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Evolutionary Algorithms in the Presence of Noise:
To Sample or Not to Sample

Hans-Georg Beyer and Bernhard Sendhoff, Senior Member, IEEE

Abstract— In this paper, we empirically analyze the conver-
gence behavior of evolutionary algorithms (evolution strategies
– ES and genetic algorithms – GA) for two noisy optimization
problems which belong to the class of functions with noise
induced multi-modality (FNIMs). Although, both functions are
qualitatively very similar, the ES is only able to converge to the
global optimizer state for one of them. Additionally, we observe
that canonical GA exhibits similar problems. We present a
theoretical analysis which explains the different behaviors for
the two functions and which suggests to resort to resampling
strategies to solve the problem. Although, resampling is an in-
efficient way to cope with noisy optimization problems, it turns
out that depending on the properties of the problem, (moderate)
resampling might be necessary to guarantee convergence to the
robust optimizer.

I. INTRODUCTION

Optimization in the presence of noise (robust optimization)
has received increasing attention in recent years not least due
to the factual necessity to deal with this problem for many (if
not most) practical optimization cases. That is, given a design
y, evaluating its quality f(y) yields stochastic quantity
values. As a result, an optimization algorithm applied to
f(y) must deal with these uncertain quality information and
it must use this information to calculate a robust optimum
based on an appropriate robustness measure.

In this paper, we will use a robustness measure which is
based on the expectation value of the objective function. The
robust optimum is given by

ŷ = arg max
y

[E[f |y]] . (1)

We will apply the fitness measure, Eq. (1), to the opti-
mization of two functions which at first glance seem very
similar. They both belong to the class of functions with noise
induced multi-modality and qualitatively their corresponding
fitness landscapes can hardly be distinguished. These func-
tions will be introduced and discussed in the next section.
In section III, we will see that the convergence behavior
of the evolution strategy is, however, very different for
both functions. Furthermore, we also present some empirical
results for the canonical genetic algorithm for one of the two
functions. In section IV, we present theoretical reasons for
the behavior of the evolution strategy and finally, we resort
to the resampling technique in section V in order to improve
the search behavior. In the last section, we will conclude the
paper.
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II. TEST FUNCTIONS WITH NOISE INDUCED
MULTI-MODALITY

Functions with Noise Induced Multi-Modality (FNIMs)
have first been introduced in [1] and analyzed in [2].
They belong to the class of topology changing functions
under the influence of noise [3]. This class of functions
was motivated qualitatively from observations of practical
design optimization problems, as e.g. reported in [4]. These
functions are typically unimodal without the influence of
noise and undergo a process that has been termed bifurcation
if the noise level reaches a certain threshold the value of
which is determined by other parameters of the function. The
following two functions are typical examples of this class.
Although they are functionally very similar, we will see in
the next section, that they are quite different with respect to
the convergence behavior of the evolution strategy. The first
is

f2(y) := −
(yN−1 + δ)2 +

∑N−2
i=1 y2

i

y2
N + b

− y2
N , (2)

where b > 0 and δ ∼ εN (0, 1).

The conditional expectation needed in (1) becomes

E[f2|y] = −r2 + ε2

y2
N + b

− y2
N , where r :=

√√√√N−1∑
i=1

y2
i . (3)

In [3] it has been shown that, given r > 0, the local optimal
yN is at

ỹN = 0, for r2 ≤ b2 − ε2

ỹN = ±
√√

r2 + ε2 − b, for r2 > b2 − ε2

}
(4)

and the robust global optimum is at

ŷ = 0, for ε ≤ b,

ŷ =
(
0, . . . , 0,±

√
ε− b

)T
, for ε > b

}
. (5)

For N = 2 the conditional expectation of f2 is shown in
Figure 1 for two different ε corresponding to the two cases
unimodal and bimodal in Eq. (5).
Function f4 is defined as

f4(y) := −
∑N−1

i=1 (yi + δi)2

y2
N + b

− y2
N , (6)

where b > 0, and δi ∼ εNi(0, 1),

with the conditional expectation

E[f4|y] = −r2 + (N − 1)ε2

y2
N + b

− y2
N . (7)



-5

0

5
-4

-2

0

2

4

-30
-20
-10
0

-5

0

5

y2
1y

E[f  |y]2

-5

0

5
-4

-2

0

2

4

-30
-20
-10
0

-5

0

5

y2
1y

E[f  |y]2

Fig. 1. Conditional expectation E[f2|y] of function f2 for N = 2; b = 1,
ε = 0.1 (upper figure) and ε = 3 (lower figure). For ε ≤ b function f2 is
unimodal (upper figure) and for ε > b bimodal (lower figure).

As has been shown in [2], given r > 0, the locally optimal
yN is (rth = b2 − (N − 1)ε2)

ỹN = 0, for r2 ≤ rth

ỹN = ±
√√

r2 + (N − 1)ε2 − b, for r2 > rth

}
(8)

and the global optimizer is given by (εth = b/
√

N − 1)

ŷ = 0, for ε ≤ εth

ŷ =
(
0, . . . , 0,±

√√
N − 1 ε− b

)T

, for ε > εth

}
(9)

Figures for function f4 are not included because they are
qualitatively identical to Figure 1.

III. EMPIRICAL ANALYSIS

A. Outline of the Evolution Strategy

In this work, we only consider the evolutionary self-
adaptation strategy for the control of the mutation strength
σ of the isotropic Gaussian mutation operator. Empirical
investigations [5] as well as theoretical considerations [6]
have shown, that the alternative – the cumulative step size
adaptation (CSA) proposed by Ostermeier et al. [7], [8] –
does not work well in highly noisy environments: Either the
CSA exhibits premature convergence (for small population
sizes), or it exhibits instable and divergent behavior (espe-
cially for population sizes much larger than the search space
dimensionality). In contrast to CSA, the σ-self-adaptive

(µ/µI , λ)-ES (σSA-ES) works stable and without premature
convergence, provided that one uses moderate truncation
ratios (one should avoid using too small truncation ratios
µ/λ).

The σSA-ES used is based on the coupled inheritance of
object and strategy parameters. Using the notation

〈v〉(g) :=
1
µ

µ∑
m=1

v(g)
m;λ (10)

for intermediate recombination (averaging over the v param-
eters of the best µ offspring individuals, “(g)” – generation
counter), the (µ/µI , λ)-σSA-ES iterates an evolution loop

∀l = 1, . . . , λ :

 σ
(g+1)
l := 〈σ〉(g)eτNl(0,1)

y(g+1)
l := 〈y〉(g) + σ

(g+1)
l N l(0,1).

(11)
Each offspring individual (indexed by l) gets its individual
mutation strength σ. This σ is used as individual mutation
parameter for isotropically producing the offspring’s object
parameter using a (Gaussian) normally distributed random
vector N with zero mean.

The mutation of the mutation strength is done by multi-
plication with a log-normally distributed random variate in
(11) using the distribution parameter τ also referred to as
learning parameter. We use the standard choice τ = 1/

√
N

throughout the simulations.
Optimization of noisy objective functions with ES requires

the use of large populations. However, in order to use com-
puter resources efficiently as possible, it is best to start with
small populations sizes λ and increase λ successively during
the evolution (keeping the truncation ratio µ/λ constant).
There are different strategies to implement such a population
growth. The strategy employed in the experiments used
moving averages of the observed fitnesses to decide when
to increase the population size by a constant factor, see [9].

B. Empirical Evaluation of (µ/µI , λ)-ES on f2 and f4

Due to the population growth mechanism [9] incorporated
in the standard σSA-ES, the ES should be able to approx-
imate the robust optimizer of the test functions f2 and f4

arbitrarily exact provided that the ES is allowed to increase
the population size sufficiently. From the theory developed
in [2] this should hold for f4 in any case since this theory is
exact for N → ∞: The theory predicts the expected steady
state r2

defining ξ1 = 8µ2c2
µ/µ,λ

ξ2 =

(
1 +

√
1 +

ξ1

N − 1

)

E[r2] =
(N − 1)2ε2

ξ1
ξ2 (12)



and the expected steady state yN

E[yN ] =



0, for b2

(N−1)ε2 ≥ 1 + N−1
ξ1

ξ2,

±

√√
(N − 1)ε2

[
1 + N−1

ξ1
ξ2

]
− b, else.

(13)
Assuming a fixed truncation ratio

ϑ :=
µ

λ
= const., 0 < ϑ < 1, (14)

one can show using (12) that

E[r2]
λ→∞
−−−−−→ 0 and E[yN ]

λ→∞
−−−−−→ ŷN . (15)

This can be confirmed by experiments using N < ∞
sufficiently large. In Figure 2 one sees that the ES is able to
approximate the global optimizer (9) well.

one can see that

E[r2]
λ→∞
−−−−−→ 0 and E[yN ]

λ→∞
−−−−−→ ŷN . (16)

This can be confirmed by experiments using N < ∞ sufficiently large. On the right hand side of
Fig 1 one sees that the ES is able to approximate the global optimizer (10) well.
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Figure 1: Dynamics of the evolution of the σSA-ES on f2 (left) and f4 (right). The function specific
parameters are b = 1, ε = 3, and N = 100. Truncation ratio used: ϑ = 0.4. The horizontal (dashed
blue) line represents the global optimizer state ŷN of the object parameter yN given by Eq. (6) and
Eq. (10), respectively. While yN of f4 approximates the global optimizer well, the steady state yN of
the ES on f2 departs from the global optimizer state ŷN .

Considering the dynamics of the ES on f2, one observes a similar behavior for the aggregated
r, it evolves toward 0. However, as to the steady state of yN , one observes a significant deviation
from ŷN in the experiment presented in Fig. 1 (left hand side). Considering only the final state of yN ,
one might speculate whether this is due to premature convergence of the ES. However, a closer look
at the recombined mutation strength 〈σ〉(g) reveals that the mutation strength is considerably above
zero. Also, the yN dynamics crosses the global optimizer state ŷN . That is, even if the strategy were
initialized in the vicinity of ŷN , this state appears not to be an attracting state. In the experiment
presented in Fig. 1, the final (expected) steady state yN appears to be less than the global optimizer
ŷN . This is, however, not a general tendency. Actually, one can “control” the steady state by tuning the
truncation ratio ϑ. Figure 2 shows the influence of the truncation ratio ϑ on the final yN steady state.
As one can see, by choosing the “correct” ϑ one can get near to the global optimizer states. However,
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Figure 1: Dynamics of the evolution of the σSA-ES on f2 (left) and f4 (right). The function specific
parameters are b = 1, ε = 3, and N = 100. Truncation ratio used: ϑ = 0.4. The horizontal (dashed
blue) line represents the global optimizer state ŷN of the object parameter yN given by Eq. (6) and
Eq. (10), respectively. While yN of f4 approximates the global optimizer well, the steady state yN of
the ES on f2 departs from the global optimizer state ŷN .

Considering the dynamics of the ES on f2, one observes a similar behavior for the aggregated
r, it evolves toward 0. However, as to the steady state of yN , one observes a significant deviation
from ŷN in the experiment presented in Fig. 1 (left hand side). Considering only the final state of yN ,
one might speculate whether this is due to premature convergence of the ES. However, a closer look
at the recombined mutation strength 〈σ〉(g) reveals that the mutation strength is considerably above
zero. Also, the yN dynamics crosses the global optimizer state ŷN . That is, even if the strategy were
initialized in the vicinity of ŷN , this state appears not to be an attracting state. In the experiment
presented in Fig. 1, the final (expected) steady state yN appears to be less than the global optimizer
ŷN . This is, however, not a general tendency. Actually, one can “control” the steady state by tuning the
truncation ratio ϑ. Figure 2 shows the influence of the truncation ratio ϑ on the final yN steady state.
As one can see, by choosing the “correct” ϑ one can get near to the global optimizer states. However,
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Fig. 2. Dynamics of the evolution of the σSA-ES on f4. The function
specific parameters are b = 1, ε = 3, and N = 100. Truncation ratio used
is: ϑ = 0.4. Top picture: the horizontal (dashed blue) line represents the
global optimizer state ŷN of the object parameter yN given by Eq. (9). The
bottom picture displays the mutation strength σ and the population size λ
dynamics.

Considering the dynamics of the ES on f2, one observes
a similar behavior for the aggregated r, it evolves toward
0. However, as to the steady state of yN , one observes a
significant deviation from ŷN in the experiment presented
in Fig. 3. Considering only the final state of yN , one might
speculate whether this is due to premature convergence of
the ES. However, a closer look at the recombined mutation
strength 〈σ〉(g) reveals that the mutation strength is con-
siderably above zero. Also, the yN dynamics crosses the
global optimizer state ŷN . That is, even if the strategy were

one can see that

E[r2]
λ→∞
−−−−−→ 0 and E[yN ]

λ→∞
−−−−−→ ŷN . (16)

This can be confirmed by experiments using N < ∞ sufficiently large. On the right hand side of
Fig 1 one sees that the ES is able to approximate the global optimizer (10) well.
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Figure 1: Dynamics of the evolution of the σSA-ES on f2 (left) and f4 (right). The function specific
parameters are b = 1, ε = 3, and N = 100. Truncation ratio used: ϑ = 0.4. The horizontal (dashed
blue) line represents the global optimizer state ŷN of the object parameter yN given by Eq. (6) and
Eq. (10), respectively. While yN of f4 approximates the global optimizer well, the steady state yN of
the ES on f2 departs from the global optimizer state ŷN .

Considering the dynamics of the ES on f2, one observes a similar behavior for the aggregated
r, it evolves toward 0. However, as to the steady state of yN , one observes a significant deviation
from ŷN in the experiment presented in Fig. 1 (left hand side). Considering only the final state of yN ,
one might speculate whether this is due to premature convergence of the ES. However, a closer look
at the recombined mutation strength 〈σ〉(g) reveals that the mutation strength is considerably above
zero. Also, the yN dynamics crosses the global optimizer state ŷN . That is, even if the strategy were
initialized in the vicinity of ŷN , this state appears not to be an attracting state. In the experiment
presented in Fig. 1, the final (expected) steady state yN appears to be less than the global optimizer
ŷN . This is, however, not a general tendency. Actually, one can “control” the steady state by tuning the
truncation ratio ϑ. Figure 2 shows the influence of the truncation ratio ϑ on the final yN steady state.
As one can see, by choosing the “correct” ϑ one can get near to the global optimizer states. However,
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Figure 1: Dynamics of the evolution of the σSA-ES on f2 (left) and f4 (right). The function specific
parameters are b = 1, ε = 3, and N = 100. Truncation ratio used: ϑ = 0.4. The horizontal (dashed
blue) line represents the global optimizer state ŷN of the object parameter yN given by Eq. (6) and
Eq. (10), respectively. While yN of f4 approximates the global optimizer well, the steady state yN of
the ES on f2 departs from the global optimizer state ŷN .

Considering the dynamics of the ES on f2, one observes a similar behavior for the aggregated
r, it evolves toward 0. However, as to the steady state of yN , one observes a significant deviation
from ŷN in the experiment presented in Fig. 1 (left hand side). Considering only the final state of yN ,
one might speculate whether this is due to premature convergence of the ES. However, a closer look
at the recombined mutation strength 〈σ〉(g) reveals that the mutation strength is considerably above
zero. Also, the yN dynamics crosses the global optimizer state ŷN . That is, even if the strategy were
initialized in the vicinity of ŷN , this state appears not to be an attracting state. In the experiment
presented in Fig. 1, the final (expected) steady state yN appears to be less than the global optimizer
ŷN . This is, however, not a general tendency. Actually, one can “control” the steady state by tuning the
truncation ratio ϑ. Figure 2 shows the influence of the truncation ratio ϑ on the final yN steady state.
As one can see, by choosing the “correct” ϑ one can get near to the global optimizer states. However,
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Fig. 3. Dynamics of the evolution of the σSA-ES on f2. The function
specific parameters are b = 1, ε = 3, and N = 100. Truncation ratio used
is: ϑ = 0.4. The horizontal (dashed blue) line in the upper figure represents
the global optimizer state ŷN of the object parameter yN given by Eq. (5),
respectively. We can observe that the steady state yN departs from the global
optimizer state ŷN . The bottom picture shows that the mutation strength σ
is considerably above zero (i.e., no premature convergence).

initialized in the vicinity of ŷN , this state appears not to
be an attractor state. In the experiment presented in Fig. 3,
the final (expected) steady state yN appears to be less than
the global optimizer ŷN . This is, however, not a general
tendency. Actually, one can “control” the steady state by
tuning the truncation ratio ϑ. Figure 4 shows the influence
of the truncation ratio ϑ on the final yN steady state. As one
can see, by choosing the “correct” ϑ one can get close to the
global optimizer states. However, the correct ϑ is not known
a priori. Therefore, it cannot be used to build up a reliably
working ES for robust optimization.

C. Outline of the GA

Although this paper clearly concentrates on the perfor-
mance and analysis of evolution strategies, we want to
present some empirical results for genetic algorithms as well.
The main reason being that Tsutsui and Gosh [10], [11]
motivated for their genetic algorithms with a robust solution
searching scheme (GAs/RS) the use of larger population sizes
instead of resampling. Therefore, we were curious to see
whether GAs/RS would also exhibit convergence problems
on function f2 or not.

In [10] the authors analyze the population average f̄ under
the influence of (actuator) noise because in the schema
theorem the expected number of schemata depends on the



1 2 3 4 5

0.5

1

1.5

2

2.5

PSfrag replacements

ε

E[|yN |]

Figure 2: Mean steady state yN values of ES runs on test function f2 with N = 40 and b = 1.0
depending on noise strength ε for ES with different truncation ratios ϑ. The data points presented are
averages obtained from 20 independent runs each. The truncation ratios displayed are (from bottom
to top) ϑ = 0.3 (red data points), ϑ = 0.4 (black), ϑ = 0.5 (green), ϑ = 0.6 (yellow), and ϑ = 0.7
(blue), data points are partially overlapping. The curve presents the yN values of the global optimizer
ŷN as given by Eq. (5).

the correct ϑ is not known a priori. Therefore, it cannot be used to build up a reliably working ES for
robust optimization.

While these experimental results are disappointing from the application point of view, the reasons
for these observations remained obscure up to now. In the next section, we will present a first theoret-
ical analysis which explains this interesting behavior. Then, in the next but one section we will derive
a progress rate theory for f2 which allows for predicting the data points presented in Fig. 2.

3 Linear Analysis

3.1 General Considerations

As one can infer from the y(g)
N plots in Fig. 1, the respective robust optimizer state ŷN seems to be

attracting state for f4 but not for f2. In order to understand this observation, one should consider the
noisy fitness landscape in the vicinity of the robust optimizer state. To this end, it suffices to consider
small perturbations (or mutations) z of ŷ. Using Taylor expansion we generally have

f(ŷ + z|δ) = f(ŷ|δ) +
N
∑

i=1

∂f(y|δ)
∂yi

∣

∣

∣

∣

y=ŷ

zi + . . . (17)

and the observed fitness deviation ∆f from the robust optimizer state ŷ becomes

∆f = f(ŷ + z|δ)− f(ŷ|δ) =
N
∑

i=1

∂f(y|δ)
∂yi

∣

∣

∣

∣

y=ŷ

zi + . . . . (18)

Now assume the ES at generation g in the parental (centroid) state 〈y〉 = ŷ and consider (small) arbi-
trary mutations z. Unless ∂f(y|δ)

∂yi

∣

∣

∣

y=ŷ
≡ 0, the ES will generate states ∆f 6= 0. Since maximization

6

Fig. 4. Mean steady state yN values of ES runs on test function f2 with
N = 40 and b = 1.0 depending on noise strength ε for ES with different
truncation ratios ϑ. The data points presented are averages obtained from
20 independent runs each. The truncation ratios displayed are (from bottom
to top) ϑ = 0.3 (red data points), ϑ = 0.4 (black), ϑ = 0.5 (green),
ϑ = 0.6 (yellow), and ϑ = 0.7 (blue), data points are partially overlapping.
The curve presents the yN values of the global optimizer ŷN as given by
Eq. (5).

relation between average schema fitness and average popula-
tion fitness (this corresponds to fitness-proportional selection)

f̄ =
1
λ

λ∑
i=1

f(yi, δi). (16)

Under the assumption of a continuous parameter space and
infinite population size λ →∞, we can write with q(δ) and
p(y, t) being the probability distributions of the noise (in
our example q(δ) = εN (0, 1)) and of the parameter y in the
population at time t, respectively,

f̄ =
∫
y

∫
δ

f(y, δ) p(y, t) q(δ) dδ dy

=
∫
y

E[f |y] p(y, t) dy. (17)

Equation (17) shows that the average number of instances of
schemata increases/decreases depending on E[f |y] instead
of f(y). Thus, although equation (16) does not use explicit
sampling, the canonical genetic algorithm works implicitly
on the expected fitness. Note, that this derivation is only
valid for fitness-proportional selection on which the schema
theorem is based.

D. Empirical Evaluation of a GA with Fitness-Proportional
Selection

The empirical results for the canonical GA [12] with a 10
bit binary representation for each of the N = 40 parameters,
fitness-proportional selection (as required by the analysis of
[10]), and uniform crossover with rate pc = 1 are shown in
Figure 5. The presented results show the best performance
over several trials with different mutation rates. Even for
large population sizes (103 in the upper figure and 104 in the
middle figure) the global optimizer state cannot be reached.
Having a closer look, the results are even more disappointing:
the quality improvement by increasing the population size by
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Fig. 5. Dynamics of the evolution of a binary-coded GA on f2. The
function specific parameters are b = 1, ε = 2, and N = 40. The horizontal
(blue dotted) lines represent the global optimizer states. The green curve
shows the yN values and the red curve the distance of the remaining N −1
components to the optimizer state. A 10-bit representation has been used for
each parameter. The population size has been set to 103 in the upper figure
(mutation rate pm = 10−4) and 104 in the middle figure (mutation rate
pm = 5 · 10−5). The lower figure shows the dynamics for the population
size of 104 from generation 1000 onwards.

a factor of 10 (i.e., from 103 to 104) reduces the error by
just 20%.

As an alternative, we also consider real-coded GAs [13],
[14], [15]. However, it was interesting to note that the
performance of real-coded GAs with fitness-proportional
selection is rather worse than that of binary-coded GAs.
Furthermore, they appear extremely sensitive to the choice of



the crossover parameters, e.g. α in BLX-α [13]. Therefore,
graphs have not been included here.

We can summarize that our empirical results do not
support the conclusion by Tsutsui and Gosh [10] that one
can approximate the optimizer state of a noisy optimization
problem arbitrarily close with large enough populations.

IV. LINEAR ANALYSIS

A. General Considerations

As one can infer from the y
(g)
N plots in Figs. 2 and 3,

the respective robust optimizer state ŷN seems to be an
attractor state for f4 but not for f2. In order to understand this
observation, one should consider the noisy fitness landscape
in the vicinity of the robust optimizer state. To this end, it
suffices to consider small perturbations (or mutations) z of
ŷ. Using Taylor expansion we generally have

f(ŷ + z|δ) = f(ŷ|δ) +
N∑

i=1

∂f(y|δ)
∂yi

∣∣∣∣
y=ŷ

zi + . . . (18)

and the observed fitness deviation ∆f from the robust
optimizer state ŷ becomes

∆f = f(ŷ + z|δ)− f(ŷ|δ) =
N∑

i=1

∂f(y|δ)
∂yi

∣∣∣∣
y=ŷ

zi + . . . .

(19)
Now assume the ES at generation g in the parental (centroid)
state 〈y〉 = ŷ and consider (small) arbitrary mutations z.
Unless ∂f(y|δ)

∂yi

∣∣∣
y=ŷ

≡ 0, the ES will generate states ∆f 6= 0.

Since maximization is considered (a similar arguments holds
for minimization), the ES selects those z mutations which are
associated with ∆f > 0. As a result, the parental ŷ will be
left. Conversely, the condition

∂f(y|δ)
∂yi

∣∣∣∣
y=ŷ

= 0 (20)

guarantees local stability of the robust optimizer state ŷ.
However, while ∂f(y|δ)

∂yi

∣∣∣
y=ŷ

6= 0 is the reason for the

departure of selected offspring states from the parental state
ŷ, the expected steady state of the ES (i.e. averaging the
parental states over a long time period) can still be at ŷ.
This is so because ∂f(y|δ)

∂yi
is a random vector due to δ.

Therefore, depending on the distribution of δ and the ES
selection operator used, the expected value of the (µ/µI , λ)-
ES specific ∆f can vanish. This is what has been observed
in Fig. 4 for some certain ε values and the truncation ratio
ϑ = 0.6.

B. Test Function f2

We will now apply the general framework from above to
f2. The first order derivatives are

i = 1, . . . , N − 2 :
∂f2

∂yi
= −2

yi

y2
N + b

, (21)

∂f2

∂yN−1
= −2

yN−1 + δ

y2
N + b

, (22)

∂f2

∂yN
= 2yN

(
(yN−1 + δ)2 +

∑N−2
i=1 y2

i

(y2
N + b)2

− 1

)
. (23)

Using (5) we obtain immediately

ε ≤ b : ∀i 6= N − 1 :
∂f(y|δ)

∂yi

∣∣∣∣
y=0

= 0

∂f(y|δ)
∂yN−1

∣∣∣∣
y=0

= −2
δ

b
(24)

and for ε > b using ŷ2
N + b = ε one gets

ε > b : ∀i, . . . , N − 2 :
∂f(y|δ)

∂yi

∣∣∣∣
y=ŷ

= 0, (25)

ε > b :
∂f(y|δ)
∂yN−1

∣∣∣∣
y=ŷ

= −2
δ

ε
, (26)

ε > b :
∂f(y|δ)

∂yN

∣∣∣∣
y=ŷ

= ±2
√

ε− b

(
δ2

ε2
− 1
)

. (27)

As for the case ε ≤ b, Eq. (24), one sees that the N th
derivative vanishes, therefore, the system is locally stable
w.r.t. fluctuations in the yN direction. But, even for this
case there is the yN−1 component the derivative of which
is not equal to zero. This results in a certain tendency to
leave the ŷ state, however, due to δ ∼ εN (0, 1) (the noise
model considered), the influence via the yN−1-component
gets smaller for smaller ε. This can be qualitatively confirmed
in the plots of Fig. 4.

In the case ε > b, the variance of the N -th component
(27) increases monotonously with ε (while the expected value
remains zero). That is, one cannot expect that the ES is able
to approximate the robust optimizer ŷ (5) of f2 arbitrarily
exact. This raises the question why the ES works on f4.

C. Test Function f4

The first order derivatives are

i = 1, . . . , N − 1 :
∂f4

∂yi
= −2

yi + δi

y2
N + b

(28)

and

∂f4

∂yN
= 2yN

(∑N−1
i=1 (yi + δi)2

(y2
N + b)2

− 1

)
. (29)

Using (9) we immediately obtain for

ε
√

N − 1 ≤ b : ∀i, . . . , N − 1 : (30)

∂f(y|δ)
∂yi

∣∣∣∣
y=0

= −2
δi

b
and

∂f(y|δ)
∂yN

∣∣∣∣
y=0

= 0. (31)

For the case ε
√

N − 1 > b we find using ŷ2
N +b = ε

√
N − 1,

Eq. (9),

ε
√

N − 1 > b : ∀i, . . . , N − 1 :

∂f(y|δ)
∂yi

∣∣∣∣
y=ŷ

= −2
δi

ε
√

N − 1
(32)



and

ε
√

N − 1 > b :

∂f(y|δ)
∂yN

∣∣∣∣
y=ŷ

= ±2
√

ε
√

N − 1− b

( ∑N−1
i=1 δ2

i

(N − 1)ε2
− 1

)
.

(33)
Let us consider the case (31). While the derivative w.r.t.
the N th component is zero, the other derivatives are not
equal to zero. Having a closer look at δi/b taking (7) into
account, one sees that δi/b = ε/b · Ni(0, 1). Therefore,
the variance of a single component is (ε/b)2. Taking the
condition ε

√
N − 1 ≤ b into account, we can find an upper

bound for the variance using ε ≤ b/
√

N − 1

Var[δi/b] = (ε/b)2 ≤ 1/(N − 1) = O(1/N). (34)

That is, each of the (N − 1) derivatives asymptotically
approach zero if the parameter space dimension N →∞.

As to the ε
√

N − 1 > b case, we immediately conclude
from (32) that the derivatives asymptotically vanish for the
first N−1 components. While the expected value of the yN -
component (33) is zero, the variance of (33) needs further
considerations. We calculate

Var
[

∂f(y|δ)
∂yN

∣∣∣
y=ŷ

]
= 4(ε

√
N − 1− b) Var

[ ∑N−1
i=1 δ2

i

(N − 1)ε2
− 1

]

= 4(ε
√

N − 1− b) Var

[∑N−1
i=1 Ni(0, 1)2

(N − 1)

]

= 4
ε
√

N − 1− b

(N − 1)2
Var

[
N−1∑
i=1

(Ni(0, 1))2
]

= 4
ε
√

N − 1− b

N − 1
Var

[
N (0, 1)2

]
= 8

ε
√

N − 1− b

N − 1
= O

(
1√
N

)
(35)

and see that also the N -th component vanishes asymptoti-
cally. In other words, the (global) robust optimizer ŷ of f4 is
an attractor for the steady state of the ES in the asymptotic
limit case. This is in accordance with both the empirical
observations, considering N -dimensionalities not too small
(e.g., N = 30), and the steady state fitness error theory
developed in [2].

D. Discussion

At first glance it appears as a surprise that the ES evolving
on the two functions f2, Eq. (2), and f4, Eq. (6), exhibits
qualitatively different behaviors. The functional differences
of f2 and f4 seem rather small. Function f4 has been
introduced in [2] to allow for a theoretical steady state
analysis of the behavior of the ES. The goal was to obtain
a function f that allows for a decomposition of f into a
deterministic part, being the conditional expectation of f and
an asymptotically (N →∞) normally distributed noise term.
This was not possible for f2. However, at that time this was

regarded rather a purely technical problem than a qualitative
difference. As we have seen now, normality is neither a
necessary nor a sufficient condition for the correct or non-
correct working of the ES as a robust optimizer strategy.
Instead, the first derivatives of f at the robust optimizer state
ŷ must vanish (at least) asymptotically

∂f(y|δ)
∂yi

∣∣∣∣
y=ŷ

→ 0. (36)

This motivates the quest for possible countermeasures if
condition (36) is not fulfilled. Up to now, the only solution
seems to be to fall back to resampling strategies. That is, one
uses

〈f〉κ(y) :=
1
κ

κ∑
k=1

f(y|δk), (37)

where the δk are samples of the random variates δ. This is
a trivial solution for κ →∞, since

〈f〉κ(y) → E[f |y] (38)

may be regarded as the definition of the expected value.
However, what is of interest here is the small κ case.
Replacing f(y) by 〈f〉κ(y) in (19) and (36) leads finally
to

1
κ

κ∑
k=1

∂f(y|δk)
∂yi

∣∣∣∣
y=ŷ

→ 0. (39)

If we apply this condition to critical derivatives of f2 in
Eq. (24), we obtain

ε ≤ b :
1
κ

κ∑
k=1

∂f(y|δk)
∂yN−1

∣∣∣∣
y=0

= − 2
κ

κ∑
k=1

δk

b
(40)

resulting in a variance reduction by a factor of 1/κ. The
same holds for the case ε > b, Eq. (26) and (27), e.g., the
variance of (27) becomes

ε > b : Var

[
1
κ

κ∑
k=1

∂f(y|δk)
∂yN

∣∣∣∣
y=ŷ

]
=

8
κ

(ε− b) (41)

and the steady state of the ES can approximate the global ro-
bust optimizer arbitrarily exact by increasing κ. The question
arises how the solution quality scales with κ. The answer
to this question, however, depends on the function to be
optimized. It cannot be answered by the linear analysis
presented in this section.

V. RESAMPLING

In Fig. 4, it has been shown that the expected steady state
yN can be controlled to approach the global optimizer to
a certain extend by choosing the right truncation ratio ϑ.
This is clearly an ad hoc solution. On the other hand, we
have shown in Section IV-D that an ES with resampling
(37) yields the global optimizer when the number of samples
κ → ∞. However, the question arises how the resampling
performs for κ < ∞, especially for small κ, e.g. for κ = 10.
Figure 6 compares the ES (truncation ratio ϑ = 0.4) without
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Figure 9: Comparison of the dynamics of ES (ϑ = 0.4) without (κ = 1) and with resampling (κ = 10)
on f2 with b = 1, ε = 3, and N = 100. Note the logarithmic scale on the horizontal axis: As to the
r-dynamics, the efficiency of the ES with resampling is reduced by a factor of almost 10. Reaching
the steady state yss

N takes also longer for the resampling strategy by a considerable factor.

In order to keep the resampling size as small as possible, the κ scaling behavior should be deter-
mined. To this end, the progress rate theory for the (µ/µI , λ)-ES with resampling must be derived.
The derivation follows the one performed in Section 4.1.

4.3.2 Progress Rate Theory for yN with Resampling

In this section we will sketch the derivation of the progress rate formula. The derivations do only
slightly deviate from those presented in Section 4.1. Therefore, we present those derivation details
which are different from Section 4.1. The asymptotic progress rate integral is again given by (55)

ϕyNκ '
σ

ϑ

∫ t=∞

t=−∞
t φ(t)Pqκ

(

P−1
qκ (1− ϑ)|t

)

dt, (104)

where thePq are to be replaced by the respective functionsPqκ which take the resampling into account.
Basically, this concerns resampling versions of the probability (and density) expressions (59), (74),
and (76).

First, the conditional pdf for the sample mean 〈f2〉κ, is to be determined in accordance to Eq. (59)
using (35), (3), and (60)

Pr [〈f2〉κ(y) ≤ q|y] = Pr

[

1
κ

κ
∑

k=1

f2(y, δk) ≤ q|y

]

= Pr

[

1
κ

κ
∑

k=1

(

−
(yN−1 + δk)2 +

∑N−2
i=1 y2

i

y2
N + b

− y2
N

)

≤ q

∣

∣

∣

∣

∣

y

]

= Pr

[

−
1
κ

∑κ
k=1 (yN−1 + εNk(0, 1))2 + u2

y2
N + b

− y2
N ≤ q

∣

∣

∣

∣

∣

y

]

25

Fig. 6. Comparison of the dynamics of ES (ϑ = 0.4) without (κ = 1)
and with resampling (κ = 10) on f2 with b = 1, ε = 3, and N = 100.
Note the logarithmic scale on the horizontal axis: As to the r-dynamics, the
efficiency of the ES with resampling is reduced by a factor of almost 10.
Reaching the steady state yss

N takes also longer for the resampling strategy
by a considerable factor.

and with resampling (κ = 10) on the level of function
evaluations. First, we observe that the evolution strategy
with resampling approaches the global optimizer state ŷN

very well. Thus, our predictions from Section IV-D are
confirmed: the algorithm benefits from moderate resampling
sizes (κ = 10). Second, we clearly see, however, the
immense reduction in efficiency (note the logarithmic scale)
when using resampling.

In order to keep the resampling size as small as possible,
the κ scaling behavior should be determined. However, this
goes beyond the scope of this paper.

VI. CONCLUSION

In this paper, we have presented empirical findings on the
convergence behavior of evolution strategies and genetic al-
gorithms on two functions that belong to the class of FNIMs
(functions with noise induced multi-modality). Furthermore,
we have presented some theoretical analysis of the functions
in the vicinity of the global optimizer state and were able to
explain why the evolution strategy did not converge to ŷN

for function f2. Although, quantitatively this analysis cannot
be applied to the binary-coded GA with fitness-proportional
selection, it might – qualitatively – also indicate why the
GA exhibits similar problems. The failure of the GA is not
restricted to the classical canonical GA, it turned out that
this also holds for real-coded GAs (accompanied by severe
stability problems when using fitness-proportional selection).

One way out of this dilemma is to introduce explicit
sampling as a strategy. This is particularly noticeable because
up to now were was strong evidence that larger population
sizes should be chosen instead of explicit sampling of the
fitness function both in the domain of (µ/µI , λ)-ESs [16],
[2] as well as genetic algorithms [17], [10]. Indeed, from
Fig. 6, we clearly observe that explicit sampling is inefficient,
however, at the same time, it seems to be – up to now

– the only (secure) means to cope with functions like f2

which exhibit noise-induced instabilities close to the global
optimizer state. To answer the question posed in the title of
this paper, we have to conclude “it depends on the function”.
However, generally the optimization problem is not given in
analytical form and it will be hard – if not impossible – to
determine the stability of the unknown global optimizer. At
the same time, we can observe from Fig. 6, that it might
be sufficient to resample only later in the search process.
Thus, similarly to the adaptive population size algorithm
suggested in [9] for evolution strategies, it might be sensible
to derive adaptive sampling algorithms. However, it remains
unclear which criterion they should employ in order to decide
whether and when to increase or decrease the sample size.
After all, it must be the aim to keep the sample size small.
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