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Summary. To reduce the number of expensive fitness function evaluations in evo-
lutionary optimization, individual-based and generation-based strategies for meta-
model management (evolution control) have been proposed. In this work, four
individual-based frameworks for meta-model management are investigated. A feed-
forward neural network is employed to construct an approximation model of the
fitness function. Structure optimization of the neural network is used to reduce the
approximation error. In an attempt to adapt the number of controlled individuals,
adaptation mechanisms are suggested based on the model error, selection error, rank
correlation, and fitness correlation. Preliminary results indicated that the adaptation
mechanisms do not work well as expected.

Two of the frameworks are implemented in 3D blade design optimization. The
results showed that individual-based meta-model management is promising, though
further efforts are still needed to improve the performance of the evolutionary algo-
rithms with meta-models for fitness estimation.

10.1 Introduction

It has been shown that evolutionary algorithms are very powerful in solving
many real-world optimization tasks such as 3D turbine blade aerodynamic
design optimization of a jet engine [5, 13, 14], of micro heat exchanger [2] or
transonic wing design [17]. The advantage of evolutionary algorithms is that
they stochastically search the fitness landscape for the optimal solution with-
out the need of any gradient information. However, this advantage is at the
cost of a large number of fitness evaluations. In 3D blade optimization, one
evaluation of the fitness will take huge computational time because compu-
tational fluid dynamics (CFD) simulations have to be performed to evaluate
the performance of the blade.
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To reduce the number of fitness evaluations, one idea is to estimate the
fitness using computationally efficient meta-models, see [8] for an overview of
existing methods. One problem to deal with in real-world optimization prob-
lems is that it is difficult to acquire enough data so that the meta-model can
sufficiently approximate the original fitness landscape, which could result in
false convergence [11, 15]. Therefore it is not advisable to use meta-models
only as a surrogate for the original fitness function. To avoid false convergence,
the neural network model should be used in conjunction with the original fit-
ness function. This is termed evolution control or model management [11, 15].
If evolution control is used, new data become available during optimization,
which can then be used for on-line update of the meta-model. Meta-models
can also be employed in the local search embedded in evolutionary optimiza-
tion [19].

In this work, four individual-based evolution control methods are com-
pared on three benchmark problems. The two most promising methods are
adopted for 3D blade design optimization. In an attempt to improve the per-
formance of the methods, adaptation mechanisms are suggested to adjust the
impact of the meta-model on the optimization process during optimization.

10.2 Evolutionary Optimization with Neural Network
Based Fitness Estimation

10.2.1 Evolutionary Optimization

The evolution strategy with covariance matrix adaptation (ES-CMA) [4] is
adopted for blade optimization in this work. No recombination has been used
since negative influence has been observed in blade optimization. The muta-
tion operator adds normally distributed random values to the design param-
eters of the individual in order to search the design space. Adaptation of the
parameters of the normal distribution in each generation plays an essential
role for the performance of the search algorithm. ES-CMA uses a derandom-
ized self-adaptation mechanism where the whole covariance matrix is adapted
to adjust the parameters of the normal mutation distribution. These param-
eters, called strategy parameters, are also encoded in the chromosome of the
individuals.

One major problem in evolutionary design optimization process is the high
cost of computation resources for evaluating the quality of the designs. For ex-
ample, a 3D design optimization run takes upto 3 months for 200 generations
of evolution on high performance computers. In this work, we employ neu-
ral networks as the meta-model to partially substitute the computationally
expensive fitness evaluations.



10 Individual-based Management of Meta-models 227

10.2.2 Artificial Neural Networks

Up to now, polynomials, kriging model, radial-basis-function networks, and
multi-layer perceptrons (MLP) have been used as meta-models in evolution-
ary optimization [8, 16]. We decided to use MLPs in this work because it has
been shown that MLPs are very powerful in function approximation and clas-
sification. The neural network adapts its parameters and structure to learn
the functional mapping between the design parameters and the performance
with the help of a number of training data obtained from previous optimiza-
tion. After the network is trained, it can be used to predict the fitness of new
designs, given the design parameters.

Multi-layer Perceptros (MLPs)

In [1, 6] it is shown that one hidden layer is sufficient to approximate any con-
tinuous functions, provided that a sufficient number of hidden layer neurons is
used. The number of hidden neurons depends strongly on the characteristics
of the target function [20]. Mostly, the characteristics of the function is un-
known. In this case, it is suggested that structure optimization of the MLPs
should be considered [20].

In this work, the algorithm introduced by Hüsken et al [7] is employed.
The architecture of the neural network is encoded in a connection matrix and
a weight matrix. The values in the connection matrix determine which nodes
in the network are connected and the values in the weight matrix determine
the strength of connections. Fig. 10.1 illustrates the mapping between a neural
network and the connection and weight matrices.

Fig. 10.1. Architecture of a neural network and the corresponding matrix repre-
sentation

The output of the MLP can be calculated using the following equations:

yl =

Nh∑

k=1

wlk · g(
Nx∑

i=1

wkixi + th) + ty, (10.1)

where Nx is the number of input neurons and Nh is the number of hidden
neurons. In the neural network the following activation function g(z) is used,
whose characteristic is similar to the sigmoidal function.
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g(z) =
z

1 + |z| . (10.2)

The weights of the neural network are trained online during the optimiza-
tion when new training samples are available. For neural network training,
Rprop [18], an improved version of the back propagation algorithm is used.
The main difference between Rprop and the back propagation algorithm is
that the learning rate adjustments and weight changes do not depend on the
magnitudes of the gradient, rather on the signs of the gradient terms.

Structure Optimization of Neural Networks

To improve the approximation quality of the neural network, one way is to
optimize the architecture of the neural network during optimization. Yao [21]
provided a comprehensive review of the optimization of neural networks us-
ing evolutionary algorithms. In this work, a genetic algorithm has been used
for this purpose. The connections ai and the value of the weights wi of the
neural network are encoded into the genotype of an individual. This means
that each individual encodes a neural network with a different architecture
and different weights. To generate offspring representing different neural net-
works, specific mutation methods are used. The mutation methods allow to
insert or delete a single connection or neuron and the weights are mutated by
adding a normally distributed random number. After mutation, the Lamarck-
ian mechanism is used for lifetime learning of the weights. Finally, the weights
are coded back into the individuals. EP-tournament-selection is used to select
the individuals representing the neural networks with the lowest mean square
error with respect to the training data.

10.3 Individual-Based Evolution Control Methods

It is found that if a meta-model such as a neural network is used to estimate the
fitness of the individuals, the evolutionary algorithm probably will converge
to a false optimum [15], which is not one of the original fitness function. In
these cases, it is essential that the model be used in conjunction with the
original fitness function. How often the model should be used instead of the
original fitness evaluation is the task of evolution control or model management
methods.

As illustrated in Fig. 10.2, evolution control methods can be divided into
two basic approaches, namely individual-based and generation-based [11].

In the generation-based approach, one has to decide generation by genera-
tion for all individuals whether the fitness will be determined using the meta-
model or using the original fitness function. If the individual-based approach
is used, one has to decide for each individual in every generation whether the
meta-model or the time-consuming fitness function should be used. In this
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Fig. 10.2. Principle of individual-based and generation-based evolution control
methods

work we concentrate on the individual-based approaches and will introduce
several methods in detail.

As can be seen in Fig. 10.3, the individual-based evolution control method
can be described by a common evolutionary optimization process. In each iter-
ation, λ’ offspring are generated out of the µ parents by mutation. After that,
the individual-based control method decides which λ∗ offspring are evaluated
by the real fitness function. The results are used to train the neural network
before the fitness of the remaining λ’−λ∗ offspring will be estimated by the
neural network. In the end µ parents will be selected out of the λ individuals
according to their fitness.

Fig. 10.3. Evolutionary optimization process including individual-based evolution
control methods
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10.3.1 Best Selection (BS)

In the best selection strategy [15], all λ’ offspring are pre-evaluated by the neu-
ral network at first to find the most promising (best) λ∗ individuals. These
λ∗ individuals are evaluated by the original fitness function and the results
are used for training. After training the neural network, the remaining λ’−λ∗

individuals are again evaluated by the neural network to get a better estima-
tion. At the end of each generation, the µ best individuals out of all λ = λ’
individuals become parents for the next generation.

10.3.2 Pre-Selection (PreS)

A pre-selection has been introduced in [19], in which the Gaussian processes
are used as meta-model instead of neural networks. The idea is as follows.
λ’> λ offspring are generated by mutation, and the neural network is used
to estimate the fitness of these offspring. The λ∗ most promising individuals
are pre-selected out of the λ’ offspring. Like in the best selection strategy,
the λ∗ individuals are evaluated using the original fitness function. The main
difference to the best selection strategy is that the µ parents are selected only
out of the λ∗ individuals, which are all evaluated with the original fitness
function.

10.3.3 Clustering Technique (CT)

In [12] a different approach is described to find out which individuals have to
be evaluated with the original fitness function. Using the k-means clustering
technique, all λ’ individuals of a generation are grouped into λ∗ clusters. Now
the λ∗ individuals closest to the cluster center are evaluated using the original
fitness function. The results of the fitness evaluations, as in all other methods,
are used to train the neural network during the optimization. The fitness of
the remaining λ’−λ∗ individuals is estimated using the neural network. Last
but not least the µ parents are selected out of all λ = λ’ individuals.

10.3.4 Clustering Technique with Best Strategy (CTBS)

The idea of the clustering technique with best strategy is the same as in
clustering technique. The offspring are also grouped into a number of clusters.
Now the neural network is used to predict the fitness of each offspring. Instead
of evaluating the individuals closest to the cluster center, the λ∗ individuals
with the best predicted fitness of each cluster will be evaluated by the original
fitness function.
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10.3.5 Simulation Results

The main reason for using individual-based evolution control is to reduce
computational costs. In real-world optimization problems like the blade opti-
mization, the calculation of the fitness needs a large amount computational
time. It is impossible to test all the algorithms on the real-world design opti-
mization problem. So all methods are tested first on three widely used bench-
mark functions. The test functions are the Sphere, Rosenbrock and Ackley
functions. To get an impression of how the functions looks like, the equation
and the two dimensional plotting of the functions are illustrated in Fig. 10.4,
where n is the dimension of the test functions. In the following simulations,
the dimension is set to 10. Part of the following results has been reported in
[3].
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Fig. 10.4. Overview of the used test-functions with an (a) 2D illustration and (b)
the equation of the functions
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Simulation Setup

In all simulations, a (µ, λ) ES-CMA without recombination is adopted. The
strategy parameters of the covariance matrix are randomly initialized between
σmin = 0.05 and σmax = 4.

We compare the model management frameworks in both serial and parallel
computing environments. The parameters for the evolutionary optimization
process are set according to the different requirements of the used computa-
tional environment.

When the optimization is conducted in a serial environment, the perfor-
mance depends only on the number of fitness evaluations needed to reach a
near optimum. So in each generation µ parents are selected out of the same
amount of λ offspring. The remaining parameters are adjusted according to
the values of µ and λ as combined in Table 10.1. For clarity the following no-
tation is used:

(
µ, [λ′]λ[λ∗]

)
. µ parents are always selected out of λ offspring.

λ′ defines the number of pre-selected and λ∗ the number of controlled indi-
viduals. The ratio according to [4] is set to µ ≤ λ

3 . The ratio of λ to λ′ and
λ∗ are based on recommendations or findings in [12] and [19].

PlainES PreS BS CT CTBS
`

3, [12]12[12]
´ `

3, [24]12[12]
´ `

3, [12]12[6]
´

Table 10.1. Settings of the strategy parameters
`

µ, [λ′]λ[λ∗]
´

to compare the per-
formance of the individual-based control methods for optimization in a serial com-
putational environment

If it can be assumed that in a parallel computational environment enough
computers are available to evaluate all individuals in parallel, the number of
fitness evaluations itself is less important. In that case the number of gener-
ations needed to reach a near-optimal solution is the main concern. We also
assume that the number of used machines equals the number of fitness evalu-
ations λ∗, which is held constant for all methods. The remaining parameters
are adjusted with respect to λ∗. The entire setup is listed in Table 10.2.

PlainES PreS BS CT CTBS
`

2, [6]6[6]
´ `

2, [12]6[6]
´ `

2, [12]12[6]
´

Table 10.2. Settings of the parameters µ, λ’ and λ∗ to compare the performance of
the individual-based control methods for optimization in a parallel computational
environment

The neural network used in the simulations consists of 10 input nodes,
one hidden layer with four hidden neurons, and one output node. If structure
optimization is carried out, the number of hidden neurons is not fixed. To



10 Individual-based Management of Meta-models 233

achieve a good local approximation of the original fitness landscape, only
data of the most recent evaluations are used for training.

Serial Optimization

In a serial computational environment, only the number of expensive fitness
evaluations is of importance to reach a near-optimum. 20 independent runs
are performed for each optimization to reduce the randomness. The median
fitness value of the best offspring in each generation is plotted versus the
number of fitness evaluations to compare the performance of the introduced
methods. The results from the Sphere, Rosenbrock and Ackley functions are
presented in Fig. 10.5 and Fig. 10.6. The left column presents the results with
and the right column without structure optimization of the neural network.

To show the statistical significance between the evolution control meth-
ods and the plain evolution strategy, the boxplot of the results are given in
Fig. 10.6. The boxplot illustrates the median and the variance of the fitness
values of the best individual in the final generation over 20 runs. The notches
of the boxes in the plot are the graphical equivalence to the student t-test.
If the notches of two boxes do not overlap, there is a significant difference
between the medians of the two strategies at a significance level of p = 0.05.

From Fig. 10.5 and Fig. 10.6, we can see that all evolution control methods
except the best strategy improve the performance of the plain evolution strat-
egy significantly on the 10D Sphere function. But there are no statistically
significant differences between the model-assisted strategies themselves, no
matter whether structure optimization of the neural networks are performed
or not.

It turns out that the clustering technique with best strategy outperforms
other algorithms on the 10D Rosenbrock function, when no structure opti-
mization of the neural network is carried out. However, all algorithms fail to
improve the performance of the plain evolution strategy significantly. This
result may be attributed to the fact that the number of hidden neurons is not
sufficiently large to approximate the Rosenbrock function. Meanwhile, the re-
sult indicates that with structure optimization, the neural networks perform
locally very well on the Rosenbrock function.

From Fig. 10.5, it can be seen that the individual-based evolution control
methods perform well on the Ackley function. But as we can see in the boxplots
in Fig. 10.6 the variance of the strategies is very high except the pre-selection
strategy. The pre-selection strategy outperforms the plain evolution strategy
in almost all of the 20 runs.

In summary, it turned out that the pre-selection method shows the most
stable and promising results and only fails to improve the evolution strategy
on the Rosenbrock function. The reason for the stability of the pre-selection
methods might be that the parents of the next generation are only selected
from the individuals that evaluated with the original fitness function.
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Fig. 10.5. Performance comparison of the individual-based methods in a serial com-
putational environment: (a) without structure optimization and (b) with structure
optimization of the neural network

In the following, we only show the results with structure optimization
of the neural networks because the above results show that using structure
optimization mostly improves the performance of the neural network and the
optimization process.

Parallel Optimization

As mentioned before, to compare the performance of the individual-based evo-
lution control methods in a parallel computational environment, the number
of exact fitness evaluations is not as important as the number of generations.
Therefore the fitness values are plotted versus the number of generations. To
make sure that the comparison is fair, the number of real fitness evaluations
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Fig. 10.6. Boxplot of the best fitness in the final generation over 20 runs after 1200
exact fitness evaluations are done: (a) without structure optimization, and (b) with
structure optimization

each generation in all methods is the same. Fig. 10.7(a) shows the character-
istics of the median best fitness value over the generations and in Fig. 10.7(b)
the boxplot for statistical analysis is illustrated using structure optimization
of the neural network.

As can be seen in Fig. 10.7, the pre-selection strategy improves the plain
evolution strategy on all used test functions. So it might improve the opti-
mization process better if the parents are only selected out of the λ∗ offspring
evaluated with the original fitness function. Using BS, CT or CTBS, the par-
ents are selected out of all λ individuals, whose fitness has either been eval-
uated with the real fitness function or estimated by the neural network. The
possible reason is that if some individuals are selected according to the es-
timated fitness, the optimization algorithm might be misled, which degrades
the performance.
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Fig. 10.7. Results of the individual-based methods in a parallel computational
environment: (a) performance comparison and (b) boxplot over 20 runs after 200
generations

We can see that clustering the design space on bumpy fitness landscapes
like the Ackley function gives a benefit to the algorithm. The clustering tech-
nique with best strategy performs also well on all other test functions, es-
pecially if the fitness function becomes more complex. However, it can not
outperform the pre-selection strategy.

In both serial and parallel computational environments, the pre-selection
and clustering technique with best strategy delivered the most promising re-
sults.
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10.4 Adaptation in Individual-based Evolution Control

In the above comparisons, the number of controlled individuals is fixed during
optimization. In this section, we consider adapting the number of controlled
individuals. Three different adaptation frameworks are introduced. The idea
of adaptation is that if the performance of the neural network increases during
optimization, it should be used more often to substitute the original fitness
function. There are two parameters that can be taken into account for adapta-
tion. One is the number of fitness evaluations λ∗, and the other is the number
of pre-selected individuals λ’. Adjustment of λ∗ only makes sense of on-line
scheduling of computational resources is possible.

10.4.1 Normalized Squared Error Driven Adaptation Mechanism
(NERD)

The first quality measure we considered here to adapt the number of individ-
uals is the approximation quality of the neural network. The approximation
quality of the neural network can often be measured using the squared error

between the individual’s original fitness φ
(Orig.)
i and the estimated fitness of

the neural network φ
(MLP )
i :

E
(SE)
i =

(
φ

(MLP )
i − φ(Orig.)

i

)2
. (10.3)

The error can be determined for each offspring i which has been evaluated
with the original fitness function. The main idea of this adaptation method is
that if the error of the neural network becomes smaller in the next generation
t + 1, the neural network should be used more often. But the error in the
generation t + 1 is unknown. It is only possible to compare the error in the
current generation t with the error in the last generation t− 1. There are two
problems in comparing these two errors. In general, the fitness values by itself
decline during optimization and so probably the value of the squared error
will also decline. Therefore the squared error should be normalized by the use
of the mean squared error:

E
(NSE)
i =

E
(SE)
i

1
λ∗

∑λ∗

i=1 E
(SE)
i

. (10.4)

Comparing the mean of the normalized squared errors of all offspring will
lead to the second problem. If there is one individual with a large error while
the error of the rest of the individuals is small the comparison might be
misleading. Instead of comparing the mean values, the ranks of the individuals’
normalized errors are compared. An example how the rank of the error in
generation t− 1 and generation t can be calculated is illustrated in Fig. 10.8.
First the values of the two sets of errors are combined and sorted. After
that, each element is given its corresponding rank. If some samples carry the
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same error value, the rank will be averaged. Then, the ranks of the sets from
generation t− 1 and generation t are accumulated.

Fig. 10.8. Example of evaluating the rank with respect to the normalized square
error in generation t− 1 and generation t

Given the two ranks the quality measure ρ(NERD) can be determined by
calculating the difference of the two normalized ranks. The ranks also have to
be normalized by the number of λ∗ individuals because λ∗ might change if it
is adapted during optimization:

ρ(NERD) =
R(t− 1)

λ∗t−1

− R(t)

λ∗t
. (10.5)

If Rt is smaller than Rt−1, the quality measure ρ(NERD) is less than 0 and
the neural network should be used more often. On the other hand, if Rt−1 is
smaller than Rt, ρ

(NERD) is bigger than 0 and the neural network should be
used less often. λ∗t+1, or rather λ′t+1 is adapted as follows:

λ∗t+1 = λ∗t − ρ(NERD) ·∆λ, (10.6)

λ′t+1 = λ′t + ρ(NERD) ·∆λ. (10.7)

The remaining difficulty is the choice of the correct free parameter ∆λ,
which might be problem-specific.

10.4.2 Selection Based Adaptation Mechanism (Sel)

From the evolutionary computation point of view, only the correct selection is
of importance and not the approximation error of the model. The error of the
neural network does not have direct influence on the evolutionary selection
process. Therefore, as introduced in [15], a selection based quality measure can
be considered to evaluate the quality of the model based selection process. For
each correctly selected individual, based on the estimation of the model, it is
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given a rank of (λ∗t − i), if the individual has the i-th best fitness based on the
true fitness. To calculate the rank, as shown in Fig. 10.9, we first pick out the
µ∗ best individuals based on the estimation of the neural network. Note that
these individuals are chosen only to calculate the error measure.

Fig. 10.9. Illustration of how to evaluate the selection-based quality measure

Afterwards, all λ∗ individuals are evaluated using the original fitness func-
tion and µ individuals will be selected out of the λ∗t (where t is the generation
index) offspring and the sum of the ranks of allm correctly selected individuals
measures the quality ρ(sel) in the current generation:

ρ(sel) =
m∑

i=1

(λ∗t − i). (10.8)

If all individuals are selected correctly, the quality measure reaches its
maximum:

ρ(sel)
max =

µ∑

i=1

(λ∗t − i). (10.9)

The idea is to compare the actual quality measure with the expected qual-
ity of a random selection process 〈ρ(rand)〉:

〈ρ(rand)〉 = µ2

λ∗t
· 2λ

∗
t − µ− 1

2
. (10.10)

If the quality in the current generation is better than the quality of a
random selection process, then the neural network can be used to replace the
original fitness function more often. Otherwise, the neural network should be
less often used. The adaptation rule differs a little bit whether λ∗ (Equation
10.12, 10.14) or λ’ (Equation 10.11, 10.13) will be adapted.

ρ
(sel)
t > ρ(rand) :
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λ′t+1 = λ′t +
ρ
(sel)
t − 〈ρ(rand)〉

ρ(max) − 〈ρ(rand)〉 ·∆λ, (10.11)

λ∗t+1 = λ∗t −
ρ
(sel)
t − 〈ρ(rand)〉

ρ(max) − 〈ρ(rand)〉 ·∆λ. (10.12)

ρ
(sel)
t < ρ(rand) :

λ′t+1 = λ′t −
〈ρ(rand)〉 − ρ(sel)

t

〈ρ(rand)〉 ·∆λ, (10.13)

λ∗t+1 = λ∗t +
〈ρ(rand)〉 − ρ(sel)

t

〈ρ(rand)〉 ·∆λ. (10.14)

It has to be considered that λ∗t+1 is bigger than the number of parents µ
and as in all other adaptation methods λ′t+1 has to be equal or bigger than
λ∗t+1. As in the normalized squared error based adaptation framework, the free
parameter ∆λ has also to be specified. One drawback of the selection based
approach is probably the small number of µ individuals taken into account to
measure the quality, which could result in strong oscillations in adaptation.
Note that CMA-ES often uses a small population size.

10.4.3 Correlation Based Adaptation Mechanism (Rank, Corr)

Using the correlation based framework, all λ∗t offspring are taken into account
to evaluate the quality measure. Two different possibilities are suggested in
[15] to evaluate the correlation between the λ∗t individuals. The first corre-
lation based quality measure is the rank correlation (Rank). To evaluate the
rank correlation measure, after estimation the λ∗t individuals are sorted by
their fitness and a given rank. The same is done after evaluating the fitness
with the original fitness function. The rank correlation quality measure can
now be calculated in the following way:

ρ(rank) = 1− 6
∑λ∗

t

l=1(rl − r̂l)2
λ∗t ((λ

∗
t )

2 − 1)
, (10.15)

where r̂l is the rank of the l’th individual based on the estimated fitness and
rl is the rank based on the real fitness.

The second correlation based quality measure is the so called continuous
correlation (Corr). This quality measure calculates the correlation between the
fitness values instead of the ranks. So the continuous correlation between the
approximate model output and the original fitness function can be calculated
by using Equation 10.16:

ρ(corr) =

1
λ∗

t

∑λ∗

t

l=1

(
φ

(MLP )
l − φ̄(MLP )

)(
φ

(Orig)
l − φ̄(Orig)

)

σ(MLP )σ(Orig)
. (10.16)
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Here ¯φ(m) and σ(m) are the mean value and the standard derivation of the
fitness values evaluated using the neural network and ¯φ(o) and σ(o) are the
mean and the standard derivation of the real fitness values.

The rules to adapt λ∗ and λ′ are similar to the rules in the normalized
squared error driven mechanism:

λ∗t+1 = λ∗t − ρ ·∆λ, (10.17)

λ′t+1 = λ′t + ρ ·∆λ, (10.18)

where ρ stands for ρ(corr) or ρ(rank).

10.4.4 Simulation Results

The empirical results are presented to investigate whether the adaptation
mechanisms are able to improve the performance of the individual-based evo-
lution control methods. To dynamically control the impact of the neural net-
work on the individual-based evolutionary control strategy, two parameters
can be adjusted during optimization.

Simulations have been conducted using the pre-selection strategy, where
the number of pre-selected individuals is adapted using the introduced adap-
tation mechanisms. As mentioned, ∆λ has to be specified before starting the
simulations. ∆λ was determined during some experiments and varies with the
different adaptation mechanisms as listed in Table 10.3.

Sel NERD Rank, Corr

∆λ 12 24 16

Table 10.3. Configuration of the free parameter ∆λ to adapt the number of pre-
selected individuals

The initial value for λ′ was fixed to 12 and the parameters for the evolution
strategy are set to

(
3, [λ′(t)]12[12]

)
. In all simulations, the structure of the

neural network is optimized.
As one can see in Fig. 10.10, using the normalized error rank based

(NERD) adaptation mechanism performs very poorly on all the test func-
tions. In Fig.10.11, the change of λ′ are shown on the left and the quality
measure on the right. Using the error-based adaptation mechanism (NERD),
it can be seen that λ′ increases continuously on all test-functions. So the net-
work error seems to decrease during optimization. This might indicate that
the error of the neural network by itself is not directly correlated with the
performance of the optimization process. Another reason might be that ∆λ
has not been chosen correctly.
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Fig. 10.10. Results using adaptation mechanisms to control the number of pre-
selected individuals: (a) performance comparison and (b) boxplot over 20 runs after
100 generations

The selection based adaptation mechanism failed to perform well on all
three test-functions too. The change of λ′ and the quality measure oscillates
dramatically, see Fig. 10.11. It is noticed that in [19], the selection-based
quality measure has successfully been used to control the number of the pre-
selected individuals. Note that the population size used in [19] is larger.

The best results in our simulations are obtained with the correlation-based
adaptation mechanisms, especially the continuous correlation mechanism. But
the correlation based adaptation mechanisms can not significant improve the
pre-selection method without adaptation. Looking at the characteristic of λ′

on Fig. 10.11, both adaptation mechanisms show the same trend. At the
beginning the impact of the neural network to the optimization process steady
increases. After some maximum is reached λ′ decreases. The characteristics of
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λ′ appears to agree with the idea that the neural network should be less used
until it is well trained. And if the optimization process comes closer to the
optimum, the neural network should also be less used because the estimation
is accurate enough to reach the real optimum.

From the above results, it seems that the adaptation mechanism is not suc-
cessful in improving the performance of the pre-selection strategy and thus,
the adaptation mechanisms are not tested on other model management frame-
works.

10.5 3D Blade Design Optimization

In this section, we apply the pre-selection and the clustering with best strategy
to 3D stator blade optimization.

10.5.1 Shape Representation

The 3D shape of the blade is approximated using three sections of 2D blades,
as illustrated in Fig. 10.12(a). The hub section is directly connected to the
hub at a radius of R = 98.6mm from the engine axis. The tip section lies at
a radius of R = 130.0mm. The 3D blade is built up by linear interpolation
between these two sections. Another important section for the calculation of
the design constraints is the casing section, which lies between the hub and
the tip section at R = 117.5mm.

For each blade section, the blade length in axial direction is defined by
the axial chordlength, refer to Fig. 10.12(b). The axial chordlength depends
on the distance of the section to the engine axis.

Another parameter is the axial solidity s. For optimization, the solidity is
measured at the casing section and the hub section. The final blade solidity
is defined as the maximum value of these two measurements.

To describe the geometry of the blade, the thickness Θ can not be omitted.
The thickness is also defined on a 2D section as the distance from the medial
axis to a point p on the outline of the section. Depending on where the
thickness is measured, the trailing edge thickness ΘTE , near the trailing edge
of the blade and the leading edge thickness ΘLE near the leading edge are
considered. Also important are the minimal Θmin and maximal Θmax values
of the thickness.

The last parameter introduced here is the throat area (Fig. 10.12a). The
throat area is defined as the area between two adjacent blades.

In this representation, 88 design parameters need to be optimized.

10.5.2 Performance Evaluation

Given the geometry of the 3D blade, the performance can be described by
the pressure loss, which has to be minimized under certain constraints. This
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Fig. 10.11. Development of (a) λ′ and (b) the quality measure during optimization

leads to the following objective or fitness function as a weighted sum of the
pressure loss and the blade constraints. A penalty is applied in term of a big
weight wi so that the fitness becomes worse when a constraint is violated.
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(a) (b)

Fig. 10.12. Parameters and terminologies in 3D turbine blade design

f = w0t0 +

4∑

i=1

wit
2
i −→ min, (10.19)

where t0 is the pressure loss of the given blade, and ti are the following con-
straints:

• t1 : max
(
0, |β2,design − β2| − δβ2

)
,

• t2 : max
(
0, Θmin,design −Θmin

)
,

• t3 : max
(
0, ΘTE,min,design −ΘTE,min

)
,

• t4 : max
(
0, smax − smax,design

)
,

where the following design values and tolerances are used:

• β2,design = 72.0deg
• δβ2 = 0.5deg
• Θmin,design = 0.72mm
• ΘTE,min,design = 0.9mm
• smax,design = 0.706.

The geometrical constraints like the minimal thickness Θ, trailing edge
thickness ΘTE , and the solidity s can all be determined directly from the
geometry of the blade. However the outlet angle β2 and the pressure loss can
only be calculated from the results of the computational fluid dynamics (CFD)
simulations. To simulate the fluid dynamics, the parallelized 3D Navier-Stokes
flow solver HSTAR3D is used. The computational time of a CFD simulation
varies between 2.5 and 6 hours on an AMD Opteron 2GHz dual processor.
After flow analysis, each blade can be assigned a corresponding fitness value
using Equation 10.19.

To investigate whether individual-based evolution control methods give a
benefit to real world optimization problems, two methods are implemented
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Fig. 10.13. Comparison of the performance between the plain evolution strategy
and (a) using the pre-selection strategy or (b) using the clustering technique with
best selection

in the 3D blade design optimization problem. The two methods are the
(1, [12]6[6]) pre-selected strategy and the (1, [6]6[4]) clustering technique with
best strategy. The performance of the methods are compared with the (1, 6)
plain evolution strategy. By use of the model assisted methods, the computa-
tionally expensive flow analysis was partially replaced by the neural network.
The neural network consists of 88 input nodes, 4 hidden nodes and 2 output
nodes. Using the clustering technique with best strategy, the performance of
only 4 instead of 6 individuals each generation was determined by evaluating
the CFD. Therefore the methods are compared by the fitness over the number
of generations and also by the fitness over the number of exact fitness function
evaluations, see Fig. 10.13.

As can be seen in 10.13(a), using the pre-selection strategy gives a ben-
efit to the plain evolution strategy. It was possible to save up to about 20
generations to reach the same fitness value. The fitness of all individuals in
each generation was evaluated in parallel. If the evaluation of the fitness takes
about three hours, we saved about 60 hours of computational time. But the
gap between the plain evolution strategy and the pre-selection strategy over
the entire optimization process is nearly constant. There is no dramatic im-
provement in performance compared to the plain evolution strategy.

Using the clustering technique with best strategy, there is no improvement
to the plain optimization process, refer to 10.13(b). Comparing the fitness over



10 Individual-based Management of Meta-models 247

the number of generations, it might be clear that the (1, 6) plain evolution
strategy can not be improved if only 4 individuals each generation are eval-
uated with the exact fitness function. Further it should be analyzed whether
the clustering technique with best strategy might improve the (1, 4) evolu-
tion strategy. But comparing the fitness against the number of exact fitness
function evaluations, there is also no improvement to the plain optimization
process.
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Fig. 10.14. Comparison of the outflow angle between the plain evolution strategy
and (a) using the pre-selection strategy or (b) using the clustering technique with
best selection

The fitness for each individual was determined by using equation 10.19. If
the geometry of the blade does not violate any constraint, the pressure loss
equals the fitness value because the weight for the pressure loss is set to one.
Otherwise, if the geometry violates some constraints, a penalty of 1022 was
given and the fitness becomes worse. Because the fitness values of invalid blade
geometries are very large, these fitness values are not illustrated in Fig. 10.13.

A comparison of the outflow angle of the plain evolution strategy and the
individual controlled strategies is shown in Fig. 10.14. It can be seen that the
value for the outflow angle is near the lower bound. One exception occurs
when the pre-selection strategy is used, where the outflow angle differs from
the plain evolution strategy in the first generations.

To investigate how good the neural network substitute the time-expensive
CFD-calculations, the estimation error of the two neural network outputs are
illustrated in Fig. 10.15. The upper panel illustrates the estimation error of the
pressure loss and the bottom panel shows the estimation error of the outflow
angle. The squared error of the value evaluated with the CFD-calculation and
the value estimated with the neural network has been plotted. It can be seen
that the most values lie between 10−2 and 10−4. Recall that the pressure
loss is about 10 and the outflow angle is about 71.5, which indicates that the
estimation of the neural network is quite good.



248 Lars Gräning, Yaochu Jin, and Bernhard Sendhoff

0 20 40 60 80

10
−6

10
−4

10
−2

10
0

Pressure Loss

Generation

S
qu

ar
ed

 E
rr

or

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0 Pressure Loss

Generation

S
qu

ar
ed

 E
rr

or
0 20 40 60 80

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Outflow Angle

Generation

S
qu

ar
ed

 E
rr

or

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Outflow Angle

Generation
S

qu
ar

ed
 E

rr
or

(a) (b)

Fig. 10.15. Illustration of the neural network error for the pressure loss and the out-
flow angle (a) using the pre-selection strategy and (b) using the clustering technique
with best selection

10.6 Conclusions

In this chapter, we have present four individual-based evolution control meth-
ods in order to reduce the number of expensive fitness evaluations. The per-
formance of the methods is tested on three widely used benchmark functions.
The pre-selection strategy shows the best results in both serial and in paral-
lel computational environments, which improves the plain evolution strategy
significant on mostly all test functions. The stability of the individual based
evolution strategy might be improved if the parents for the next generation
are selected out of the individuals evaluated with the original fitness function,
as it is done in the pre-selection strategy.

To adaptively control the impact of the neural network on the evolution-
ary process, different adaptation mechanisms are investigated. The number of
pre-selected individuals was controlled using the pre-selection strategy. Pre-
liminary simulation results are not very promising. Further research should be
done to see whether the free parameter ∆λ was chosen correctly. It should be
analyzed why the results presented in [19] are much better than in our work.

To investigate whether individual-based evolution control methods are
practical in real world optimization problems, the pre-selection strategy and
the clustering technique with best strategy are implemented in the 3D blade
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design optimization. It turned out that the pre-selection strategy gives a ben-
efit to the performance of the optimization process. The neural network suf-
ficient substitutes the CFD-calculation.

There are a few possible reasons that lead to the relatively poor perfor-
mance of the clustering methods. First, the population size used in this work
is very small, which makes the clustering less sensible. Second, we only used
a single neural network contrasting the work in [12], where a neural network
ensemble has been used. In the future work, it should be investigated whether
a neural network ensemble instead of a single neural network can improve the
estimation accuracy of the model.
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