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Abstract. We propose methods that allow the investigation of local
modifications of aerodynamic design data represented by discrete un-
structured surface meshes. A displacement measure is suggested to eval-
uate local differences between the shapes. The displacement measure pro-
vides information on the amount and direction of surface modifications.
Using the displacement measure in conjunction with statistical methods
or data mining techniques provides meaningfull knowledge from the data
set for guiding further shape optimization processes.

1 Introduction

In the field of 3D aerodynamic shape optimization, a large amount of geomet-
ric and flow field data is generated during the design process that usually en-
compasses several optimization runs, manual design phases and experiments.
Typically, only the most promising results with regard to one or more possi-
bly competing performance indices are exploited to define the overal result of
the design process. However, a lot of information that could be condensed into
comprehensive rules or observations concerning the design process in general is
hidden in all of the data. Even poorly performing shapes can provide interest-
ing insight into the fluid-dynamics of the problem and into the dynamics of the
search process. This knowledge extracted from the large amount of data can be
prepared in such a way that it can be used by the engineer or by an follow-
up computational design and optimization processse. This type of knowledge
extraction is the major focus of the present paper.

Obayashi et al. [10] were one of the first who addressed the problem of knowl-
edge extraction from existing design data in order to gain some insights into the
complex relationship between geometry and performance measurements. They
used self organizing maps (SOM) in order to find groups of similar designs and for
multicriteria performance improvements and tradeoffs. Although their methods
have been applied to super sonic wing design, the data and design parameter sets
were small, uniform and well defined. If different optimization runs have been
performed with different design parameters, one first has to find an adequate
representation which captures all shape variations and which can be applied to
various data mining techniques.
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Therefore, we suggest the use of unstructured surface meshes as a general
representation for analyzing a given set of designs resulting from different shape
optimization runs. Each optimization can be a manual or a computational pro-
cess and can be based on different shape descriptors. The unstructured surface
mesh as a general representation allows the analysis of local shape modifications
and their influence on the performance value(s). In this paper, we will propose
a displacement measure between surface meshes. The combination of the dis-
placement measure with techniques from statistics and data mining allows the
extraction of useful knowledge from the design database for the support of fur-
ther optimization processes.

The paper is organized as follows. In Section 2, we will introduce unstructured
surface meshes and outline the new displacement measure in Section 3, which
captures local differences between designs. How we can extract knowledge from
the displacement and performance data is described in Section 4. In the last
section, we summarize the paper.

2 Surface Representation

For the optimization of the shape of three dimensional geometries often different
parametric representations are used [2] which makes it difficult or even impossible
to analyze the whole data set based on the applied parameterization. Therefore,
we suggest unstructured triangular surface meshes as a general representation to
describe the surface of each design. Most shape representations can be converted
to unstructured surface meshes, see e.g. [3], [4].

a) b)

Fig. 1. Illustration of a) the specification of a triangular surface mesh M : (V,N ,K)
and b) an example of a triangular surface mesh for a 3D turbine blade.

For the description of the surface mesh we start with the mathematical frame-
work given in [5]. It is assumed that the shape of a 3D design is described using a
polygonal surface mesh M, which is a partially linear approximation of the con-
tour of the design. We postulate that each mesh M consists of a list of vertices
V, a complex K and a list of normal vectors N . The vertex list V = (v1, ...,vn)T

describes the geometric position of the vertices in R3, vi = (x1, x2, x3)T . A ver-
tex can be seen as a sample point of the contour of the design. Each face of
the polygonal surface mesh is defined by simplices of the form {i1, i2, i3, ..., iµ}
where il, l ∈ [1..n] are indices pointing to vertices that enclose the polygonal face.
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Figure 1 a) illustrates a triangular surface mesh where the number of vertices,
which are used to form each polygon, is set to 3. In addition to the vertex list,
a list of normal vectors N = (n1, ...,nn) is given. Each normal vector ni has a
defined direction perpendicular to the surface mesh and provides local curvature
information at the position of vertex vi. Figure 1 b) illustrates an example of a
triangular surface mesh describing the contour of a 3D turbine blade design [1].
The normal vectors point towards the outside of the closed blade contour.

3 Displacement Measurement

Under the assumption that the surface triangulation results in surface meshes for
which the location and the number of vertices is sufficiently precise to capture
the characteristic changes of all designs in the given data set, the displacement
is measured between each vertex on the reference design and each corresponding
vertex on the modified design. In order to measure the displacement between two
vertices of different surface meshes, the correspondence problem (which vertex
from mesh Mr corresponds to which vertex from mesh Mm) has to be solved
and an appropriate metric has to be found for measuring the amount and the
direction of the displacement between both vertices. We will not deal with the
correspondence problem in this paper, the interested reader is refered to e.g.
[7], [6]. In the following, we assume that two corresponding vertices have been
identified.

3.1 Definition

The displacement measure should describe the position of a vertex in reference
to another design. One way to capture this information is to use the difference
vector sij = vr

i − vm
j , which is the difference between vertex i of mesh Mr

and vertex j of mesh Mm. The difference vector clearly captures the correct
displacement between both vertices. However, the difference vector is sensitive
to possible errors resulting from wrong estimations of the corresponding points or
from different sampling methods of the surfaces of the geometries. Furthermore,
the difference vector requires d = 3 parameters for describing the displacement
of one vertex in R3. Thus, to capture the displacement between two complete
surface meshes the number of parameters is 3 · n, where n equals the number of
vertices. To overcome the disadvantages of the difference vector, we suggest the
following displacement measure:

δr,m
i,j = δ(vr

i ,v
m
j ) = (vm

j − vr
i ) ◦ nr

i , δ ∈ (−∞,+∞) (1)

The displacement measure is defined as the projection of the difference vector
sij = (vr

i − vm
j ) onto the normal vector ni of vertex vi of the reference design

Mr. The absolute value of the displacement measure provides information on
the amount of vertex modification while the sign of the displacement measure
in conjuction with the normal vector of the vertex provides information on the
direction of the vertex modification. The normal vector ni points towards the
normal or positive direction of vertex modification.
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3.2 Major Properties

The displacement measure is by definition a vector quantity containing both the
magnitude and the direction of vertex modification. If the modified vertex lies
above the tangential plane described by the normal vector of the reference vertex,
the displacement measure is positive, see Fig. 2 a). Whereas if the vertex lies
below the tangential plane (Fig. 2 b) the displacement measure is negative. In
the special case when the modified vertex is located within the tangential plane,
the displacement measure is zero as shown in Fig. 2 c). If the reference vertex
has been modified along the line described by the normal vector, the amount of
the displacement measure equals the Euclidean distance between the reference
and the modified vertex.

Fig. 2. Examples of the displacement measure. Figures a) and b) illustrate that a ver-
tex displacement parallel (anti-parallel) to the normal direction results in a positive
(negative) displacement value. A displacement perpendicular to the normal vector re-
sults in a displacement value of zero, as shown in c). Figure d) illustrates the error
when calculating the displacement measure, which results from the discretization of
the surface and the error when estimating corresponding points.

As Figure 2 d) indicates, the displacement value contains an error, which is
mainly the result of the discretization of the surface using triangulation and of
the correspondence problem. Formally, this can be written as

δr,m
i,j = (sij + eij) ◦ nr

i = sij ◦ nr
i + eij ◦ nr

i , (2)

where eij describes the error between the ideal displacement value and the mea-
sured displacement value. Under the assumption that the curvature of both
surfaces Mr and Mm is similar at the position of the corresponding vertices it
follows that nr

i ≈ nm
j . Then, the error term from equation 2 can be rewritten

as:

eij ◦ nr
i ≈ |eij |cos(∠(eij ,n

m
j )). (3)

If additionally a smooth surface or a small error |eij | is assumed, eij is per-
pendicular to nm

j and hence cos(∠(eij ,n
m
j )) ≈ 0. Thus the error term becomes

zero. Therefore, the displacement measure is less sensitive to small errors arising
from the surface triangulation or from an incorrect estimation of corresponding
points.
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Another advantage of the displacement measure compared with the difference
vector is that only n parameters are required for the description of the differences
between two unstructured surface meshes, where n equals the number of vertices.

4 Knowledge Extraction from Design Data

In aerodynamic design optimization the main goal is to find three dimensional
shapes, which are optimal for specific performance measurements like aerody-
namic drag or lift under specific constraints, e.g. manufacturing limitations. In
general, during the optimization process a large number of shapes are generated
and evaluated based on different representations and parameterizations. The re-
sult are heterogeneous design data sets from which only a very small number of
designs are used in the end to determine the optimal shape (or a set of optimal
shapes) which is processed further, e.g. in rapid prototyping devices for exper-
iments. As we noted in the introduction, we aim at exploiting the information
contained in the large remaining part of the data set. In this section, we describe
how the displacement measure in conjunction with statistical and data mining
methods can be used in order to extract meaningfull information (knowledge)
from heterogeneous design data sets.

4.1 Displacement Analyzis

Analyzing local modifications in form of vertex displacement helps to gain some
insight into the exploration of the design space. Two measures are suggested: the
relative mean vertex displacement that provides information on how a vertex has
been modified with respect to one reference design and the overall displacement
variance that highlights the vertices which have been modified most frequently.

Relative Mean Vertex Displacement In order to get information on local
design modifications in reference to one baseline design, we define the relative
mean vertex displacement :

δ
r

i =
1

N − 1

N∑
m=1,m 6=r

δr,m
i,j (4)

Given a data set of N unstructured surface meshes δ
r

i evaluates the mean
displacement of vertex j of all meshes m from the corresponding vertex i of
the reference mesh (baseline) r. The measure provides information on how far
a reference vertex has been modified along its normal vector with respect to
the whole data set. If δ

r

i > 0, the vertex vm
i has been modified parallel to the

normal vector of the vertex and δr
i < 0 indicates a modification anti-parallel to

the normal direction of the vertex. If δ
r

i = 0, the vertex has not been modified or
the modifications around the reference vertex in the data set have canceled each
other out. In order to identify the later situation one can calculate the variance
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of the deformation values. If there are outliers that affect the calculation of δ
r

i ,
we recommend to use the median instead of the mean in order to retrieve the
desired information.

As an example the relative mean vertex displacement has been calculated
based on a set of 200 turbine blades from different design optimization runs
and a pre-selected references design. For illustration purpose the values have
been coded into corresponding color values and mapped onto the surface of the
reference blade, Figure 3 a).

Overall Displacement Variance In order to calculate δ
r

i , the baseline mesh
r must be given. An alternative would be to calculate the mean displacement
between all possible shape combinations in the data set. However, this is not
sensible, because if the normal vectors of corresponding vertices are similar, it
holds that δr,m

i,j ≈ −δm,r
i,j and as a result such a measure would always tend to

zero.
In order to get an overview over the variations of local design modifications

an overall displacement variance can be defined as follows:

σδi
=

√√√√ 1
N(N − 1)

N∑
r=1

N∑
m=1,m6=r

(δr,m
i,j − δi)2 ≈

√√√√ 2
N(N − 1)

·
N∑

l=1

N∑
m=r+1

(δr,m
i,j )2

(5)
This measure describes the strength and the frequency of local design modi-

fications based on the whole data set. Following our argument above, we can set
δi ≈ 0.

Figure 3 b) shows the overall displacement for the turbine blade data set.
In order to visualize high as well as low variances σδi has been displayed in
logarithmic scale.

4.2 Sensitivity Analysis

Sensitivity analysis relates the displacement measure to variations of the corre-
sponding performance values.

Relative Vertex Correlation Coefficient The relative vertex correlation co-
efficient Rr

i , see Equation 6, formalizes the linear relation between local modifi-
cations in form of vertex displacements and performance values with respect to
a chosen reference design. φr,m = fm−fr is the performance difference between
two designs r and m and φ

r
is the mean value of the performance differences

with respect to the reference design r.

Rr
i =

∑N
m=1,m6=r(δ

r,m
i,j − δ

r

i )(φ
r,m − φ

r
)

σδr
i
σφr

(6)
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σδr
i

=

√√√√ 1
N − 1

N∑
m=1,m 6=r

(δr,m
i,j − δ

r

i )2, φ
r

=
1
N

N∑
m=1,m 6=r

φr,m (7)

Rr
i > 0 indicates that moving the vertex parallel to the normal vector is

most likely to improve the performance of the design and vice versa. Again two
situations can lead to a vanishing Rr

i value. Firstly, the obvious explanation is
that an (anti)-parallel modification of the vertex has no effect on the perfor-
mance measure. Secondly, if the vertex is already located in an optimal position,
every modification will reduce the performance and Rr

i will also be close to zero.
In order to distinguish between both cases, one could fit a linear model to the
displacement and performance difference pairs and calculate the residual of the
linear model. This residual provides information on the uncertainty of the corre-
lation coefficient. Of course, the uncertainty of the correlation coefficient might
also result from noisy data or non-linear relations between displacement measure
and performance differences.

Concerning the 3D turbine blade example the performance of each design
is determined by the overall pressure loss of the blade, see [1]. Based on the
displacement and pressure loss data the relative vertex correlation has been
calculated. The result is illustrated in Figure 3.

Vertex Sensitivity In order to identify vertices that are sensitive to perfor-
mance changes based on the whole data set without referring to one baseline
shape, the Pearson correlation coefficient is calculated based on all pairwise de-
sign comparisons. Calculating the mean value for all performance differences
obviously results in φ = 0. We define the overall vertex correlation coefficient as
follows (assuming again δi ≈ 0):

Ri =

∑N
r=1

∑N
m=1,m 6=r δr,m

i,j φr,m

σδiσφ
, σφ =

√√√√ 2
N(N − 1)

·
N∑

r=1

N∑
m=r+1

(φr,m)2

(8)
The overall vertex correlation coefficient captures the linear relationship be-

tween the displacement and performance changes. In order to be less sensitive to
outliers or noise in the data, it is reasonable to apply the Spearman rank based
coefficient instead of the Pearson correlation coefficient. Since the overall vertex
correlation is linear, information is provided to distinguish between those ver-
tices which are more likely to improve the performance by moving them parallel
to the direction of the normal vector and those which improve the performance
when moving them anti-parallel to the direction of the normal vector.

The overall vertex correlation coefficient has also been calculated for the tur-
bine blade data set. In order to identify most sensitive points a threshold has
been applied to the sensitivity values, Ri. The emerged regions can be distin-
guished into regions of positive and those of negative correlation as shown in
Figure 3 d).
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In aerodynamic design optimization the interrelation between design mod-
ifications and performance changes is often highly non-linear. In order to cap-
ture also non-linearities, one can apply information based measures like mutual
information [11] to determine the sensitivity of vertices. The disadvantage of
non-linear methods like mutual information is that the information to predict
the direction of design improvement with respect to the normal vector is lost.

a) b)

c) d)

Fig. 3. As an example the suggested methods are calculated based on a data set which
consists of 200 3D turbine blades: a) Relative mean vertex displacement, b) Overall
displacement variance in logarithmic scale, c) Relative vertex correlation coefficient, d)
Sensitive regions of the blade.

4.3 Modeling and Analyzing Interrelations

For the calculation of the measures described above, the displacement of each
vertex is considered independent of the others. Especially in aerodynamics the
interrelation between distant vertices or design regions and their joint influence
on the performance plays an important role. In this section, special character-
istics for the extraction of knowledge in form of associative rules based on data
from unstructured surface meshes are discussed and illustrated by means of
the blade example described above. The rules describe the relation between the
displacement of distant vertices and their joint influence on the performance cri-
teria. Modeling the interrelation between input variables is achieved by applying
well known modeling techniques like Fuzzy rule induction, Bayesian networks,
decision trees or others to the data set, for an overview of techniques see e.g. [8].

Rule Induction Generally, the number of input parameters must be kept small
for most modeling techniques in order to produce a small set of interpretable
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and manageable association rules. With respect to the used shape representa-
tion, the number of inputs equals the number of vertices n, which is large in
practice. Therefore, a reduction of the number of input parameters is strongly
required. Concerning the present turbine blade example, this process consists of
the following steps:

1. Perform sensitivity analysis
2. Select most sensitive vertices (e.g. apply threshold to the sensitivity metrics)
3. Cluster sensitive vertices to form sensitive areas (e.g. K-means)
4. Calculate cluster centers of the sensitive areas (the number of input variables

depend on the number of clusters)
5. Use displacement of vertices closest to cluster centers for rule extraction

The main task when modeling interrelations between distant design regions or
vertices is to extract associative rules which can be interpreted by aerodynamic
engineers. These rules are subdivided into relative rules, which refer to a baseline
shape, and general rules, which refer to the complete data set.

Besides standard real-valued input for the modeling technique, the input can
also be restricted to the sign of the displacement measure. In this case, rules
from the two-valued input describe the interrelation between the direction of
vertex displacement and the change in the performance value.

a) b)

Fig. 4. a) Illustration of the vertices close to the cluster centers of the sensitive areas. b)
Simplified decission tree describing the joint interrelation between a subset of vertices
and the influence to the preformance (overall pressure loss)

Figure 4 illustrates the reduced subset of parameters (vertices) and a part
of the complete classification tree extracted from the turbine blade data set.
The classification tree describes the interrelation between the direction of ver-
tex displacement and the change in the overall pressure loss. The rules for the
correlated movement of vertices are extracted in form of joint probabilities. For
example, moving vertex V7 alone will improve the performance by an probability
of p(φ > 0|δr

V 7 < 0) = 0.90. But moving V7 correlated with V3 will always result
in an increase in the overall pressure loss, p(φ < 0|δr

V 7 > 0, δr
V 3 < 0) = 1.00.
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5 Summary

In this paper, we investigated the problem of how to extract knowledge from
the large heterogeneous data sets that usually result from aerodynamic shape
optimization processes. Firstly, the aim is to communicate this knowledge to the
engineer to increase his/her understanding of the relation between shape and
aerodynamic performance, e.g. which part of the design space has been explored
and which part has been largely ignored in the past design processes. Secondly,
the information from the data set can be used in order to improve the ongoing op-
timization process, e.g. by specifying parameters of the optimization algorithms
or by increasing the generalization capabilities and reducing the approximation
erros of surrogate models [13].

The main contribution described in this paper is the formulation of a displace-
ment measure that acts on a generalized shape representation - the unstructured
mesh. Based on the displacement measure a number of methods and approaches
for displacement analysis, sensitivity analysis and rule extraction were suggested
and formulized.

In order to demonstrate the feasibility of the suggested approach, we have
shown examples for the proposed measures from a data set taken from the op-
timization of a 3D turbine blade.
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