optimum. However, thousands of calls to the analysis codes are often required
to locate a near optimal solution in most conventional GA. The increasing use
of time-consuming high-fidelity analysis codes in science and engineering for
studying the effect of altering key design parameters on product performance
has further led to even longer and intractable design cycle times. Fortunately,
another well-known strength of GA is the ability to partition the population
of individuals among multiple computing nodes. Doing so allows sublinear
speedups in computation and even super-linear speedups [7][8] if possible al-
gorithmic speed-up is also considered. Over the last decade, many variants of
parallel GAs exist for exploiting the explicit parallelism of GAs. The reader is
referred to [9][10] for some excellent expositions of parallel GAs.

While numerous research on parallel GAs for various distributed computing
technologies have since been reported, most studies and applications of par-
allel GAs have been on using dedicated and homogeneous computing nodes
[11][12][13]. The focuses have been on small-scale dedicated computing re-
sources and are not easily extendable towards harnessing computing resources
that span across laboratories or even organizations at disparate geographical
locations. The issue of standards is one major challenge, as many existing
technologies do not have the common interfaces and methods of doing things.
In addition, the parallel evaluations in PGAs are often constrained by the
limited commercial licenses a design team may access seamlessly for analyzing
the designs at once. This is primarily due to the high costs associated with the
site licenses of commercial analysis packages, for example, ANSYS [14], FLU-
ENT [15], SYSNOISE [16], etc. It is for these reasons that the recent advent
of what is termed Grid computing [17][18] has gained widespread attention, as
it sets about the notion of establishing a set of open standards for distributed
resources and ubiquitous services. Advances in Grid computing have also fu-
eled the research and development of Grid problem solving environment for
complex design in science and engineering [19][20][21]. While many open issues
remain when using grid computing across geographically disparate laborato-
ries, scheduling, resource management, [22] and benchmarking grids [23] are
among some of the more frequently discussed topics.

2

To complement existing works on parallel GAs, we present an efficient hi-
erarchical parallel genetic algorithm framework using Grid computing tech-
nologies in this paper. The framework provides unique features that include
1) an extended GridRPC element for concealing the high complexity of Grid
computing environment from the users and 2) a meta-scheduler for seamless
resource discovery and selection in a Grid environment. Subsequently, exper-
iments are carried out to assess the efficacy of the proposed framework for
parallel evolutionary optimization under diverse Grid environments. Finally,
we show that the Grid-enabled parallel genetic search generates significant
speed-up for evolutionary design optimization.

The rest of this paper is organized as follows. In Section 2, we present a brief
overview on parallel GAs, as one of the successful design optimization method-
ology used in science and engineering. Section 3 describes the proposed Grid-
Enabled Hierarchical Parallel Genetic Algorithm (GE-HPGA) optimization
framework. Theoretical analysis on speed-up by GE-HPGA is also presented
in the section. Section 4 presents an empirical study on GE-HPGA in Grid
computing environments containing mixtures of diverse computing clusters
that are geographically disparate, using a benchmark problem and a realistic
aerodynamic airfoil shape design problem. Finally, Section 5 concludes this
paper with a brief summary.

2 Parallel Genetic Algorithms

Genetic Algorithms [6] are probabilistic meta-heuristic methods inspired by
the ‘survival of the fittest’ principle of neo-Darwinian theory of evolution. Ar-
tificial creatures are created and put into competition in a struggle for life
and only the survivors are allowed to reproduce. A new population will be
created using biologically inspired operators such as crossover, mutation, and
selection, and the process repeats until some search termination criteria are
reached. A genetic algorithm without any structure is usually referred to as a
panmictic GA. The Parallel Genetic Algorithms (PGAs) are extensions of the
panmictic GA. The well-known advantage of PGAs is their ability to facilitate
speciation, a process by which different subpopulations evolve in diverse di-
rections simultaneously. They have been shown to speed up the search process
and to attain higher quality solutions on complex design problems [24][25][26].
In addition to the parallel panmictic GA, two popular parallel structured GAs
include the island and cellular GA [9][10]. In this section, we present a brief
review on these algorithms. The three basic models of PGA are as illustrated
in Figure 1.

Master-slave PGA. In master-slave PGAs, it is assumed that there is only
a single panmictic population, i.e., a canonical GA. However, unlike the

3

n

(a) Single population
master-slave PGA

(b) Cellular PGA

text

text

text

text

text

(c) Island PGA

Fig. 1. Basic models of Parallel Genetic Algorithms.

canonical GA, evaluations of individuals are distributed by scheduling frac-
tions of the population among the processing slave nodes. Such a model
has the advantage for ease of implementation and does not alter the search
behavior of a canonical GA.

Fine-grained or Cellular PGA. Fine-grained PGA consists of only a sin-
gle population, which is spatially structured. It is designed to run on closely-
linked massively parallel processing system, i.e., a computing system con-
sisting a large number of processing elements and connected in a specific
high-speed topology. For instance, the population of individuals in a fine-
grained PGA may be organized as a two-dimensional grid. Consequently,
selection and mating in a fine-grained parallel GA are restricted to small
groups. Nevertheless, groups overlap to permit some interactions among
all the individuals so that good solutions may disseminate across the en-
tire populations. Sometimes, fine-grained parallel GA is also termed as the
cellular model PGA.

Multi-population or Multi-Deme or Island PGA. Multiple population
(or deme) PGA may be more sophisticated, as it consists of several subpop-
ulations that exchange individuals occasionally. This exchange of individ-
uals is called migration and it is controlled by several parameters. Multi-
population PGAs are also known by various names. Since they resemble

4

the ‘island model’ in population genetics that considers relatively isolated
demes, it is also often known as the island model PGA.

Hierarchical PGA. The various PGA models may also be hybridized to
produce other new Hierarchical PGA (HPGA) models. For instance, one
may form a hierarchical PGA that combines a multi-population PGA (at
upper level) and a fine-grained PGA or master-slave PGA (as what we
consider throughout the development of the framework in this paper), or
even another level of island PGA (at lower level). Basically, any combination
of two or more of the three basic forms of PGA is an HPGA.

3 Grid-enabled Hierarchical Parallel Genetic Algorithm (GE-HPGA)
Framework

In this section, we present a Grid-enabled HPGA, which we call GE-HPGA in
short. Various Grid enabling technologies have been considered in developing
the GE-HPGA framework and these are discussed in Section 3.1. The detailed
workflow of GE-HPGA is then discussed in Section 3.2. Theoretical analysis on
the speed-up offered by the proposed framework is also considered in Section
3.3.

3.1 Grid Enabling Technology

In this section, we discuss some of the key Grid technologies used in devel-
oping the GE-HPGA. Globus Toolkit 1 [27], Commodity Grid Kit (CogKit) 2

[28], Ganglia monitoring tool 3 [29], and NetSolve 4 [30] are some of the core
Grid technologies used in developing the GE-HPGA. From a survey of the
literature, it is possible to establish that the existing GridRPC standard lacks
mechanisms for automatic resource discovery and selection of Grid resources.
As a result, users are naturally required to perform manual look-up and se-
lect resources when assigning new tasks onto the Grid computing resources.
This is clearly impractical since large amount of computing resources exist on
the Grid and are often dynamic in practice. Furthermore, most optimization
problems have a large number of evaluation tasks that require many identical

1 Globus is the de-facto Grid Middleware, which provides the Grid infrastructures
for security, data management, resource management, and information service.
2 CogKit is the API for Globus.
3 Ganglia is a distributed monitoring system for high-performance computing sys-
tems such as clusters and Grids, which has been in deployed on over 500 clusters in
the world.
4 NetSolve is a Grid tool, based on the agent-client-server model that enables the
clients to access any services provided by servers registered to an agent.

5

computations of different analysis parameter sets represented in the form of
chromosomes. It is therefore extremely inefficient if the interactions between
the client (master) and resources (slaves) are repeated many times for the
same remote procedure call. The uniqueness of our GE-HPGA framework is
therefore an extended GridRPC API with the inclusion of a meta-scheduler.

The meta-scheduler performs discovery, bundling and load balancing using
online information gathered from the computing clusters and Grid services 5

that exist on the Grid. In our GE-HPGA framework, the Globus Monitoring
and Discovery Service (MDS) [31] and Ganglia [29] have been used to provide
the online information. The MDS maintains a database of available resource
information and acts as a centralized directory service keeping track of the
resources, their locations on the Grid and how they may be consumed. Ganglia,
on the other hand, monitors and provides workload information about the
available clusters, computing nodes and Grid services.

In any Grid computing setup, it is necessary to first enable the software com-
ponents as Grid services so that they can live in a Grid environment. Hence,
our GE-HPGA is equipped with an extended GridRPC API [32][20] based
on the Commodity Grid Kit (CoGKit) for ‘gridifying’ new or existing analy-
sis/simulation codes or objective/fitness function as Grid services. This choice
is down to its simplicity in implementations and its ability to offer high-level
abstraction, thus concealing the high-level of complexity of Grid computing
environments from the end users. For the sake of brevity, we will not describe
the implementation details of our extended GridRPC API here but refer the
readers to [20] for further exposition. Other Grid technologies utilized in the
present work include the Globus Grid Security Infrastructure (GSI) [33] for
secure and authenticated access over the Grid. For data flow, the Globus Grid
File Transfer Protocol (GridFTP) [34] is used for conducting all forms of data
transfer.

3.2 GE-HPGA Workflow

In this section, we outline the workflow of the GE-HPGA framework. In partic-
ular, we considered a two-level HPGA in the present study, i.e., Level 1: Island
model PGA and Level 2: Master-Slave PGA. The two levels of the hierarchical
PGA are ‘gridified’ to form the ‘subpopulation evolution’ and ‘chromosome
evaluation’ Grid services as depicted in Figure 2. In each cluster, a ‘subpopu-
lation evolution’ Grid service is put in place for remote invocation using the

5 Here, ‘Grid service’ refers to any shared software components that is wrapped
to live on the Grid environment. In the context of optimization in science and
engineering, the Grid services are wrapped forms of analysis/simulation codes or
objective/fitness functions.

6

Globus job submission protocol. The ‘chromosome evaluation’ invocation, on
the other hand, may be realized using any local cluster scheduler, for example
NetSolve [30], Sun Grid Engine [35], Condor [36] or otherwise. The detailed
workflow of the GE-HPGA can be outlined as nine crucial stages and is de-
picted in Figure 3.� � � � � � ��� �	 �
 � � � � � � � � � � �
 	 � � � �� � �
 	 �� � � 	
 � 	 ��
 � � � � � � �� � � � � � � �
 	 � � � ��
 � 	 � � �
 � �� � � � � � � �
 	 � � � � 	 � � �� �� �

� � �
 	 � � � � � �
� �� �
 	 � � � � � 	 � �
 ��
 � � � �� �� �
 	 � � �

 � � � �
 	 �� �� � � � �	 �� ��
 	 � � � � � �

! " # $ % & % ' () ' * + , % - $ % & % '.� � � � � � � �
 	 � � � / � � � � 	 �� � 0
 	 � � � � 	 � /�
 � � � � � � � � � � � � � � � ��
 � 	 � � �
 � � � � � � � � � � � � 0 �
 ��
 	 �� � � 	 � � � � � � �1 � � � � � � � � � 	 � � �
 � 2� � �
 	 �� � � � � �� � � � � � � �
 	 �� � /
.� � � � � � � �
 	 � � � 3 � � � � 	 �� � 0
 	 � � � � 	 � 3�
 � � � � � � � � � � � � � � � ��
 � 	 � � �
 � � � � � � � � � � � � 0 �
 ��
 	 �� � � 	 � � � � � � �1 � � � � � � � � � 	 � � �
 � 2� � �
 	 �� � � � � �� � � � � � � �
 	 �� � 3

4 5 5

6 7 8 $ % & % ' (9 : ; % $ % & % '.� � � � � � � � � / �
 � �
 	 � � � 0
 	 � � � � 	 � /� � � /4 5 5.� � � � � � � � � < �
 � �
 	 � � � 0
 	 � � � � 	 � /� � � =.� � � � � � � � � > �
 � �
 	 � � � 0
 	 � � � � 	 � /� � � >
.� � � � � � � � � / �
 � �
 	 � � � 0
 	 � � � � 	 � 3� � � /
.� � � � � � � � � < �
 � �
 	 � � � 0
 	 � � � � 	 � 3� � � ?.� � � � � � � � � > �
 � �
 	 � � � 0
 	 � � � � 	 � 3� � � >

4 5 5
4 5 5

9 :@ % +
9 : A � �@ % +

Fig. 2. The two levels of parallelism in GE-HPGA. 1st Level : Farming of subpop-
ulations to the computing clusters for genetic evolution. 2nd Level : Farming of
chromosomes onto computing nodes in the cluster for fitness evaluations.

These stages are described as follows:

(1) Prior to the start of the evolutionary search, the GE-HPGA master pro-
gram contacts the meta-scheduler to request for suitable computing nodes
and the ‘subpopulation evolution’ and ‘chromosome evaluation’ Grid ser-
vices.

(2) The meta-scheduler then obtains a list of available resources together
with their status of availability. Such status information is acquired from
the Globus MDS and Ganglia. It is worth noting that mechanisms to
automatically reflect new computing clusters and processing nodes or
software services are provided to ensure proper registrations to Globus
MDS whenever they join the Grid.

(3) Grid computing resource and service information maintained by the Globus

7

Fig. 3. Workflow of GE-HPGA framework.

MDS and Ganglia are then provided to the GE-HPGA master program
to proceed with parallel evolutionary search.

(4) To access Grid resources, Grid Security Infrastructure (GSI) credentials
are subsequently generated. This forms the authentication or authority
for consuming any form of resources living in the Grid environment.

(5) Represented in the form of ASCII or XML data files, the HPGA sub-
populations are then transferred onto the identified remote computing
clusters that offer the required ‘subpopulation evolution’ and ‘chromo-
some evaluation’ services.

(6) Parallel evolution of the multiple subpopulations then commences at the
selected remote computing clusters using Globus job submission protocol.
Whenever the cluster receives a request to launch the ‘subpopulation
evolution’ service, an instance of this service gets instantiated only at the
main (master) node of the respective cluster.

(7) The subpopulation of ‘chromosome evaluation’ service requests that nest
within the ‘subpopulation evaluation’ service are subsequently farmed
across the field of processing nodes that is available in the cluster through

8

NetSolve. The role of Netsolve is to conduct scheduling and resource
discovery in a single computing cluster.

(8) Once all ‘chromosome evaluation’ service requests are completed, the ob-
tained fitness of chromosomes is marshaled back to the ‘subpopulation
evolution’ service to undergo evolutionary operations involving genetic
mutation, crossover and selection.

(9) The evolved subpopulations are then marshaled back to the GE-HPGA
master to proceed with the migration operation. This process repeats
until the search termination criteria are met.

3.3 Theoretical Analysis on GE-HPGA

One of the major performance issues when running a parallel algorithm is
how much speed-up they can offer compared to a sequential run of the same
algorithm [37]. This speed-up (S) measurement can be defined by:

S =
Ts

Tp

(1)

where Ts and Tp denote the execution time when the algorithm is executed
in serial and parallel, respectively. The whole computation of a parallelizable
algorithm can be divided into three major parts, i.e. sequential computation
(λ), parallelizable computation (γ), and parallelization overheads (O). In many
cases, the communication overhead incurred represents the most dominating
parallelization overheads. For a problem of size n, it is possible to derive from
equation (1) that

S(n, p) =
λ(n) + γ(n)

λ(n) + γ(n)
p

+ O(n, p)
(2)

which provides an upper bound for the maximum speed-up achievable by a
parallel computer having p processors when computation is divided equally
among the processors. Further simplification to the upper bound of maximum
speedup may be obtained by using Amdahl’s Law [38] as shown in equation
(2) becomes:

S(n, p) =
λ(n) + γ(n)

λ(n) + γ(n)
p

+ O(n, p)
≤ Smax(n, p) =

λ(n) + γ(n)

λ(n) + γ(n)
p

(3)

This provides a theoretical bound on the maximum speed-up that can be
achieved by the parallel algorithm.

9

3.3.1 Execution Time of GE-HPGA

Based on equations (1),(2), and (3), we analyze the theoretical execution time
of the GE-HPGA. From Figure 4, two forms of communication overhead may
be observed in GE-HPGA. These are the inter-cluster and intra-cluster com-
munication overheads and are denoted here as Ointer and Ointra, respectively.

Execution
Host

Cluster-1 for
subpopulation-1

Cluster-2 for
subpopulation-2

Cluster-n for
subpopulation-n

CPUs at Cluster-1

CPUs at Cluster-2

CPUs at Cluster-n
Inter-Cluster Communication Overhead (Ointer)

Intra-Cluster Communication Overhead (Ointra)

Ointer-1

Ointer-2

Ointer-n

Ointra

Ointra

Ointra

Fig. 4. Communication overheads of GE-HPGA framework.

The inter-cluster communication overhead represents the time incurred for
Globus remote job execution and transferring of GA subpopulation details
onto resource clusters using the GridFTP protocol. Intra-cluster communica-
tion overheads on the other hand, are attributed to parallelizing a subpopu-
lation of chromosomes onto the processing nodes in a cluster using Netsolve.
To study the impact of the communication overheads on search efficiency, we
analyze the computational complexity of n-subpopulation GE-HPGA for sin-
gle cluster and n-cluster Grid environments separately.

Case 1. n Subpopulations on Single Cluster. We first analyze the n sub-
populations HPGA on a single cluster Grid environment. This models the case
where evolutions of PGA subpopulations are conducted in sequential manner.
Hence there is only a single level of parallelism consisting only of level 2 HPGA
depicted in Figure 2, where the subpopulation of chromosomes is transferred
onto the processing nodes of a single cluster for fitness evaluations. Assuming
the execution host is also used for subpopulations evaluations, the total wall

10

clock time for such a process can be derived as:

Ts = nG(COintra + αF) (4)

where G : Number of generations
n : Number of subpopulations or clusters
C : Number of chromosomes in a subpopulation
α : Parallelism factor of a cluster, which is a function of the

population size and CPU specifications
Ointra : Intra-cluster communication overhead to parallelize

a chromosome within a cluster
F : Wall clock time to complete a single fitness evaluation

Case 2. n Subpopulations across n Clusters. Next, we model the case
where n subpopulations HPGA are evolved across n number of clusters in
parallel, i.e., the subpopulation size is assumed to be equal to cluster size
here. The total wall clock time in this case becomes:

Tp = G

((

n
∑

i=1

Oi
inter

)

+ COintra + αF

)

(5)

where
∑n

i=1 Oi
inter represents the total inter-cluster communication overhead

to transfer n PGA subpopulations onto n computing clusters in the Grid
environment. Without loss of generality, equation (5) remains valid for the
case where the n-subpopulation GE-HPGA is available only at a single cluster,
while the subpopulations are evolved in a parallel manner. The differences lie
in 1) higher parallelism factor, α and 2) lower inter-cluster communication
overheads, Ointer, since the subpopulations are executed on the same cluster
in parallel.

3.3.2 Speed-up of GE-HPGA

Here, we analyze the possible speed-up of GE-HPGA. For brevity, let t denotes
the wall clock time to complete the evolution of a single subpopulation per
generation. From equations (4) and (5), we can define:

t = COintra + αF (6)

The maximum speed-up offered by the framework, can then be derived as:

Smax =
Tmax

s

Tmin
p

=
nGtmax

G (nOmin
inter + tmin)

=
ntmax

nOmin
inter + tmin

(7)

11

where Tmax
s : Maximum total wall clock time for the serial execution

of an HPGA.
Tmin

p : Minimum total wall clock time for the parallel execution
of an HPGA (GE-HPGA).

tmax : Maximum wall clock time to complete the evolution of
a single subpopulation per generation, which is
incurred by the slowest cluster.

tmin : Minimum wall clock time to complete the evolution of
a single subpopulation per generation, which is
incurred by the fastest cluster.

Omin
inter : Minimum inter-cluster communication overhead,

which is incurred by the parallel HPGA (GE-HPGA).

Since equation (7) only indicates the maximum speed-up, in practice one would
achieve a speed-up of less than Smax. For any possible speed-up, i.e. Smin > 1,
the followingg inequalities must hold:

Smin > 1

⇒
T min

s

T max
p

> 1

⇒ Tmax
p < Tmin

s (8)

⇒ nOmax
inter + tmax < ntmin

⇒ tmin > Omax
inter +

tmax

n
(9)

or ⇒ n >
tmax

tmin − Omax
inter

(10)

or ⇒ Omax
inter < tmin

−
tmax

n
(11)

To summarize, GE-HPGA can offer speed-up as long as the operating condi-
tions in terms of the fitness function cost, cluster size, and the communication
overheads are satisfied.

4 Empirical Study

In this section, we present an empirical study on GE-HPGA for distributed
and heterogeneous Grid computing environments. In particular, we are inter-
ested in how GE-HPGA fares under diverse Grid environment having different

12

communication protocols, cluster sizes, computing nodes, and geographically
(across network border) disparate clusters. Figure 5 depicts some of the re-
sources available in our collaborative Grid environment (Nanyang Campus
Grid).

pdcc

Location PDCC Lab
Singapore

No. of
CPUs

28

CPU Type Xeon 3.06GHz

Memory 14GB

pdpm

Location PDCC Lab
Singapore

No. of
CPUs

20

CPU Type Xeon 2.6GHz
Memory 10.8GB

surya

Location PDCC Lab
Singapore

No. of CPUs 21

CPU Type PIII 450MHz
PIII 550MHz
PIII 733MHz

Memory 6GB

birc

Location BIRC
Singapore

No. of CPUs 16

CPU Type Itanium
733MHz

Memory 16GB

et1

Location Honda RI
Germany

No. of CPUs 12

CPU Type PIII 650MHz

Memory 6GB

ec-pdccm

Location PDCC Lab
Singapore

No. of CPUs 9

CPU Type PII 450MHz
Memory 2.4GB

cemnet

Location CEMNET Lab
Singapore

No. of CPUs 12

CPU Type PIV 2.66GHz
Xeon 2.4GHz

Memory 6GB

Fig. 5. Nanyang Campus Grid.

One of the clusters is physically located at Honda Research Institute (Honda
RI) Europe in Germany, and the rest in Parallel and Distributed Computing
Centre (PDCC), Central for Multimedia and Network Technology (CEMNET)
and BioInformatic Research Centre (BIRC) situated physically at Nanyang
Technological University in Singapore. They are chosen to represent the exis-
tence of heterogeneous clusters commonly found in real world settings where
one resource usually differs from others in terms of processing speed, number
of processors, and average intensity of workload. It is worth noting that our
decision to consider clusters that are geographically distributed across con-
tinents also better emulates a realistic Grid environment where resources of
design teams are often geographically disparate.

4.1 Computationally Cheap Optimization Problem

First, we consider the GE-HPGA for solving a computationally cheap opti-
mization problem using the multi-modal Rastrigin benchmark function defined
as:

f (x) = 20 +
j
∑

i=1

x2
i − 10

j
∑

i=1

cos (2πxi) , (12)

13

where j denotes the problem dimension. A 10-dimensional Rastrigin function
is considered here in the present study. The configurations of the GE-HPGA
are given as follows: The subpopulation size and search termination criterion
are configured as C=80 chromosomes and G=100 maximum search genera-
tions, respectively. A uniform mutation and single-point crossover operators
at probabilities of Pm=0.1 and Pc=0.9, respectively, are employed while the
migration interval is configured at I=5. A linear ranking algorithm is used
for selection and elitism is also enforced. The performances of GE-HPGA for
solving the Rastrigin problem are experimented for the following factors using
the five clusters detailed in Table 1:

• high and low security Grid environment,
• varying number of subpopulations,
• a single cluster Grid environment, and
• multi-cluster Grid environment.

The computational efforts incurred by the serial HPGA (S-HPGA) and GE-
HPGA for optimizing the Rastrigin problem under diverse grid environments
are reported in Figures 6 and 7. The numerical results are reported for aver-
aged of 10 independent runs. The GE-HPGA is observed in Figure 6 to be
computationally more efficient than the serial HPGA (S-HPGA) counterpart
with either the low or high security communication protocol. S-HPGA refers
to an HPGA where all the subpopulations are executed sequentially in a clus-
ter. Next, we discuss the performance of the GE-HPGA for single cluster and
n multi-clusters Grid environments by referring to Figure 7. Interestingly, the
results obtained indicate that the multi-clusters GE-HPGA do not offer any
benefits in search efficiency over the single cluster GE-HPGA. This is the effect
of the high communication protocol overheads and low computational cost of
the objective/fitness function which results in the loss of any advantages in
using multiple clusters in the GE-HPGA, which agrees with our theoretical
analysis in Section 3.3. This implies that it is not always beneficial to consider
using more clusters in an GE-HPGA.

Cluster Number of CPU(s) CPU Type Memory

pdcc 28 Xeon 2.8GHz 14GB

pdpm 20 Xeon 2.6GHz 10.8GB

surya 21 PIII 450MHz 6GB

PIII 550MHz

PIII 733MHz

et1 12 PIII 650MHz 6GB

birc 16 Itanium 733MHz 16GB

Table 1
Summary of the Grid environment considered for optimizing the Rastrigin problem.

14

2 3 4 5
0

0.5

1

1.5

2

2.5

3

x 10
4

Number of Subpopulations

W
al

l C
lo

ck
 T

im
e

(s
)

n subpopulations in 1 cluster (serial)
n subpopulations in n cluster
(parallel + high overhead)

n subpopulations in n cluster
(parallel + low overhead)

Fig. 6. Average wall clock time of S-HPGA and GE-HPGA in single and multi-
ple clusters on Rastrigin function. Note: High overhead implies the use of secure
communication protocol and vice versa.

2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of Subpopulations

W
al

l C
lo

ck
 T

im
e

(s
)

n subpopulations in 1 cluster (parallel)
n subpopulations in n clusters
(parallel + high overhead)

n subpopulations in n clusters
(parallel + low overhead)

Fig. 7. Average wall clock time of GE-HPGA in single and multiple clusters on
Rastrigin function. Note: High overhead implies the use of secure communication
protocol and vice versa.

4.2 Real World Problem: Aerodynamic Airfoil Design

In this section, we extend our study of the GE-HPGA for complex real world
engineering problem, specifically the efficient evolutionary design of aerody-
namic airfoil shapes. In particular, we consider the parametric design optimiza-
tion of 2D airfoil structure using a subsonic inverse pressure design problem. A
typical approach to inverse pressure design is to ‘smoothen’ the upper-surface
pressure curve in a way that maintains the area under the curve, so as to
maintain the lift force generated by the airfoil. The target pressure profile is

15

generated from the NACA 0012 airfoil, which itself is also the baseline shape.
The airfoil geometry is characterized using 24 design variables with the NACA
0012 airfoils as the baseline, as shown in Figure 8. The free-stream conditions
in this problem are subsonic speed of Mach 0.5, and 2.0 angle of attack (AOA),
corresponding to symmetric pressure profiles on the upper and lower walls. To
proceed, we consider the inverse design problem, which consists in minimizing
the difference between the surface pressure P of a given airfoil with the desired
pressure profile Pd of the NACA 0012 airfoil. In aerodynamic shape optimiza-
tion problems, if w is the flow variables and S the shape design variables, the
inverse pressure design problem can be formulated as a minimization problem
of the form:

I (w, S) =
1

2

∫

wall

(P − Pd)
2
dσ (13)

Fig. 8. Airfoil geometry characterized using 24 design variables with the NACA
0012 as baseline.

Using 24 design variables and the fitness function defined in equation (13), the
GE-HPGA is used for optimizing a subsonic inverse pressure design problem
of moderate fidelity 6 . In the experimental study, we consider the following
configurations: single-point crossover probability Pc=0.9, uniform mutation
probability Pm=0.1, subpopulation size C=50, maximum generation count
G=100, and migration interval I=5. Unless otherwise specified, all results are
taken from 10 independent runs.

6 The moderate-fidelity model is obtained by reducing the accuracy of the exact
subsonic inverse pressure airfoil model which takes lesser computational efforts to
compute than the original.

16

Here we consider a Grid environment consisting of the four clusters summa-
rized in Table 2.

Cluster Number of CPU(s) CPU Type Memory

pdpm 8 8 × Xeon 2.6GHz 4GB

cemnet 5 4 × Xeon 2.4GHz 2GB

1 × PIV 2.66GHz

surya 7 7 × PIII 733MHz 3.2GB

ec − pdccm 8 8 × PIII 650MHz 2.2GB

Table 2
Summary of the Grid environment considered for optimizing the airfoil design

problem.

The average wall-clock time of each computing cluster for evaluating a sub-
population of 50 GA chromosomes in parallel are given in Table 3. Note the
significant difference in the computational efforts required by these heteroge-
neous clusters. The search performances of the n-cluster GE-HPGAs, i.e., 2,
3, or 4 subpopulations GE-HPGA, for optimizing the inverse pressure design
problem is then reported in Figure 9. To obtain a more conservative result,
whenever the single cluster setting is considered, the fastest cluster will be
used. Due to the heterogeneity of the Grid environment considered, the slow-
est surya cluster has become the bottleneck of the GE-HPGA since it uses
a synchronous migration model which waits for all the ‘chromosome evalu-
ation’ and ‘subpopulation evolution’ services in a GE-HPGA generation to
complete before the migration operation and subsequent search generations
may proceed. This results in the poorer search efficiency of the multi-cluster
environment, especially when more clusters are used, i.e. in the 4-cluster GE-
HPGA.

The results obtained can be easily explained as follows. Consider the 4-subpopulation
GE-HPGA run on 4 clusters, it can be estimated from Table 3 that the required
computational effort is significantly higher than in a single cluster GE-HPGA,
i.e., 852.34 > 4 × 164.13 = 656.52, hence subsequently violating equation (8).

Cluster Average wall clock time (of 10

independent runs) for evaluating

50 individuals

pdpm 164.13 s

cemnet 366.48 s

surya 465.79 s

ec − pdccm 852.34 s

Table 3
Computational efforts required to evaluate a subpopulation of 50 designs using

the moderate-fidelity airfoil analysis code (inclusive of the communication overhead
incurred).

To compromise with the heterogeneity of the computing resources, a simple
solution to maintain the benefit of parallelization is to configure the sub-
population size according to the computational capabilities of the clusters.
Nevertheless, such an approach has the disadvantage of possibly altering the

17

2 3 4
3

4

5

6

7

8

9

10
x 10

4

Number of Subpopulations
W

al
l C

lo
ck

 T
im

e
(s

)

n subpopulations in n clusters
n subpopulations in 1 cluster

Fig. 9. Average wall clock time of GE-HPGA in single and multiple clusters on the
airfoil design problem.

standard behavior of a synchronous island PGA and is also against the philos-
ophy of Grid computing. Since the search behavior could be unpredictable in
such approach, it is advisable to be more conservative by maintaining uniform
subpopulation sizes. A preferable solution should still provide the speed-up
regardless of the heterogeneity in the Grid environment while preserving the
standard behavior of the parallel genetic search. To achieve such a solution,
we present a Decoupled GE-HPGA (DGE-HPGA) as depicted in Figure 10.

The core idea lies in the decoupling of the ‘subpopulation evolution’ Grid ser-
vice in GE-HPGA (see Figure 2) into two separate services, namely, the ‘evolu-
tionary operations’ at the GE-HPA client(master) and ‘chromosome ensemble’
at each computing cluster. In this way, the computing clusters are solely meant
for fitness evaluation purpose and all evolutionary operations proceed at the
client side. This is slightly different from the original GE-HPGA where both
evolutionary operations and fitness evaluations are coupled in the ‘subpopula-
tion evolution’ service at each computing cluster. By doing so, the uniformity
of the subpopulation size can be maintained at the client side while the com-
puting clusters are actually allocated non-uniform ensembles of chromosome
for fitness evaluations.

To minimize the idling time of processing nodes in fast clusters while waiting
for synchronization in the DGE-HPGA, we hope to obtain a well-balanced
execution time in each cluster and for each HPGA search generation. In each
n-subpopulation DGE-HPGA search generation, each non-uniform ensemble
of individuals, Ci, assigned to the i-th cluster for evaluations is estimated by:

Ci =
t−1
i

∑n
j=1 t−1

j

× n × C (14)

18

B C D E F B GH I JK J L M JN O P Q R S T S Q ML K JT I PU O I O V L K JT I P K L VK P
W L V X JI Y T Z [\ VT X T P T X OO I P O X R MO P] L JK Z T V L M M O I P O X R MO P K TZ J I JP \ ^ VO _ JP K V J R Q K O Z JK I O P PK T P Q R S T S Q ML K JT I P

U O I O V L K JT I O I _ P
` JY V L K JT I J I K O Va L MV O L [\ O _ b` JY VL K JT I

c O V X JI L K JT I[T I _ JK JT IP L K JP Z JO _ b

d e f g h i h j kl j m n o h p g h i h jq O I P O X R MO r O a L M Q L K JT I sL K [MQ P K O V rW L VX J I Y T Z [\ T X T P T X O P] L JK Z T V L M M [\ VT X T P T X O P sO a L MQ L K JT I P K T Z JI JP \

q O I P O X R MO t O a L M Q L K JT I sL K [MQ P K O V tW L VX J I Y T Z [\ T X T P T X O P] L JK Z T V L M M [\ VT X T P T X O P sO a L MQ L K JT I P K T Z JI JP \
u v v

w x y g h i h j kz { | h g h i h jq [\ VT X T P T X O rO a L MQ L K JT I s L K [M Q P K O V rI T _ O ru v vq [\ VT X T P T X O } O a L MQ L K JT I sL K [M Q P K O V r I T _ O ~q [\ VT X T P T X O �O a L MQ L K JT I s L K [M Q P K O V rI T _ O �

q [\ V T X T P T X O � O a L MQ L K JT I sL K [MQ P K O V t I T _ O r
q [\ V T X T P T X O � � tO a L MQ L K JT I s L K [M Q P K O V tI T _ O �
q [\ VT X T P T X O � � rO a L MQ L K JT I s L K [M Q P K O V tI T _ O �

u v v
u v v

z {� h n
z { � I _ � h n

q O I P O X R MO � O a L M Q L K JT I sL K [MQ P K O V �W L VX J I Y T Z [\ T X T P T X O P] L JK Z T V L M M [\ VT X T P T X O P sO a L MQ L K JT I P K T Z JI JP \
� Ja J_ O t � �[\ VT X T P T X O P J I K Tt O I P O X R MO P � � V �K K \ O[T X S Q K L K JT I L M S T � O V

� O V Z T V X O a T MQ K JT I L V�T S O V L K JT I P T I L M MP Q R S T S Q ML K JT I P
q [\ V T X T P T X O } � rO a L MQ L K JT I s L K [M Q P K O V �I T _ O ru v vq [\ VT X T P T X O �O a L MQ L K JT I s L K [M Q P K O V �I T _ O �
q [\ V T X T P T X O } � �O a L MQ L K JT I s L K [M Q P K O V �I T _ O �

Fig. 10. The Decoupled GE-HPGA.

where C is the subpopulation size, n is the number of subpopulations(or clus-
ters), and ti is the time required by the i-th cluster to evolve a subpopulation
in one generation of GE-HPGA.

The average wall-clock time and optimum shape obtained when using GE-
HPGA and DGE-HPGA to search on the subsonic inverse pressure design
problem for a maximum of 100 generations are reported in Figures 11 and 12,
respectively. Note that the n-subpopulation GE-HPGA has a uniform sub-
population size of 50. In contrast, the size of the ensembles of individuals are
defined using equation (14) in the n-subpopulation DGE-HPGA, i.e., 2 sub-
populations (pdpm : cemnet = 69 : 31), 3 subpopulations (pdpm : cemnet

: surya = 83 : 37 : 30), and 4 subpopulations (pdpm : cemnet : surya :
ec − pdccm = 100 : 45 : 35 : 20).

More importantly, the results in Figure 11 and 12 show that the DGE-HPGA
converges to the same optimal design airfoil shape as the GE-HPGA at sig-

19

nificantly lesser amount of wall-clock time spent.

2 3 4
2

3

4

5

6

7

8

9
x 10

4

Number of Subpopulations

W
al

l C
lo

ck
 T

im
e

(s
)

GE−HPGA
DGE−HPGA

Fig. 11. Average wall clock time of GE-HPGA and DGE-HPGA in 2, 3, and 4-sub-
population runs in optimizing the aerodynamic airfoil design problem.

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

baseline airfoil shape
optimal airfoil shape obtained by GE−HPGA
optimal airfoil shape obtained by DGE−HPGA

Fig. 12. Optimal airfoil shape obtained after 100 generations of the 4-subpopulation
GE-HPGA and DGE-HPGA.

5 Conclusions

In this paper, we have presented a Hierarchical Parallel Genetic Algorithm
framework using Grid computing (GE-HPGA) based on standard Grid tech-
nologies. The framework offers a comprehensive solution for efficient evolu-
tionary design of problems with computationally expensive fitness functions,
by providing novel features such as the concealment of complexity of a Grid
environment through the extended GridRPC API and a metascheduler for
automatic resource discovery. To assess the effectiveness of the framework,
theoretical analysis has been conducted to estimate the possible speed-up of

20

GE-HPGA and the conditions that must be fulfilled for any speed-up. Empir-
ical results using a benchmark problem and a realistic airfoil design problem
further confirm that speed-up can be attained as long as the bounds on fitness
function cost, cluster size, and communication overheads are satisfied.

6 Acknowledgement

D. Lim and Y.S. Ong would like to thank Honda Research Institute Europe for
sponsoring the research on the topic, and members of Nanyang Technological
University and Honda Research Institute Europe for providing the support.
Without them, this project would not have been a successful one.

References

[1] Y.S. Ong, P.B. Nair, and A.J. Keane, ”Evolutionary Optimization of
Computationally Expensive Problem via Surrogate Modeling,” American
Institute of Aeronautics and Astronautics Journal, Vol. 41, No. 4, pp. 687-696,
2003.

[2] M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff, ”Optimization of a
stator blade used in a transonic compressor cascade with evolution strategies,”
Adaptive Computing in Design and Manufacture (ACDM), Springer Verlag, pp.
45-54, 2000.

[3] H.T. Kim, B.Y. Kim, E.H. Park, J.W. Kim, E.W. Hwang, S.K. Han, and S. Cho,
”Computerized recognition of Alzheimer disease-EEG using genetic algorithms
and neural network,” Future Generation Computer Systems, Volume 21, Issue
7, pp. 1124-1130, 2005.

[4] Y. Gao, H. Rong, and J.Z. Huang, ”Adaptive grid job scheduling with genetic
algorithms,” Future Generation Computer Systems, Volume 21, Issue 1, pp.
151-161, 2005.

[5] M. Li, B. Yu, and M. Qi, ”PGGA: A predictable and grouped genetic algorithm
for job scheduling,” Future Generation Computer Systems, Volume 22, Issue 5,
pp. 588-599, 2006.

[6] D.E. Goldberg, ”Genetic Algorithms in Search, Optimization and Machine
Learning,” Addison-Wesley, Reading, Massachusetts, 1989.

[7] E. Alba, A.J. Nebro, J.M. Troya, ”Heterogeneous Computing and Parallel
Genetic Algorithms,” Journal of Parallel and Distributed Computing 62, pp.
1362-1385, 2002.

21

[8] E. Alba, J.M. Troya, ”Synchronous and Asynchronous Parallel Distributed
Genetic Algorithms,” Future Generation Computer Systems, 17(4):451-465,
January 2001.

[9] M. Nowostawski, R. Poli, ”Parallel Genetic Algorithm Taxonomy,” Proceedings
of the Third International conference on knowledge-based intelligent information
engineering systems (KES’99), pp. 88-92, Adelaide, 1999.

[10] E. Cantu-Paz, ”A Survey of Parallel Genetic Algorithms,” Calculateurs
Paralleles, Reseaux et Systems Repartis vol. 10 No. 2 pp. 141-171, 1998.

[11] H.Y. Foo, J. Song, W. Zhuang, H. Esbensen, E.S. Kuh, ”Implementation of a
Parallel Genetic Algorithm for Floorplan Optimization on IBM SP2,” hpcasia,
p. 456, HPC on the Information Superhighway, HPC-Asia, 1997.

[12] F.J. Villegas, T. Cwik, Y. Rahmat-Samii, and M. Manteghi, ”A parallel
electromagnetic Generic-Algorithm Optimization (EGO) application for patch
antenna design,” IEEE Transactions on Antennas and Propagation, Vol. 52,
No. 9, pp. 2424-2435, 2004.

[13] D. Abramson, J. Abela, ”A Parallel Genetic Algorithm for Solving the School
Timetabling Problem,” Technical Report, Division of Information Technology,
C.S.I.R.O, Melbourne, 1991.

[14] Ansys Inc., [online] http://www.ansys.com.

[15] CFD Flow Modeling Software and Services from Fluent Inc., [online]
http://www.fluent.com.

[16] Sysnoise, [online] http://ludit.kuleuven.be/software/packages/sysnoise.html.

[17] I. Foster and C. Kesselman, editors, ”The Grid: Blueprint for a New Computing
Infrastructure,” Morgan Kaufman Publishers, 1999.

[18] M. Baker, R. Buyya, D. Laforenza, ”The Grid: International Efforts in Global
Computing,” International Conference on Advances in Infrastructures for
Electronic Business, Science, and Education on the Internet, 2000.

[19] G. Xue, W. Song, S.J. Cox, A.J. Keane, ”Numerical optimisation as Grid
Services for Engineering Design,” Journal of Grid Computing, Vol.2, No.3, pp.
223-238, 2004.

[20] Q.T. Ho, W.T. Cai, and Y.S. Ong, ”Design and Implementation of An
Efficient Multi-cluster GridRPC System,” IEEE Cluster Computing and Grid
Conference, pp. 358-365, vol. 1, 9-12 May 2005.

[21] Special section: Complex problem-solving environments for grid computing,
Future Generation Computer Systems, Vol. 21, Issue 6, Elsevier Science
Publisher, Amsterdam, 2005.

[22] D. Abramson, R. Buyya, J. Giddy, “A computational economy for grid
computing and its implementation in the Nimrod-G resource broker”, Future
Generation Computer Systems, 18(8): 1061-1074, 2002.

22

[23] A. Iosup and D.H.J. Epema, ”GrenchMark: A Framework for Analyzing,
Testing, and Comparing Grids”, 6th IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid’06), pp. 313-320, IEEE Press, 2006.

[24] Z. Liu, A. Liu, C. Wang, Z. Niu, ”Evolving neural network using real
coded genetic algorithm(GA) for multispectral image classification,” Future
Generation Computer Systems, Vol. 20, Issue 7, pp. 1119-1129, 2004.

[25] J. Cui, T.C. Fogarty, and J.G. Gammack, ”Searching databases using parallel
genetic algorithms on a transputer computing surface,” Future Generation
Computer Systems, 9(1):33-40, 1993.

[26] G.A. Sena, D. Megherbi, G. Isern, ”Implementation of a parallel genetic
algorithm on a cluster of workstations: travelling salesman problem, a case
study,” Future Generation Computer Systems, Vol. 17, Issue 4, pp. 477-488,
2001.

[27] I. Foster, ”The Globus Toolkit for Grid Computing,” Proceedings of the 1st
International Symposium on Cluster Computing and the Grid, 2001.

[28] CoG Kit Wiki, [online] http://www.cogkit.org.

[29] M. Massie, B. Chun, and D. Culler, ”The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience,” Technical report, University
of California, Berkeley, 2003.

[30] S. Agrawal, J. Dongarra, K. Seymour, S. Vadhiyar, ”NetSolve: past, present,
and future; a look at a Grid enabled server,” 2002.

[31] Globus: Information Services/MDS, [online] http://www-unix.globus.org/
toolkit/mds.

[32] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, H. Casanova,
”GridRPC: A remote procedure call API for Grid computing,” Grid Computing
- Grid 2002, LNCS 2536, pp. 274-278, 2002.

[33] S. Tuecke, ”Grid Security Infrastructure (GSI) Roadmap,” Internet Draft
Document: draft-Gridforum-gsi-roadmap-02.txt, 2001.

[34] The Globus Project, ”GridFTP Universal Data Transfer for the Grid,” The
Globus Project White Paper, 2000.

[35] D. Geer, ”Grid Computing Using the Sun Grid Engine,” Technical Enterprises,
Inc., 2003.

[36] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, ”Condor-G: A
Computation Management Agent for Multi-Institutional Grids,” Proceedings
of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10), 2001.

[37] M.J. Quinn, ”Parallel Programming in C with MPI and OpenMP,” McGraw
Hill, 2004.

23

[38] G. Ahmdal, ”Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities,” AFIPS Conference Proceedings, Vol. 30, pp.
483-485, Thompson Books, Washington D.C., 1967.

24

